@article{DietrichGlamschEhlertetal.2016, author = {Dietrich, Paul M. and Glamsch, Stephan and Ehlert, Christopher and Lippitz, Andreas and Kulak, Nora and Unger, Wolfgang E. S.}, title = {Synchrotron-radiation XPS analysis of ultra-thin silane films: Specifying the organic silicon}, series = {Applied surface science : a journal devoted to applied physics and chemistry of surfaces and interfaces}, volume = {363}, journal = {Applied surface science : a journal devoted to applied physics and chemistry of surfaces and interfaces}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-4332}, doi = {10.1016/j.apsusc.2015.12.052}, pages = {406 -- 411}, year = {2016}, abstract = {The analysis of chemical and elemental in-depth variations in ultra-thin organic layers with thicknesses below 5 nm is very challenging. Energy- and angle-resolved XPS (ER/AR-XPS) opens up the possibility for non-destructive chemical ultra-shallow depth profiling of the outermost surface layer of ultra-thin organic films due to its exceptional surface sensitivity. For common organic materials a reliable chemical in-depth analysis with a lower limit of the XPS information depth z(95) of about 1 nm can be performed. As a proof-of-principle example with relevance for industrial applications the ER/AR-XPS analysis of different organic monolayers made of amino- or benzamidosilane molecules on silicon oxide surfaces is presented. It is demonstrated how to use the Si 2p core-level region to non-destructively depth-profile the organic (silane monolayer) - inorganic (SiO2/Si) interface and how to quantify Si species, ranging from elemental silicon over native silicon oxide to the silane itself. The main advantage of the applied ER/AR-XPS method is the improved specification of organic from inorganic silicon components in Si 2p core-level spectra with exceptional low uncertainties compared to conventional laboratory XPS. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{SchafferIdzikWilkeetal.2016, author = {Schaffer, Mario and Idzik, Krzysztof R. and Wilke, Max and Licha, Tobias}, title = {Amides as thermo-sensitive tracers for investigating the thermal state of geothermal reservoirs}, series = {Geothermics : an international journal of geothermal research and its applications}, volume = {64}, journal = {Geothermics : an international journal of geothermal research and its applications}, publisher = {Elsevier}, address = {Oxford}, issn = {0375-6505}, doi = {10.1016/j.geothermics.2016.05.004}, pages = {180 -- 186}, year = {2016}, abstract = {The application of thermo-sensitive tracers is a promising technique for evaluating the thermal state of geothermal reservoirs. To extend the compound spectrum for hydrolyzable compounds to reservoir temperatures between 100 and 200 degrees C carboxamides were studied. The kinetic parameters of 17 self-synthesized amides were determined in hydrothermal batch and autoclave experiments. The influence of the molecular structure and the role of pH/pOH on hydrolysis kinetics were studied. Additionally, the thermal stabilities of the hydrolysis products were evaluated. The results demonstrate the high potential of tracers based on amide hydrolysis for use in medium enthalpy reservoirs. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} }