@phdthesis{Sieverling2005, author = {Sieverling, Nathalie}, title = {Kationische Copolymere f{\"u}r den rezeptorvermittelten Gentransfer}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5251}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Ziel dieser Arbeit war die Entwicklung neuer Substanzen f{\"u}r die Gentherapie. Diese beinhaltet die Behebung von erblich bedingten Krankheiten wie z.B. Mucoviscidose. Dabei werden im Zellkern defekte Gene durch normale, gesunde DNA-Sequenzen ersetzt. Zur Einschleusung des Genmaterials in die Zellen (Transfektion) werden geeignete Transport-Systeme bzw. Methoden ben{\"o}tigt, die dort die Freisetzung der neu einzubauenden Gene (Genexpression ausgedr{\"u}ckt in Transfektionseffizienzen) gestatten. Hierf{\"u}r wurden neue Polykation-DNA-Komplexe (Vektoren) auf Basis kationischer Polymere wie Poly(ethylenimin) (PEI) hergestellt, charakterisiert und nachfolgend in Transfektionsversuchen an verschiedenen Zelllinien eingesetzt. Sowohl das kationische Ausgangspolymer PEI als auch das Pfropfcopolymer PEI-g-PEO (PEO-Seitenketten zur Erh{\"o}hung der Biokompatibilit{\"a}t) wurden mit Rezeptorliganden modifiziert, um eine verbesserte und spezifische Transfektion an ausgesuchten Zellen zu erreichen. Als Liganden wurden Fols{\"a}ure (Transfektion an HeLa-Zellen), Triiod-L-thyronin (HepG2-Zellen) und die Urons{\"a}uren der Galactose, Mannose, Glucose sowie die Lactobions{\"a}ure (HeLa-, HepG2- und 16HBE-Zellen) verwendet. Das PEI, die Pfropfcopolymere PEI-g-PEO und die Ligand-funktionalisierten Copolymere wurden hinsichtlich ihrer chemischen Zusammensetzung und molekularen Parameter charakterisiert. Die Molmassenuntersuchungen mittels Gr{\"o}ßenausschlusschromatographie zeigten, dass nach der Synthese unterschiedliche Polymerfraktionen mit nicht einheitlicher chemischer Zusammensetzung vorlagen. Die anschließenden Transfektionsversuche wurden mit Hilfe einer speziellen DNA (Luciferase) an den Zelllinien HepG2 (Leberkrebszellen), HeLa (Geb{\"a}rmutterhalskrebszellen) und 16HBE (Atemwegsepithelzellen) durchgef{\"u}hrt. Die T3(Triiod-L-thyronin)-Vektoren zeigten in Abh{\"a}ngigkeit vom eingesetzten Komplexverh{\"a}ltnis Polykation/DNA ein Maximum in der Transfektion an HepG2-Zellen. Die Hypothese der rezeptorvermittelten Endozytose ließ sich durch entsprechende T3-{\"U}berschuss-Experimente und Fluoreszenzmikroskopie-Untersuchungen best{\"a}tigen. Dagegen konnte bei den Fols{\"a}ure-Vektoren keine rezeptorvermittelte Endozytose beobachtet werden. Bei den Vektoren mit Mannurons{\"a}ure-Ligand (Man) konnte an allen drei Zelllinien (HepG2, HeLa, 16HBE) eine konstante, hohe Transfereffizienz nachgewiesen werden. Sie waren bei allen eingesetzten Polymer-DNA-Verh{\"a}ltnissen effizienter als der Vergleichsvektor PEI. Dieses Transfektionsverhalten ließ sich durch Blockierung der Zuckerstruktur unterbinden. In Transfektionsexperimenten mit einem {\"U}berschuss an freier Mannurons{\"a}ure und fluoreszenzmikroskopischen Untersuchungen konnte eine rezeptorvermittelte Endozytose der Man-Vektoren an den o.g. Zelllinien nachgewiesen werden. Die anderen Urons{\"a}ure-Konjugate zeigten keine signifikanten Abweichungen im Transfektionsverhalten im Vergleich zum PEI-Vektor.}, subject = {Polyethylenimin}, language = {de} } @phdthesis{Schroeder2016, author = {Schr{\"o}der, Henning}, title = {Ultrafast electron dynamics in Fe(CO)5 and Cr(CO)6}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94589}, school = {Universit{\"a}t Potsdam}, pages = {v, 87}, year = {2016}, abstract = {In this thesis, the two prototype catalysts Fe(CO)₅ and Cr(CO)₆ are investigated with time-resolved photoelectron spectroscopy at a high harmonic setup. In both of these metal carbonyls, a UV photon can induce the dissociation of one or more ligands of the complex. The mechanism of the dissociation has been debated over the last decades. The electronic dynamics of the first dissociation occur on the femtosecond timescale. For the experiment, an existing high harmonic setup was moved to a new location, was extended, and characterized. The modified setup can induce dynamics in gas phase samples with photon energies of 1.55eV, 3.10eV, and 4.65eV. The valence electronic structure of the samples can be probed with photon energies between 20eV and 40eV. The temporal resolution is 111fs to 262fs, depending on the combination of the two photon energies. The electronically excited intermediates of the two complexes, as well as of the reaction product Fe(CO)₄, could be observed with photoelectron spectroscopy in the gas phase for the first time. However, photoelectron spectroscopy gives access only to the final ionic states. Corresponding calculations to simulate these spectra are still in development. The peak energies and their evolution in time with respect to the initiation pump pulse have been determined, these peaks have been assigned based on literature data. The spectra of the two complexes show clear differences. The dynamics have been interpreted with the assumption that the motion of peaks in the spectra relates to the movement of the wave packet in the multidimensional energy landscape. The results largely confirm existing models for the reaction pathways. In both metal carbonyls, this pathway involves a direct excitation of the wave packet to a metal-to-ligand charge transfer state and the subsequent crossing to a dissociative ligand field state. The coupling of the electronic dynamics to the nuclear dynamics could explain the slower dissociation in Fe(CO)₅ as compared to Cr(CO)₆.}, language = {en} }