@phdthesis{Doering2011, author = {D{\"o}ring, Sebastian}, title = {Oberfl{\"a}chengitter in azobenzenhaltigen Schichten f{\"u}r organische DFB-Laser}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-59211}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Ein neuentwickeltes azobenzenhaltiges Material, das auf einem supramolekularen Konzept basiert, wird bez{\"u}glich seiner Strukturbildung w{\"a}hrend einer holografischen Belichtung bei 488 nm untersucht. Im Mittelpunkt stehen dabei eindimensionale, sinusf{\"o}rmige Reliefs mit Periodizit{\"a}ten kleiner 500 nm. Es wird gezeigt, wie der Grad der Vernetzung der photosensitiven Schicht die Strukturbildung in diesem Gr{\"o}ßenbereich beeinflusst. Zur Maximierung der Strukturtiefe werden gezielt Prozessparameter der Belichtung sowie Materialparameter variiert. Unter Standardbedingungen und moderaten Belichtungsintensit{\"a}ten von ca. 200 mW/cm² bilden sich innerhalb weniger Minuten bei einer Periode von 400 nm Strukturtiefen von bis zu 80nm aus. Durch die Beeinflussung von Materialparametern, wie Oberfl{\"a}chenspannung und Viskosit{\"a}t, wird die maximale Strukturtiefe auf 160nm verdoppelt. Durch Mehrfachbelichtungen wird auch die Bildung von zweidimensionalen Gittern untersucht. Die Originalstrukturen werden in einem Abformverfahren kopiert und in Schichten von unter UV-Licht aush{\"a}rtenden Polymeren {\"u}bertragen. Durch das Abformen kommt es zu einer geringf{\"u}gigen Verschlechterung der Oberfl{\"a}chenqualit{\"a}t sowie Abnahme der Strukturtiefe. Dieser Verlust wird durch eine Verringerung der Prozesstemperatur verringert. Mithilfe kopierter Oberfl{\"a}chengitter werden organische Distributed Feedback-(DFB)-Laser zweiter Ordnung hergestellt, um den Einfluss von Gitterparametern auf die Emissionseigenschaften dieser Laser zu untersuchen. Dazu erfolgt zun{\"a}chst die Charakterisierung der optischen Verst{\"a}rkungseigenschaften ausgew{\"a}hlter organischer Emittermaterialien mittels der Variablen Strichl{\"a}ngenmethode. Das mit dem Laserfarbstoff Pyrromthen567 (PM567) dotierte Polystyrol (PS) zeigt dabei trotz konzentrationsbedingter geringer Absorption eine vergleichsweise geringe Gewinnschwelle von 50µJ/cm² bei ca. 575 nm. Das aktive Gast-Wirt-System der konjugierten Polymere MEH-PPV und F8BT* weist eine hohe Absorption und eine kleine Gewinnschwelle von 2,5 µJ/cm² bei 630 nm auf. Dieses Verhalten spiegelt sich auch in den Emissionseigenschaften der damit hergestellten DFB-Laser wieder. Die Dicke der aktiven Schichten liegen im Bereich hunderter Nanometer und wird so eingestellt, dass sich nur die transversalen Grundmoden im Wellenleiter ausbreiten k{\"o}nnen. Die Gitterperiode sind so gew{\"a}hlt, dass ein Lichtmode im Verst{\"a}rkungsbereich des Emittermaterials liegt. Die Emissionslinien der Laser sind mit FWHM-Werten von bis zu 0,3 nm spektral sehr schmalbandig und weisen auf eine sehr gute Gitterqualit{\"a}t hin. Die Untersuchungen liefern minimale Laserschwellen und maximale differentielle Effizienzen von 4,0µJ/cm² und 8,4\% f{\"u}r MEH-PPV in F8BT* (bei ca. 640nm) sowie 80 µJ/cm² und 0,9\% f{\"u}r PM567 in PS (bei ca. 575 nm). Die Vergr{\"o}ßerung der Strukturtiefe von 40nm auf 80nm in mit MEH-PPV dotierten F8BT*-Lasern zu einem deutlichen Anstieg der ausgekoppelten Energie sowie der differentiellen Effizienz und einem geringen Absinken der Laserschwelle. Dies ist ein Resultat der erh{\"o}hten Kopplung von Lasermode und Gitter. Die Emission von DFB-Lasern mit zweidimensionalen Oberfl{\"a}chengittern zeigen eine Verringerung der Divergenz aber kein Einfluss auf die Laserschwelle. Abschließend erfolgt eine Vermessung der Photostabilit{\"a}t von DFB-Lasern unter verschiedenen Bedingungen. Das Einbringen eines konjugierten Polymers in eine aktive Matrix sowie der Betrieb in einer Stickstoffatmosph{\"a}re f{\"u}hren dabei zu einer Erh{\"o}hung der Lebensdauer auf {\"u}ber eine Million Pulse. Durch die Kombination von Oberfl{\"a}chengittern in PDMS-Filmen mit elektroaktiven Substraten wird eine elektrisch steuerbare Deformation des Beugungsgitters erreicht und auf einen DFB-Laser {\"u}bertragen. Die spannungsinduzierte Verformung wird zun{\"a}chst in Beugungsexperimenten charakterisiert und ein optimaler Arbeitspunkt bestimmt. Mit den beiden Elastomeren SEBS12 und VHB4910 werden in den Gittern maximale Perioden{\"a}nderungen von 1,3\% bzw. 3,4\% bei einer Steuerspannung von 2 kV erreicht. Der Unterschied resultiert aus den verschiedenen Elastizit{\"a}tsmoduln der Materialien. {\"U}bertragen auf DFB-Laser resultiert eine Variation der Gitterperiode senkrecht zu den Gitterlinien in einer kontinuierlichen Verschiebung der Emissionswellenl{\"a}nge. Mit einem Spannungssignal von 3,25 kV wird die schmalbandige Emission eines elastischen DFB-Lasers kontinuierlich um fast 50nm von 604 nm zu 557 nm hin verschoben. Aus dem Deformationsverhalten sowohl der reinen Beugungsgitter als auch der Laser werden R{\"u}ckschl{\"u}sse auf die Elastizit{\"a}t der verwendeten Materialien gezogen und erlauben Verbesserungen der Bauteile.}, language = {de} }