@phdthesis{Bischofs2004, author = {Bischofs, Ilka Bettina}, title = {Elastic interactions of cellular force patterns}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001767}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Gewebezellen sammeln st{\"a}ndig Informationen {\"u}ber die mechanischen Eigenschaften ihrer Umgebung, indem sie aktiv an dieser ziehen. Diese Kr{\"a}fte werden an Zell-Matrix-Kontakten {\"u}bertragen, die als Mechanosensoren fungieren. J{\"u}ngste Experimente mit Zellen auf elastischen Substraten zeigen, dass Zellen sehr empfindlich auf Ver{\"a}nderungen der effektiven Steifigkeit ihrer Umgebung reagieren, die zu einer Reorganisation des Zytoskeletts f{\"u}hren k{\"o}nnen. In dieser Arbeit wird ein theoretisches Model entwickelt, um die Selbstorganisation von Zellen in weichen Materialien vorherzusagen. Obwohl das Zellverhalten durch komplexe regulatorische Vorg{\"a}nge in der Zelle gesteuert wird, scheint die typische Antwort von Zellen auf mechanische Reize eine einfache Pr{\"a}ferenz f{\"u}r große effektive Steifigkeit der Umgebung zu sein, m{\"o}glicherweise weil in einer steiferen Umgebung Kr{\"a}fte an den Kontakten effektiver aufgebaut werden k{\"o}nnen. Der Begriff Steifigkeit umfasst dabei sowohl Effekte, die durch gr{\"o}ßere H{\"a}rte als auch durch elastische Verzerrungsfelder in der Umgebung verursacht werden. Diese Beobachtung kann man als ein Extremalprinzip in der Elastizit{\"a}tstheorie formulieren. Indem man das zellul{\"a}re Kraftmuster spezifiziert, mit dem Zellen mit ihrer Umgebung wechselwirken, und die Umgebung selbst als linear elastisches Material modelliert, kann damit die optimale Orientierung und Position von Zellen vorhergesagt werden. Es werden mehrere praktisch relevante Beispiele f{\"u}r Zellorganisation theoretisch betrachtet: Zellen in externen Spannungsfeldern und Zellen in der N{\"a}he von Grenzfl{\"a}chen f{\"u}r verschiedene Geometrien und Randbedingungen des elastischen Mediums. Daf{\"u}r werden die entsprechenden elastischen Randwertprobleme in Vollraum, Halbraum und Kugel exakt gel{\"o}st. Die Vorhersagen des Models stimmen hervorragend mit experimentellen Befunden f{\"u}r Fibroblastzellen {\"u}berein, sowohl auf elastischen Substraten als auch in physiologischen Hydrogelen. Mechanisch aktive Zellen wie Fibroblasten k{\"o}nnen auch elastisch miteinander wechselwirken. Es werden daher optimale Strukturen als Funktion von Materialeigenschaften und Zelldichte bzw. der Geometrie der Zellpositionen berechnet. Schließlich wird mit Hilfe von Monte Carlo Simulationen der Einfluss stochastischer St{\"o}rungen auf die Strukturbildung untersucht. Das vorliegende Model tr{\"a}gt nicht nur zu einem besseren Verst{\"a}ndnis von vielen physiologischen Situationen bei, sondern k{\"o}nnte in Zukunft auch f{\"u}r biomedizinische Anwendungen benutzt werden, um zum Beispiel Protokolle f{\"u}r k{\"u}nstliche Gewebe im Bezug auf Substratgeometrie, Randbedingungen, Materialeigenschaften oder Zelldichte zu optimieren.}, language = {en} } @phdthesis{Bringmann2012, author = {Bringmann, Martin}, title = {Identification of novel components that connect cellulose synthases to the cytoskeleton}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-61478}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Cellulose is the most abundant biopolymer on earth and the main load-bearing structure in plant cell walls. Cellulose microfibrils are laid down in a tight parallel array, surrounding plant cells like a corset. Orientation of microfibrils determines the direction of growth by directing turgor pressure to points of expansion (Somerville et al., 2004). Hence, cellulose deficient mutants usually show cell and organ swelling due to disturbed anisotropic cell expansion (reviewed in Endler and Persson, 2011). How do cellulose microfibrils gain their parallel orientation? First experiments in the 1960s suggested, that cortical microtubules aid the cellulose synthases on their way around the cell (Green, 1962; Ledbetter and Porter, 1963). This was proofed in 2006 through life cell imaging (Paredez et al., 2006). However, how this guidance was facilitated, remained unknown. Through a combinatory approach, including forward and reverse genetics together with advanced co-expression analysis, we identified pom2 as a cellulose deficient mutant. Map- based cloning revealed that the gene locus of POM2 corresponded to CELLULOSE SYNTHASE INTERACTING 1 (CSI1). Intriguingly, we previously found the CSI1 protein to interact with the putative cytosolic part of the primary cellulose synthases in a yeast-two-hybrid screen (Gu et al., 2010). Exhaustive cell biological analysis of the POM2/CSI1 protein allowed to determine its cellular function. Using spinning disc confocal microscopy, we could show that in the absence of POM2/CSI1, cellulose synthase complexes lose their microtubule-dependent trajectories in the plasma membrane. The loss of POM2/CSI1, however does not influence microtubule- dependent delivery of cellulose synthases (Bringmann et al., 2012). Consequently, POM2/CSI1 acts as a bridging protein between active cellulose synthases and cortical microtubules. This thesis summarizes three publications of the author, regarding the identification of proteins that connect cellulose synthases to the cytoskeleton. This involves the development of bioinformatics tools allowing candidate gene prediction through co-expression studies (Mutwil et al., 2009), identification of candidate genes through interaction studies (Gu et al., 2010), and determination of the cellular function of the candidate gene (Bringmann et al., 2012).}, language = {en} } @misc{BarbosaPfannesAnielskiGerhardtetal.2013, author = {Barbosa Pfannes, Eva Katharina and Anielski, Alexander and Gerhardt, Matthias and Beta, Carsten}, title = {Intracellular photoactivation of caged cGMP induces myosin II and actin responses in motile cells}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94984}, pages = {1456 -- 1463}, year = {2013}, abstract = {Cyclic GMP (cGMP) is a ubiquitous second messenger in eukaryotic cells. It is assumed to regulate the association of myosin II with the cytoskeleton of motile cells. When cells of the social amoeba Dictyostelium discoideum are exposed to chemoattractants or to increased osmotic stress, intracellular cGMP levels rise, preceding the accumulation of myosin II in the cell cortex. To directly investigate the impact of intracellular cGMP on cytoskeletal dynamics in a living cell, we released cGMP inside the cell by laser-induced photo-cleavage of a caged precursor. With this approach, we could directly show in a live cell experiment that an increase in intracellular cGMP indeed induces myosin II to accumulate in the cortex. Unexpectedly, we observed for the first time that also the amount of filamentous actin in the cell cortex increases upon a rise in the cGMP concentration, independently of cAMP receptor activation and signaling. We discuss our results in the light of recent work on the cGMP signaling pathway and suggest possible links between cGMP signaling and the actin system.}, language = {en} } @phdthesis{Breuer2016, author = {Breuer, David}, title = {The plant cytoskeleton as a transportation network}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-93583}, school = {Universit{\"a}t Potsdam}, pages = {164}, year = {2016}, abstract = {The cytoskeleton is an essential component of living cells. It is composed of different types of protein filaments that form complex, dynamically rearranging, and interconnected networks. The cytoskeleton serves a multitude of cellular functions which further depend on the cell context. In animal cells, the cytoskeleton prominently shapes the cell's mechanical properties and movement. In plant cells, in contrast, the presence of a rigid cell wall as well as their larger sizes highlight the role of the cytoskeleton in long-distance intracellular transport. As it provides the basis for cell growth and biomass production, cytoskeletal transport in plant cells is of direct environmental and economical relevance. However, while knowledge about the molecular details of the cytoskeletal transport is growing rapidly, the organizational principles that shape these processes on a whole-cell level remain elusive. This thesis is devoted to the following question: How does the complex architecture of the plant cytoskeleton relate to its transport functionality? The answer requires a systems level perspective of plant cytoskeletal structure and transport. To this end, I combined state-of-the-art confocal microscopy, quantitative digital image analysis, and mathematically powerful, intuitively accessible graph-theoretical approaches. This thesis summarizes five of my publications that shed light on the plant cytoskeleton as a transportation network: (1) I developed network-based frameworks for accurate, automated quantification of cytoskeletal structures, applicable in, e.g., genetic or chemical screens; (2) I showed that the actin cytoskeleton displays properties of efficient transport networks, hinting at its biological design principles; (3) Using multi-objective optimization, I demonstrated that different plant cell types sustain cytoskeletal networks with cell-type specific and near-optimal organization; (4) By investigating actual transport of organelles through the cell, I showed that properties of the actin cytoskeleton are predictive of organelle flow and provided quantitative evidence for a coordination of transport at a cellular level; (5) I devised a robust, optimization-based method to identify individual cytoskeletal filaments from a given network representation, allowing the investigation of single filament properties in the network context. The developed methods were made publicly available as open-source software tools. Altogether, my findings and proposed frameworks provide quantitative, system-level insights into intracellular transport in living cells. Despite my focus on the plant cytoskeleton, the established combination of experimental and theoretical approaches is readily applicable to different organisms. Despite the necessity of detailed molecular studies, only a complementary, systemic perspective, as presented here, enables both understanding of cytoskeletal function in its evolutionary context as well as its future technological control and utilization.}, language = {en} } @article{BreuerNowakIvakovetal.2017, author = {Breuer, David and Nowak, Jacqueline and Ivakov, Alexander and Somssich, Marc and Persson, Staffan and Nikoloski, Zoran}, title = {System-wide organization of actin cytoskeleton determines organelle transport in hypocotyl plant cells}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {114}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1706711114}, pages = {E5741 -- E5749}, year = {2017}, abstract = {The actin cytoskeleton is an essential intracellular filamentous structure that underpins cellular transport and cytoplasmic streaming in plant cells. However, the system-level properties of actin-based cellular trafficking remain tenuous, largely due to the inability to quantify key features of the actin cytoskeleton. Here, we developed an automated image-based, network-driven framework to accurately segment and quantify actin cytoskeletal structures and Golgi transport. We show that the actin cytoskeleton in both growing and elongated hypocotyl cells has structural properties facilitating efficient transport. Our findings suggest that the erratic movement of Golgi is a stable cellular phenomenon that might optimize distribution efficiency of cell material. Moreover, we demonstrate that Golgi transport in hypocotyl cells can be accurately predicted from the actin network topology alone. Thus, our framework provides quantitative evidence for system-wide coordination of cellular transport in plant cells and can be readily applied to investigate cytoskeletal organization and transport in other organisms.}, language = {en} } @article{KoonceTikhonenkoGraef2020, author = {Koonce, Michael and Tikhonenko, Irina and Gr{\"a}f, Ralph}, title = {Dictyostelium cell fixation}, series = {Methods and protocols}, volume = {3}, journal = {Methods and protocols}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2409-9279}, doi = {10.3390/mps3030047}, pages = {6}, year = {2020}, abstract = {We share two simple modifications to enhance the fixation and imaging of relatively small, motile, and rounded model cells. These include cell centrifugation and the addition of trace amounts of glutaraldehyde to existing fixation methods. Though they need to be carefully considered in each context, they have been useful to our studies of the spatial relationships of the microtubule cytoskeletal system.}, language = {en} }