@phdthesis{Bookhagen2004, author = {Bookhagen, Bodo}, title = {Late quaternary climate changes and landscape evolution in the Northwest Himalaya : geomorphologic processes in the Indian Summer Monsoon Domain}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001956}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {The India-Eurasia continental collision zone provides a spectacular example of active mountain building and climatic forcing. In order to quantify the critically important process of mass removal, I analyzed spatial and temporal precipitation patterns of the oscillating monsoon system and their geomorphic imprints. I processed passive microwave satellite data to derive high-resolution rainfall estimates for the last decade and identified an abnormal monsoon year in 2002. During this year, precipitation migrated far into the Sutlej Valley in the northwestern part of the Himalaya and reached regions behind orographic barriers that are normally arid. There, sediment flux, mean basin denudation rates, and channel-forming processes such as erosion by debris-flows increased significantly. Similarly, during the late Pleistocene and early Holocene, solar forcing increased the strength of the Indian summer monsoon for several millennia and presumably lead to analogous precipitation distribution as were observed during 2002. However, the persistent humid conditions in the steep, high-elevation parts of the Sutlej River resulted in deep-seated landsliding. Landslides were exceptionally large, mainly due to two processes that I infer for this time: At the onset of the intensified monsoon at 9.7 ka BP heavy rainfall and high river discharge removed material stored along the river, and lowered the baselevel. Second, enhanced discharge, sediment flux, and increased pore-water pressures along the hillslopes eventually lead to exceptionally large landslides that have not been observed in other periods. The excess sediments that were removed from the upstream parts of the Sutlej Valley were rapidly deposited in the low-gradient sectors of the lower Sutlej River. Timing of downcutting correlates with centennial-long weaker monsoon periods that were characterized by lower rainfall. I explain this relationship by taking sediment flux and rainfall dynamics into account: High sediment flux derived from the upstream parts of the Sutlej River during strong monsoon phases prevents fluvial incision due to oversaturation the fluvial sediment-transport capacity. In contrast, weaker monsoons result in a lower sediment flux that allows incision in the low-elevation parts of the Sutlej River.}, language = {en} } @phdthesis{Thiede2005, author = {Thiede, Rasmus Christoph}, title = {Tectonic and climatic controls on orogenic processes : the Northwest Himalaya, India}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-2281}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {The role of feedback between erosional unloading and tectonics controlling the development of the Himalaya is a matter of current debate. The distribution of precipitation is thought to control surface erosion, which in turn results in tectonic exhumation as an isostatic compensation process. Alternatively, subsurface structures can have significant influence in the evolution of this actively growing orogen. Along the southern Himalayan front new 40Ar/39Ar white mica and apatite fission track (AFT) thermochronologic data provide the opportunity to determine the history of rock-uplift and exhumation paths along an approximately 120-km-wide NE-SW transect spanning the greater Sutlej region of the northwest Himalaya, India. 40Ar/39Ar data indicate, consistent with earlier studies that first the High Himalayan Crystalline, and subsequently the Lesser Himalayan Crystalline nappes were exhumed rapidly during Miocene time, while the deformation front propagated to the south. In contrast, new AFT data delineate synchronous exhumation of an elliptically shaped, NE-SW-oriented ~80 x 40 km region spanning both crystalline nappes during Pliocene-Quaternary time. The AFT ages correlate with elevation, but show within the resolution of the method no spatial relationship to preexisting major tectonic structures, such as the Main Central Thrust or the Southern Tibetan Fault System. Assuming constant exhumation rates and geothermal gradient, the rocks of two age vs. elevation transects were exhumed at ~1.4 \&\#177;0.2 and ~1.1 \&\#177;0.4 mm/a with an average cooling rate of ~50-60 \&\#176;C/Ma during Pliocene-Quaternary time. The locus of pronounced exhumation defined by the AFT data coincides with a region of enhanced precipitation, high discharge, and sediment flux rates under present conditions. We therefore hypothesize that the distribution of AFT cooling ages might reflect the efficiency of surface processes and fluvial erosion, and thus demonstrate the influence of erosion in localizing rock-uplift and exhumation along southern Himalayan front, rather than encompassing the entire orogen.Despite a possible feedback between erosion and exhumation along the southern Himalayan front, we observe tectonically driven, crustal exhumation within the arid region behind the orographic barrier of the High Himalaya, which might be related to and driven by internal plateau forces. Several metamorphic-igneous gneiss dome complexes have been exhumed between the High Himalaya to the south and Indus-Tsangpo suture zone to the north since the onset of Indian-Eurasian collision ~50 Ma ago. Although the overall tectonic setting is characterized by convergence the exhumation of these domes is accommodated by extensional fault systems.Along the Indian-Tibetan border the poorly described Leo Pargil metamorphic-igneous gneiss dome (31-34\&\#176;N/77-78\&\#176;E) is located within the Tethyan Himalaya. New field mapping, structural, and geochronologic data document that the western flank of the Leo Pargil dome was formed by extension along temporally linked normal fault systems. Motion on a major detachment system, referred to as the Leo Pargil detachment zone (LPDZ) has led to the juxtaposition of low-grade metamorphic, sedimentary rocks in the hanging wall and high-grade metamorphic gneisses in the footwall. However, the distribution of new 40Ar/39Ar white mica data indicate a regional cooling event during middle Miocene time. New apatite fission track (AFT) data demonstrate that subsequently more of the footwall was extruded along the LPDZ in a brittle stage between 10 and 2 Ma with a minimum displacement of ~9 km. Additionally, AFT-data indicate a regional accelerated cooling and exhumation episode starting at ~4 Ma. Thus, tectonic processes can affect the entire orogenic system, while potential feedbacks between erosion and tectonics appear to be limited to the windward sides of an orogenic systems.}, language = {en} } @phdthesis{Scherler2010, author = {Scherler, Dirk}, title = {Climate variability and glacial dynamics in the Himalaya}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-49871}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {In den Hochgebirgen Asiens bedecken Gletscher eine Fl{\"a}che von ungef{\"a}hr 115,000 km² und ergeben damit, neben Gr{\"o}nland und der Antarktis, eine der gr{\"o}ßten Eisakkumulationen der Erde. Die Sensibilit{\"a}t der Gletscher gegen{\"u}ber Klimaschwankungen macht sie zu wertvollen pal{\"a}oklimatischen Archiven in Hochgebirgen, aber gleichzeitig auch anf{\"a}llig gegen{\"u}ber rezenter und zuk{\"u}nftiger globaler Erw{\"a}rmung. Dies kann vor allem in dicht besiedelten Gebieten S{\"u}d-, Ost- und Zentralasiens zu großen Problem f{\"u}hren, in denen Gletscher- und Schnee-Schmelzw{\"a}sser eine wichtige Ressource f{\"u}r Landwirtschaft und Stromerzeugung darstellen. Eine erfolgreiche Prognose des Gletscherverhaltens in Reaktion auf den Klimawandel und die Minderung der sozio{\"o}konomischen Auswirkungen erfordert fundierte Kenntnisse der klimatischen Steuerungsfaktoren und der Dynamik asiatischer Gletscher. Aufgrund ihrer Abgeschiedenheit und dem erschwerten Zugang gibt es nur wenige glaziologische Gel{\"a}ndestudien, die zudem r{\"a}umlich und zeitlich sehr begrenzt sind. Daher fehlen bisher grundlegende Informationen {\"u}ber die Mehrzahl asiatischer Gletscher. In dieser Arbeit benutze ich verschiedene Methoden, um die Dynamik asiatischer Gletscher auf mehreren Zeitskalen zu untersuchen. Erstens teste ich eine Methode zur pr{\"a}zisen satelliten-gest{\"u}tzten Messung von Gletscheroberfl{\"a}chen-Geschwindigkeiten. Darauf aufbauend habe ich eine umfassende regionale Erhebung der Fliessgeschwindigkeiten und Frontdynamik asiatischer Gletscher f{\"u}r die Jahre 2000 bis 2008 durchgef{\"u}hrt. Der gewonnene Datensatz erlaubt einmalige Einblicke in die topographischen und klimatischen Steuerungsfaktoren der Gletscherfließgeschwindigkeiten in den Gebirgsregionen Hochasiens. Insbesondere dokumentieren die Daten rezent ungleiches Verhalten der Gletscher im Karakorum und im Himalaja, welches ich auf die konkurrierenden klimatischen Einfl{\"u}sse der Westwinddrift im Winter und des Indischen Monsuns im Sommer zur{\"u}ckf{\"u}hre. Zweitens untersuche ich, ob klimatisch bedingte Ost-West Unterschiede im Gletscherverhalten auch auf l{\"a}ngeren Zeitskalen eine Rolle spielen und gegebenenfalls f{\"u}r dokumentierte regional asynchrone Gletschervorst{\"o}ße relevant sind. Dazu habe ich mittels kosmogener Nuklide Oberfl{\"a}chenalter von erratischen Bl{\"o}cken auf Mor{\"a}nen ermittelt und eine glaziale Chronologie f{\"u}r das obere Tons Tal, in den Quellgebieten des Ganges, erstellt. Dieses Gebiet befindet sich in der {\"U}bergangszone von monsunaler zu Westwind beeinflusster Feuchtigkeitszufuhr und ist damit ideal gelegen, um die Auswirkungen dieser beiden atmosph{\"a}rischen Zirkulationssysteme auf Gletschervorst{\"o}ße zu untersuchen. Die ermittelte glaziale Chronologie dokumentiert mehrere Gletscherschwankungen w{\"a}hrend des Endstadiums der letzten Pleistoz{\"a}nen Vereisung und w{\"a}hrend des Holz{\"a}ns. Diese weisen darauf hin, dass Gletscherschwankungen im westlichen Himalaja weitestgehend synchron waren und auf graduelle glaziale-interglaziale Temperaturver{\"a}nderungen, {\"u}berlagert von monsunalen Niederschlagsschwankungen h{\"o}herer Frequenz, zur{\"u}ck zu f{\"u}hren sind. In einem dritten Schritt kombiniere ich Satelliten-Klimadaten mit Eisfluss-Absch{\"a}tzungen und topographischen Analysen, um den Einfluss der Gletscher Hochasiens auf die Reliefentwicklung im Hochgebirge zu untersuchen. Die Ergebnisse dokumentieren ausgepr{\"a}gte meridionale Unterschiede im Grad und im Stil der Vergletscherung und glazialen Erosion in Abh{\"a}ngigkeit von topographischen und klimatischen Faktoren. Gegens{\"a}tzlich zu bisherigen Annahmen deuten die Daten darauf hin, dass das monsunale Klima im zentralen Himalaja die glaziale Erosion schw{\"a}cht und durch den Erhalt einer steilen orographischen Barriere das Tibet Plateau vor lateraler Zerschneidung bewahrt. Die Ergebnisse dieser Arbeit dokumentieren, wie klimatische und topographische Gradienten die Gletscherdynamik in den Hochgebirgen Asiens auf Zeitskalen von 10^0 bis 10^6 Jahren beeinflussen. Die Reaktionszeit der Gletscher auf Klimaver{\"a}nderungen sind eng an Eigenschaften wie Schuttbedeckung und Neigung gekoppelt, welche ihrerseits von den topographischen Verh{\"a}ltnissen bedingt sind. Derartige Einflussfaktoren m{\"u}ssen bei pal{\"a}oklimatischen Rekonstruktion und Vorhersagen {\"u}ber die Entwicklung asiatischer Gletscher ber{\"u}cksichtigt werden. Desweiteren gehen die regionalen topographischen Unterschiede der vergletscherten Gebiete Asiens teilweise auf klimatische Gradienten und den langfristigen Einfluss der Gletscher auf die topographische Entwicklung des Gebirgssystems zur{\"u}ck.}, language = {en} } @phdthesis{Olen2016, author = {Olen, Stephanie M.}, title = {Understanding Himalayan denudation at the catchment and orogen scale}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-91423}, school = {Universit{\"a}t Potsdam}, pages = {xx, 174}, year = {2016}, abstract = {Understanding the rates and processes of denudation is key to unraveling the dynamic processes that shape active orogens. This includes decoding the roles of tectonic and climate-driven processes in the long-term evolution of high- mountain landscapes in regions with pronounced tectonic activity and steep climatic and surface-process gradients. Well-constrained denudation rates can be used to address a wide range of geologic problems. In steady-state landscapes, denudation rates are argued to be proportional to tectonic or isostatic uplift rates and provide valuable insight into the tectonic regimes underlying surface denudation. The use of denudation rates based on terrestrial cosmogenic nuclide (TCN) such as 10Beryllium has become a widely-used method to quantify catchment-mean denudation rates. Because such measurements are averaged over timescales of 102 to 105 years, they are not as susceptible to stochastic changes as shorter-term denudation rate estimates (e.g., from suspended sediment measurements) and are therefore considered more reliable for a comparison to long-term processes that operate on geologic timescales. However, the impact of various climatic, biotic, and surface processes on 10Be concentrations and the resultant denudation rates remains unclear and is subject to ongoing discussion. In this thesis, I explore the interaction of climate, the biosphere, topography, and geology in forcing and modulating denudation rates on catchment to orogen scales. There are many processes in highly dynamic active orogens that may effect 10Be concentrations in modern river sands and therefore impact 10Be-derived denudation rates. The calculation of denudation rates from 10Be concentrations, however, requires a suite of simplifying assumptions that may not be valid or applicable in many orogens. I investigate how these processes affect 10Be concentrations in the Arun Valley of Eastern Nepal using 34 new 10Be measurements from the main stem Arun River and its tributaries. The Arun Valley is characterized by steep gradients in climate and topography, with elevations ranging from <100 m asl in the foreland basin to >8,000 asl in the high sectors to the north. This is coupled with a five-fold increase in mean annual rainfall across strike of the orogen. Denudation rates from tributary samples increase toward the core of the orogen, from <0.2 to >5 mm/yr from the Lesser to Higher Himalaya. Very high denudation rates (>2 mm/yr), however, are likely the result of 10Be TCN dilution by surface and climatic processes, such as large landsliding and glaciation, and thus may not be representative of long-term denudation rates. Mainstem Arun denudation rates increase downstream from ~0.2 mm/yr at the border with Tibet to 0.91 mm/yr at its outlet into the Sapt Kosi. However, the downstream 10Be concentrations may not be representative of the entire upstream catchment. Instead, I document evidence for downstream fining of grains from the Tibetan Plateau, resulting in an order-of-magnitude apparent decrease in the measured 10Be concentration. In the Arun Valley and across the Himalaya, topography, climate, and vegetation are strongly interrelated. The observed increase in denudation rates at the transition from the Lesser to Higher Himalaya corresponds to abrupt increases in elevation, hillslope gradient, and mean annual rainfall. Thus, across strike (N-S), it is difficult to decipher the potential impacts of climate and vegetation cover on denudation rates. To further evaluate these relationships I instead took advantage of an along-strike west-to-east increase of mean annual rainfall and vegetation density in the Himalaya. An analysis of 136 published 10Be denudation rates from along strike of the revealed that median denudation rates do not vary considerably along strike of the Himalaya, ~1500 km E-W. However, the range of denudation rates generally decreases from west to east, with more variable denudation rates in the northwestern regions of the orogen than in the eastern regions. This denudation rate variability decreases as vegetation density increases (R=- 0.90), and increases proportionately to the annual seasonality of vegetation (R=0.99). Moreover, rainfall and vegetation modulate the relationship between topographic steepness and denudation rates such that in the wet, densely vegetated regions of the Himalaya, topography responds more linearly to changes in denudation rates than in dry, sparsely vegetated regions, where the response of topographic steepness to denudation rates is highly nonlinear. Understanding the relationships between denudation rates, topography, and climate is also critical for interpreting sedimentary archives. However, there is a lack of understanding of how terrestrial organic matter is transported out of orogens and into sedimentary archives. Plant wax lipid biomarkers derived from terrestrial and marine sedimentary records are commonly used as paleo- hydrologic proxy to help elucidate these problems. I address the issue of how to interpret the biomarker record by using the plant wax isotopic composition of modern suspended and riverbank organic matter to identify and quantify organic matter source regions in the Arun Valley. Topographic and geomorphic analysis, provided by the 10Be catchment-mean denudation rates, reveals that a combination of topographic steepness (as a proxy for denudation) and vegetation density is required to capture organic matter sourcing in the Arun River. My studies highlight the importance of a rigorous and careful interpretation of denudation rates in tectonically active orogens that are furthermore characterized by strong climatic and biotic gradients. Unambiguous information about these issues is critical for correctly decoding and interpreting the possible tectonic and climatic forces that drive erosion and denudation, and the manifestation of the erosion products in sedimentary archives.}, language = {en} } @phdthesis{Stolle2018, author = {Stolle, Amelie}, title = {Catastrophic Sediment Pulses in the Pokhara Valley, Nepal}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-413341}, school = {Universit{\"a}t Potsdam}, pages = {XVII, 173}, year = {2018}, abstract = {Fluvial terraces, floodplains, and alluvial fans are the main landforms to store sediments and to decouple hillslopes from eroding mountain rivers. Such low-relief landforms are also preferred locations for humans to settle in otherwise steep and poorly accessible terrain. Abundant water and sediment as essential sources for buildings and infrastructure make these areas amenable places to live at. Yet valley floors are also prone to rare and catastrophic sedimentation that can overload river systems by abruptly increasing the volume of sediment supply, thus causing massive floodplain aggradation, lateral channel instability, and increased flooding. Some valley-fill sediments should thus record these catastrophic sediment pulses, allowing insights into their timing, magnitude, and consequences. This thesis pursues this theme and focuses on a prominent ~150 km2 valley fill in the Pokhara Valley just south of the Annapurna Massif in central Nepal. The Pokhara Valley is conspicuously broad and gentle compared to the surrounding dissected mountain terrain, and is filled with locally more than 70 m of clastic debris. The area's main river, Seti Khola, descends from the Annapurna Sabche Cirque at 3500-4500 m asl down to 900 m asl where it incises into this valley fill. Humans began to settle on this extensive fan surface in the 1750's when the Trans-Himalayan trade route connected the Higher Himalayas, passing Pokhara city, with the subtropical lowlands of the Terai. High and unstable river terraces and steep gorges undermined by fast flowing rivers with highly seasonal (monsoon-driven) discharge, a high earthquake risk, and a growing population make the Pokhara Valley an ideal place to study the recent geological and geomorphic history of its sediments and the implication for natural hazard appraisals. The objective of this thesis is to quantify the timing, the sedimentologic and geomorphic processes as well as the fluvial response to a series of strong sediment pulses. I report diagnostic sedimentary archives, lithofacies of the fan terraces, their geochemical provenance, radiocarbon-age dating and the stratigraphic relationship between them. All these various and independent lines of evidence show consistently that multiple sediment pulses filled the Pokhara Valley in medieval times, most likely in connection with, if not triggered by, strong seismic ground shaking. The geomorphic and sedimentary evidence is consistent with catastrophic fluvial aggradation tied to the timing of three medieval Himalayan earthquakes in ~1100, 1255, and 1344 AD. Sediment provenance and calibrated radiocarbon-age data are the key to distinguish three individual sediment pulses, as these are not evident from their sedimentology alone. I explore various measures of adjustment and fluvial response of the river system following these massive aggradation pulses. By using proxies such as net volumetric erosion, incision and erosion rates, clast provenance on active river banks, geomorphic markers such as re-exhumed tree trunks in growth position, and knickpoint locations in tributary valleys, I estimate the response of the river network in the Pokhara Valley to earthquake disturbance over several centuries. Estimates of the removed volumes since catastrophic valley filling began, require average net sediment yields of up to 4200 t km-2 yr-1 since, rates that are consistent with those reported for Himalayan rivers. The lithological composition of active channel-bed load differs from that of local bedrock material, confirming that rivers have adjusted 30-50\% depending on data of different tributary catchments, locally incising with rates of 160-220 mm yr-1. In many tributaries to the Seti Khola, most of the contemporary river loads come from a Higher Himalayan source, thus excluding local hillslopes as sources. This imbalance in sediment provenance emphasizes how the medieval sediment pulses must have rapidly traversed up to 70 km downstream to invade the downstream reaches of the tributaries up to 8 km upstream, thereby blocking the local drainage and thus reinforcing, or locally creating new, floodplain lakes still visible in the landscape today. Understanding the formation, origin, mechanism and geomorphic processes of this valley fill is crucial to understand the landscape evolution and response to catastrophic sediment pulses. Several earthquake-triggered long-runout rock-ice avalanches or catastrophic dam burst in the Higher Himalayas are the only plausible mechanisms to explain both the geomorphic and sedimentary legacy that I document here. In any case, the Pokhara Valley was most likely hit by a cascade of extremely rare processes over some two centuries starting in the early 11th century. Nowhere in the Himalayas do we find valley fills of comparable size and equally well documented depositional history, making the Pokhara Valley one of the most extensively dated valley fill in the Himalayas to date. Judging from the growing record of historic Himalayan earthquakes in Nepal that were traced and dated in fault trenches, this thesis shows that sedimentary archives can be used to directly aid reconstructions and predictions of both earthquake triggers and impacts from a sedimentary-response perspective. The knowledge about the timing, evolution, and response of the Pokhara Valley and its river system to earthquake triggered sediment pulses is important to address the seismic and geomorphic risk for the city of Pokhara. This thesis demonstrates how geomorphic evidence on catastrophic valley infill can help to independently verify paleoseismological fault-trench records and may initiate re-thinking on post-seismic hazard assessments in active mountain regions.}, language = {en} } @phdthesis{Eugster2018, author = {Eugster, Patricia}, title = {Landscape evolution in the western Indian Himalaya since the Miocene}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-420329}, school = {Universit{\"a}t Potsdam}, pages = {XXI, 208}, year = {2018}, abstract = {The Himalayan arc stretches >2500 km from east to west at the southern edge of the Tibetan Plateau, representing one of the most important Cenozoic continent-continent collisional orogens. Internal deformation processes and climatic factors, which drive weathering, denudation, and transport, influence the growth and erosion of the orogen. During glacial times wet-based glaciers sculpted the mountain range and left overdeepend and U-shaped valleys, which were backfilled during interglacial times with paraglacial sediments over several cycles. These sediments partially still remain within the valleys because of insufficient evacuation capabilities into the foreland. Climatic processes overlay long-term tectonic processes responsible for uplift and exhumation caused by convergence. Possible processes accommodating convergence within the orogenic wedge along the main Himalayan faults, which divide the range into four major lithologic units, are debated. In this context, the identification of processes shaping the Earth's surface on short- and on long-term are crucial to understand the growth of the orogen and implications for landscape development in various sectors along the arc. This thesis focuses on both surface and tectonic processes that shape the landscape in the western Indian Himalaya since late Miocene. In my first study, I dated well-preserved glacially polished bedrock on high-elevated ridges and valley walls in the upper of the Chandra Valley the by means of 10Be terrestrial cosmogenic radionuclides (TCN). I used these ages and mapped glacial features to reconstruct the extent and timing of Pleistocene glaciation at the southern front of the Himalaya. I was able to reconstruct an extensive valley glacier of ~200 km length and >1000 m thickness. Deglaciation of the Chandra Valley glacier started subsequently to insolation increase on the Northern Hemisphere and thus responded to temperature increase. I showed that the timing this deglaciation onset was coeval with retreat of further midlatitude glaciers on the Northern and Southern Hemispheres. These comparisons also showed that the post-LGM deglaciation very rapid, occurred within a few thousand years, and was nearly finished prior to the B{\o}lling/Aller{\o}d interstadial. A second study (co-authorship) investigates how glacial advances and retreats in high mountain environments impact the landscape. By 10Be TCN dating and geomorphic mapping, we obtained maximal length and height of the Siachen Glacier within the Nubra Valley. Today the Shyok and Nubra confluence is backfilled with sedimentary deposits, which are attributed to the valley blocking of the Siachen Glacier 900 m above the present day river level. A glacial dam of the Siachen Glacier blocked the Shyok River and lead to the evolution of a more than 20 km long lake. Fluvial and lacustrine deposits in the valley document alternating draining and filling cycles of the lake dammed by the Siachen Glacier. In this study, we can show that glacial incision was outpacing fluvial incision. In the third study, which spans the million-year timescale, I focus on exhumation and erosion within the Chandra and Beas valleys. In this study the position and discussed possible reasons of rapidly exhuming rocks, several 100-km away from one of the main Himalayan faults (MFT) using Apatite Fission Track (AFT) thermochronometry. The newly gained AFT ages indicate rapid exhumation and confirm earlier studies in the Chandra Valley. I assume that the rapid exhumation is most likely related to uplift over subsurface structures. I tested this hypothesis by combining further low-temperature thermochronometers from areas east and west of my study area. By comparing two transects, each parallel to the Beas/Chandra Valley transect, I demonstrate similarities in the exhumation pattern to transects across the Sutlej region, and strong dissimilarities in the transect crossing the Dhauladar Range. I conclude that the belt of rapid exhumation terminates at the western end of the Kullu-Rampur window. Therewith, I corroborate earlier studies suggesting changes in exhumation behavior in the western Himalaya. Furthermore, I discussed several causes responsible for the pronounced change in exhumation patterns along strike: 1) the role of inherited pre-collisional features such as the Proterozoic sedimentary cover of the Indian basement, former ridges and geological structures, and 2) the variability of convergence rates along the Himalayan arc due to an increased oblique component towards the syntaxis. The combination of field observations (geological and geomorphological mapping) and methods to constrain short- and long-term processes (10Be, AFT) help to understand the role of the individual contributors to exhumation and erosion in the western Indian Himalaya. With the results of this thesis, I emphasize the importance of glacial and tectonic processes in shaping the landscape by driving exhumation and erosion in the studied areas.}, language = {en} } @phdthesis{Ghani2019, author = {Ghani, Humaad}, title = {Structural evolution of the Kohat and Potwar fold and thrust belts of Pakistan}, doi = {10.25932/publishup-44077}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-440775}, school = {Universit{\"a}t Potsdam}, pages = {viii, 121}, year = {2019}, abstract = {Fold and thrust belts are characteristic features of collisional orogen that grow laterally through time by deforming the upper crust in response to stresses caused by convergence. The deformation propagation in the upper crust is accommodated by shortening along major folds and thrusts. The formation of these structures is influenced by the mechanical strength of d{\´e}collements, basement architecture, presence of preexisting structures and taper of the wedge. These factors control not only the sequence of deformation but also cause differences in the structural style. The Himalayan fold and thrust belt exhibits significant differences in the structural style from east to west. The external zone of the Himalayan fold and thrust belt, also called the Subhimalaya, has been extensively studied to understand the temporal development and differences in the structural style in Bhutan, Nepal and India; however, the Subhimalaya in Pakistan remains poorly studied. The Kohat and Potwar fold and thrust belts (herein called Kohat and Potwar) represent the Subhimalaya in Pakistan. The Main Boundary Thrust (MBT) marks the northern boundary of both Kohat and Potwar, showing that these belts are genetically linked to foreland-vergent deformation within the Himalayan orogen, despite the pronounced contrast in structural style. This contrast becomes more pronounced toward south, where the active strike-slip Kalabagh Fault Zone links with the Kohat and Potwar range fronts, known as the Surghar Range and the Salt Range, respectively. The Surghar and Salt Ranges developed above the Surghar Thrust (SGT) and Main Frontal Thrust (MFT). In order to understand the structural style and spatiotemporal development of the major structures in Kohat and Potwar, I have used structural modeling and low temperature thermochronolgy methods in this study. The structural modeling is based on construction of balanced cross-sections by integrating surface geology, seismic reflection profiles and well data. In order to constrain the timing and magnitude of exhumation, I used apatite (U-Th-Sm)/He (AHe) and apatite fission track (AFT) dating. The results obtained from both methods are combined to document the Paleozoic to Recent history of Kohat and Potwar. The results of this research suggest two major events in the deformation history. The first major deformation event is related to Late Paleozoic rifting associated with the development of the Neo-Tethys Ocean. The second major deformation event is related to the Late Miocene to Pliocene development of the Himalayan fold and thrust belt in the Kohat and Potwar. The Late Paleozoic rifting is deciphered by inverse thermal modelling of detrital AFT and AHe ages from the Salt Range. The process of rifting in this area created normal faulting that resulted in the exhumation/erosion of Early to Middle Paleozoic strata, forming a major unconformity between Cambrian and Permian strata that is exposed today in the Salt Range. The normal faults formed in Late Paleozoic time played an important role in localizing the Miocene-Pliocene deformation in this area. The combination of structural reconstructions and thermochronologic data suggest that deformation initiated at 15±2 Ma on the SGT ramp in the southern part of Kohat. The early movement on the SGT accreted the foreland into the Kohat deforming wedge, forming the range front. The development of the MBT at 12±2 Ma formed the northern boundary of Kohat and Potwar. Deformation propagated south of the MBT in the Kohat on double d{\´e}collements and in the Potwar on a single basal d{\´e}collement. The double d{\´e}collement in the Kohat adopted an active roof-thrust deformation style that resulted in the disharmonic structural style in the upper and lower parts of the stratigraphic section. Incremental shortening resulted in the development of duplexes in the subsurface between two d{\´e}collements and imbrication above the roof thrust. Tectonic thickening caused by duplexes resulted in cooling and exhumation above the roof thrust by removal of a thick sequence of molasse strata. The structural modelling shows that the ramps on which duplexes formed in Kohat continue as tip lines of fault propagation folds in the Potwar. The absence of a double d{\´e}collement in the Potwar resulted in the preservation of a thick sequence of molasse strata there. The temporal data suggest that deformation propagated in-sequence from ~ 8 to 3 Ma in the northern part of Kohat and Potwar; however, internal deformation in the Kohat was more intense, probably required for maintaining a critical taper after a significant load was removed above the upper d{\´e}collement. In the southern part of Potwar, a steeper basement slope (β≥3°) and the presence of salt at the base of the stratigraphic section allowed for the complete preservation of the stratigraphic wedge, showcased by very little internal deformation. Activation of the MFT at ~4 Ma allowed the Salt Range to become the range front of the Potwar. The removal of a large amount of molasse strata above the MFT ramp enhanced the role of salt in shaping the structural style of the Salt Range and Kalabagh Fault Zone. Salt accumulation and migration resulted in the formation of normal faults in both areas. Salt migration in the Kalabagh fault zone has triggered out-of-sequence movement on ramps in the Kohat. The amount of shortening calculated between the MBT and the SGT in Kohat is 75±5 km and between the MBT and the MFT in Potwar is 65±5 km. A comparable amount of shortening is accommodated in the Kohat and Potwar despite their different widths: 70 km Kohat and 150 km Potwar. In summary, this research suggests that deformation switched between different structures during the last ~15 Ma through different modes of fault propagation, resulting in different structural styles and the out-of-sequence development of Kohat and Potwar.}, language = {en} } @phdthesis{Menges2020, author = {Menges, Johanna}, title = {Organic Carbon Storage, Transfer and Transformation in the Himalaya}, school = {Universit{\"a}t Potsdam}, pages = {179}, year = {2020}, abstract = {The transfer of particulate organic carbon from continents to the ocean is an important component of the global carbon cycle. Transfer to and burial of photosynthetically fixed biospheric organic carbon in marine sediments can effectively sequester atmospheric carbon dioxide over geological timescales. The exhumation and erosion of fossil organic carbon contained in sedimentary rocks, i.e. petrogenic carbon, can result in remineralization, releasing carbon to the atmosphere. In contrast, eroded petrogenic organic carbon that gets transferred back to the ocean and reburied does not affect atmospheric carbon content. Mountain ranges play a key role in this transfer since they can source vast amounts of sediment including particulate organic carbon. Globally, the export of both, biospheric and petrogenic organic carbon has been linked to sediment export. Additionally, short transfer times from mountains to the ocean and high sediment concentrations have been shown to increase the likelihood of organic carbon burial. While the importance of mountain ranges in the organic carbon cycle is now widely recognized, the processes acting within mountain ranges to influence the storage, cycling and mobilization of organic carbon, as well as carbon fluxes from mountain ranges remain poorly constrained. In this thesis, I employ different methods to assess the nature and fate of particulate organic carbon in mountain belts, ranging from the molecular to regional landscape scale. These studies are located along the Trans-Himalayan Kali Gandaki River in Central Nepal. This river traverses all major geological and climatic zones of the Himalaya, from the dry northern Tibetan plateau to the high-relief, monsoon dominated steep High Himalaya and the lower relief and abundant vegetation of the Lesser Himalayan region. First, I document how biospheric organic matter has accumulated during the Holocene in the headwaters of the Kali Gandaki River valley, by combining compound specific isotope measurements with different dating methods and grain size data, and investigate the stability of this organic carbon reservoir on millennial timescales. I show, that around 1.6 ka an eco-geomorphic tipping point occurred leading to a destabilization of the landscape resulting in today's high erosion rates and the excavation of the aged organic carbon reservoir. This study highlights the climatic and geomorphic controls on biospheric organic carbon storage and release from mountain ranges. Second, I systematically investigate the spatial variation of particulate organic carbon fluxes across the Himalaya along the Kali Gandaki River, using bulk stable and radioactive isotopes combined with a new Bayesian modeling approach. The detailed dataset allows the distinction of aged and modern biospheric organic carbon as well as petrogenic organic carbon across the Himalayan mountain range and the investigation of the role of climatic and geomorphic factors in their riverine export. The data suggest a decoupling of the particulate organic carbon from the sediment yield along the Kali Gandaki River, partially driven by climatic and geomorphic processes. In contrast to the suspended sediment, a large part of the particulate organic carbon exported by the river originates from the Tibetan part of the catchment and is dominated by petrogenic organic carbon derived from Jurassic shales with only minor contributions of modern and aged biospheric organic carbon. These findings emphasize the importance of organic carbon source distribution and erosion mechanisms in determining the organic carbon export from mountain ranges. In a third step, I explore the potential of ultra-high resolution mass spectrometry for particulate organic carbon transport studies. I have generated a novel and unprecedented high-resolution molecular dataset, which contains up to 103 molecular formulas of the lipid fraction of particulate organic matter for modern and aged biospheric carbon, petrogenic organic carbon and river sediments. First, I test if this dataset can be used to better resolve different organic carbon sources and to identify new geochemical tracers. Using multivariate statistics, I identify up to 10² characteristic molecular formulas for the major organic carbon sources in the upper part of the Kali Gandaki catchment, and trace their transfer from the surrounding landscape into the river sediment. Second, I test the potential of the molecular dataset to trace molecular transformations along source-to-sink pathways. I identify changes in molecular metrics derived from the dataset, which are characteristic of transformation processes during incorporation of litter into soil, the aging of soil material, and the mobilization of the organic carbon into the river. These two studies demonstrate that high-resolution molecular datasets open a promising analytical window on particulate organic carbon and can provide novel insights into the composition, sourcing and transformation of riverine particulate organic carbon. Collectively, these studies advance our understanding of the processes contributing to the storage and mobilization of organic carbon in the Central Himalaya, the mountain belt that dominates global erosional fluxes. They do so by identifying the major sources of particulate organic carbon to the Trans-Himalayan Kali Gandaki River, by elucidating their sensitivity to climate and geomorphic processes, and by identifying some of the transformations of this material on the molecular scale. As a result, the thesis demonstrates that the amount and composition of organic carbon routed from mountain belts is a function of the dynamic interactions of geologic, biologic, geomorphic and climatic processes within the mountain belt. This understanding will ultimately help in answering whether the build-up and erosion of mountain ranges over geological time represents a net carbon source or sink to the atmosphere. Beyond this, the thesis contributes to our technical ability to characterize organic matter and attribute it to sources by scoping the potential of high-end molecular analysis.}, language = {en} } @phdthesis{vanderVeen2021, author = {van der Veen, Iris}, title = {Defining moisture sources and (palaeo)environmental conditions using isotope geochemistry in the NW Himalaya}, doi = {10.25932/publishup-51439}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-514397}, school = {Universit{\"a}t Potsdam}, pages = {152}, year = {2021}, abstract = {Anthropogenic climate change alters the hydrological cycle. While certain areas experience more intense precipitation events, others will experience droughts and increased evaporation, affecting water storage in long-term reservoirs, groundwater, snow, and glaciers. High elevation environments are especially vulnerable to climate change, which will impact the water supply for people living downstream. The Himalaya has been identified as a particularly vulnerable system, with nearly one billion people depending on the runoff in this system as their main water resource. As such, a more refined understanding of spatial and temporal changes in the water cycle in high altitude systems is essential to assess variations in water budgets under different climate change scenarios. However, not only anthropogenic influences have an impact on the hydrological cycle, but changes to the hydrological cycle can occur over geological timescales, which are connected to the interplay between orogenic uplift and climate change. However, their temporal evolution and causes are often difficult to constrain. Using proxies that reflect hydrological changes with an increase in elevation, we can unravel the history of orogenic uplift in mountain ranges and its effect on the climate. In this thesis, stable isotope ratios (expressed as δ2H and δ18O values) of meteoric waters and organic material are combined as tracers of atmospheric and hydrologic processes with remote sensing products to better understand water sources in the Himalayas. In addition, the record of modern climatological conditions based on the compound specific stable isotopes of leaf waxes (δ2Hwax) and brGDGTs (branched Glycerol dialkyl glycerol tetraethers) in modern soils in four Himalayan river catchments was assessed as proxies of the paleoclimate and (paleo-) elevation. Ultimately, hydrological variations over geological timescales were examined using δ13C and δ18O values of soil carbonates and bulk organic matter originating from sedimentological sections from the pre-Siwalik and Siwalik groups to track the response of vegetation and monsoon intensity and seasonality on a timescale of 20 Myr. I find that Rayleigh distillation, with an ISM moisture source, mainly controls the isotopic composition of surface waters in the studied Himalayan catchments. An increase in d-excess in the spring, verified by remote sensing data products, shows the significant impact of runoff from snow-covered and glaciated areas on the surface water isotopic values in the timeseries. In addition, I show that biomarker records such as brGDGTs and δ2Hwax have the potential to record (paleo-) elevation by yielding a significant correlation with the temperature and surface water δ2H values, respectively, as well as with elevation. Comparing the elevation inferred from both brGDGT and δ2Hwax, large differences were found in arid sections of the elevation transects due to an additional effect of evapotranspiration on δ2Hwax. A combined study of these proxies can improve paleoelevation estimates and provide recommendations based on the results found in this study. Ultimately, I infer that the expansion of C4 vegetation between 20 and 1 Myr was not solely dependent on atmospheric pCO2, but also on regional changes in aridity and seasonality from to the stable isotopic signature of the two sedimentary sections in the Himalaya (east and west). This thesis shows that the stable isotope chemistry of surface waters can be applied as a tool to monitor the changing Himalayan water budget under projected increasing temperatures. Minimizing the uncertainties associated with the paleo-elevation reconstructions were assessed by the combination of organic proxies (δ2Hwax and brGDGTs) in Himalayan soil. Stable isotope ratios in bulk soil and soil carbonates showed the evolution of vegetation influenced by the monsoon during the late Miocene, proving that these proxies can be used to record monsoon intensity, seasonality, and the response of vegetation. In conclusion, the use of organic proxies and stable isotope chemistry in the Himalayas has proven to successfully record changes in climate with increasing elevation. The combination of δ2Hwax and brGDGTs as a new proxy provides a more refined understanding of (paleo-)elevation and the influence of climate.}, language = {en} }