@article{SasMuellerKappeletal.2016, author = {Sas, Claudia and Mueller, Frank and Kappel, Christian and Kent, Tyler V. and Wright, Stephen I. and Hilker, Monika and Lenhard, Michael}, title = {Repeated Inactivation of the First Committed Enzyme Underlies the Loss of Benzaldehyde Emission after the Selfing Transition in Capsella}, series = {Current biology}, volume = {26}, journal = {Current biology}, publisher = {Cell Press}, address = {Cambridge}, issn = {0960-9822}, doi = {10.1016/j.cub.2016.10.026}, pages = {3313 -- 3319}, year = {2016}, abstract = {The enormous species richness of flowering plants is at least partly due to floral diversification driven by interactions between plants and their animal pollinators [1, 2]. Specific pollinator attraction relies on visual and olfactory floral cues [3-5]; floral scent can not only attract pollinators but also attract or repel herbivorous insects [6-8]. However, despite its central role for plant-animal interactions, the genetic control of floral scent production and its evolutionary modification remain incompletely understood [9-13]. Benzenoids are an important class of floral scent compounds that are generated from phenylalanine via several enzymatic pathways [14-17]. Here we address the genetic basis of the loss of floral scent associated with the transition from outbreeding to selfing in the genus Capsella. While the outbreeding C. grandiflora emits benzaldehyde as a major constituent of its floral scent, this has been lost in the selfing C. rubella. We identify the Capsella CNL1 gene encoding cinnamate: CoA ligase as responsible for this variation. Population genetic analysis indicates that CNL1 has been inactivated twice independently in C. rubella via different novel mutations to its coding sequence. Together with a recent study in Petunia [18], this identifies cinnamate: CoA ligase as an evolutionary hotspot for mutations causing the loss of benzenoid scent compounds in association with a shift in the reproductive strategy of Capsella from pollination by insects to self-fertilization.}, language = {en} } @article{PremkeAttermeyerAugustinetal.2016, author = {Premke, Katrin and Attermeyer, Katrin and Augustin, J{\"u}rgen and Cabezas, Alvaro and Casper, Peter and Deumlich, Detlef and Gelbrecht, J{\"o}rg and Gerke, Horst H. and Gessler, Arthur and Grossart, Hans-Peter and Hilt, Sabine and Hupfer, Michael and Kalettka, Thomas and Kayler, Zachary and Lischeid, Gunnar and Sommer, Michael and Zak, Dominik}, title = {The importance of landscape diversity for carbon fluxes at the landscape level: small-scale heterogeneity matters}, series = {Wiley Interdisciplinary Reviews : Water}, volume = {3}, journal = {Wiley Interdisciplinary Reviews : Water}, publisher = {Wiley}, address = {Hoboken}, issn = {2049-1948}, doi = {10.1002/wat2.1147}, pages = {601 -- 617}, year = {2016}, abstract = {Landscapes can be viewed as spatially heterogeneous areas encompassing terrestrial and aquatic domains. To date, most landscape carbon (C) fluxes have been estimated by accounting for terrestrial ecosystems, while aquatic ecosystems have been largely neglected. However, a robust assessment of C fluxes on the landscape scale requires the estimation of fluxes within and between both landscape components. Here, we compiled data from the literature on C fluxes across the air-water interface from various landscape components. We simulated C emissions and uptake for five different scenarios which represent a gradient of increasing spatial heterogeneity within a temperate young moraine landscape: (I) a homogeneous landscape with only cropland and large lakes; (II) separation of the terrestrial domain into cropland and forest; (III) further separation into cropland, forest, and grassland; (IV) additional division of the aquatic area into large lakes and peatlands; and (V) further separation of the aquatic area into large lakes, peatlands, running waters, and small water bodies These simulations suggest that C fluxes at the landscape scale might depend on spatial heterogeneity and landscape diversity, among other factors. When we consider spatial heterogeneity and diversity alone, small inland waters appear to play a pivotal and previously underestimated role in landscape greenhouse gas emissions that may be regarded as C hot spots. Approaches focusing on the landscape scale will also enable improved projections of ecosystems' responses to perturbations, e.g., due to global change and anthropogenic activities, and evaluations of the specific role individual landscape components play in regional C fluxes. WIREs Water 2016, 3:601-617. doi: 10.1002/wat2.1147}, language = {en} } @article{WannerSeidlLampaHoehnetal.2016, author = {Wanner, Manfred and Seidl-Lampa, Barbara and H{\"o}hn, Axel and Puppe, Daniel and Meisterfeld, Ralf and Sommer, Michael}, title = {Culture growth of testate amoebae under different silicon concentrations}, series = {European journal of protistology}, volume = {56}, journal = {European journal of protistology}, publisher = {Royal Society of Chemistry}, address = {Jena}, organization = {Veritas Collaboration}, issn = {0932-4739}, doi = {10.1016/j.ejop.2016.08.008}, pages = {171 -- 179}, year = {2016}, abstract = {Testate amoebae with self-secreted siliceous shell platelets ("idiosomes") play an important role in terrestrial silicon (Si) cycles. In this context, Si-dependent culture growth dynamics of idiosomic testate amoebae are of interest. Clonal cultures of idiosomic testate amoebae were analyzed under three different Si concentrations: low (50 mu mol L-1), moderate/site-specific (150 mu mol L-1) and high Si supply (500 mu mol L-1). Food (Saccharomyces cerevisiae) was provided in surplus. (i) Shell size of four different clones of idiosomic testate amoebae either decreased (Trinema galeata, Euglypha filifera cf.), increased (E. rotunda cf.), or did not change (E. rotunda) under the lowest Si concentration (50 mu mol Si L-1). (ii) Culture growth of idiosomic Euglypha rotunda was dependent on Si concentration. The more Si available in the culture medium, the earlier the entry into exponential growth phase. (iii) Culture growth of idiosomic Euglypha rotunda was dependent on origin of inoculum. Amoebae previously cultured under a moderate Si concentration revealed highest sustainability in consecutive cultures. Amoebae derived from cultures with high Si concentrations showed rapid culture growth which finished early in consecutive cultures. (iv) Si (diluted in the culture medium) was absorbed by amoebae and fixed in the amoeba shells resulting in decreased Si concentrations. (C) 2016 Elsevier GmbH. All rights reserved.}, language = {en} } @article{PuppeHoehnKaczoreketal.2016, author = {Puppe, Daniel and H{\"o}hn, Axel and Kaczorek, Danuta and Wanner, Manfred and Sommer, Michael}, title = {As time goes by-Spatiotemporal changes of biogenic Si pools in initial soils of an artificial catchment in NE Germany}, series = {Applied soil ecology : a section of agriculture, ecosystems \& environment}, volume = {105}, journal = {Applied soil ecology : a section of agriculture, ecosystems \& environment}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0929-1393}, doi = {10.1016/j.apsoil.2016.01.020}, pages = {9 -- 16}, year = {2016}, language = {en} } @article{KaiserZedererEllerbrocketal.2016, author = {Kaiser, Michael and Zederer, Dan P. and Ellerbrock, Ruth H. and Sommer, Michael and Ludwig, Bernard}, title = {Effects of mineral characteristics on content, composition, and stability of organic matter fractions separated from seven forest topsoils of different pedogenesis}, series = {Geoderma : an international journal of soil science}, volume = {263}, journal = {Geoderma : an international journal of soil science}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0016-7061}, doi = {10.1016/j.geoderma.2015.08.029}, pages = {1 -- 7}, year = {2016}, abstract = {Mineral topsoils possess large organic carbon (OC) contents but there is only limited knowledge on the mechanisms controlling the preservation of organic matter (OM) against microbial decay. Samples were taken from the uppermost mineral topsoil horizon (0 to 5 cm) of seven sites under mature deciduous forest showing OC contents between 69 and 164 g kg(-1) and a wide range in mineral characteristics. At first, organic particles and the water-extractable OM were removed from the soil samples. Thereafter, Na-pyrophosphate extractable organic matter (OM(PY)), assumed to be indicative for OM bound via cation mediated interactions, and the OM remaining in the extraction residue (OM(ER)), supposed to be indicative for OM occluded in mechanically highly stable micro-aggregates, were sequentially separated and quantified. The composition of OM(PY) and OM(ER) was analyzed by FTIR and their stability by C-14 measurements. The OC remaining in the extraction residues accounted for 38 to 59\% of the bulk soil OC (SOC) suggesting a much larger relevance of OM(ER) for the OM dynamic in the analyzed soils as compared with OM(PY) that accounted for 1.6 to 7.5\% of the SOC. The FUR analyses revealed a lower relative proportion of C=O groups in OM(ER) compared to OM(PY) indicating differences in the degree of microbial processing between these fractions. Correlation analyses suggest an increase in the stability of OM(PY) with the soil pH and contents of Na-pyrophosphate soluble Fe, Al, and Mg and an increase in the stability of OM(ER) with the soil pH and the contents of clay and oxalate-soluble Fe and Al. Despite the detected influence of soil mineral characteristics on the turnover of OM(PY) and OM(ER), the Delta C-14 signatures indicated mean residence times less than 100 years. The presence of less stabilized OM in these fractions can be derived from methodological uncertainties and/or the fast cycling compartment of mineral-associated OM. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{GerkeRieckhSommer2016, author = {Gerke, Horst H. and Rieckh, Helene and Sommer, Michael}, title = {Interactions between crop, water, and dissolved organic and inorganic carbon in a hummocky landscape with erosion-affected pedogenesis}, series = {Macromolecular rapid communications}, volume = {156}, journal = {Macromolecular rapid communications}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-1987}, doi = {10.1016/j.still.2015.09.003}, pages = {230 -- 244}, year = {2016}, abstract = {Hummocky soil landscapes are characterized by 3D spatial patterns of soil types that result from erosion-affected pedogenesis. Due to tillage and water erosion, truncated profiles have been formed at steep and mid slopes and colluvial soils at hollows, while intact profiles remained at plateau positions. Pedogenetic variations in soil horizons lead to spatial differences in the soil water balance at hillslope positions. Here, possible interactions between erosion affected soil properties, the water balances, and the crop growth and feedback effects of erosion on the leaching rates were assumed. The hypothesis was tested by water balance simulations comparing uniform with hillslope position-specific crop and root growths for soils at plateau, flat mid slope, steep slope, and hollow using the Hydrus-1D program. The boundary condition data were monitored at the CarboZALF-D experimental field site, which was cropped with perennial lucerne (Medicago sativa L.) in 2013 and 2014. Crop and root growth at the four hillslope positions was assumed proportional to observed leaf area index (LAI). Fluxes of dissolved organic and inorganic carbon (DOC, DIC) were obtained from simulated water fluxes and measured DOC and DIC concentrations. For the colluvic soil at hollow, the crop growth was initially highest and later limited by an increasing water table; here the predominately upward flow led to a net input in DIC and DOC. For the truncated soils at steep slopes, simulations support the hypothesis that reduced crop growth caused an increase in percolation and DIC leaching from the subsoil horizons, which in turn led to accelerated soil development and more soil variations along eroding hillslopes in arable soil landscapes. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{WehrhanRaunekerSommer2016, author = {Wehrhan, Marc and Rauneker, Philipp and Sommer, Michael}, title = {UAV-Based Estimation of Carbon Exports from Heterogeneous Soil Landscapes-A Case Study from the CarboZALF Experimental Area}, series = {SENSORS}, volume = {16}, journal = {SENSORS}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s16020255}, pages = {24}, year = {2016}, abstract = {The advantages of remote sensing using Unmanned Aerial Vehicles (UAVs) are a high spatial resolution of images, temporal flexibility and narrow-band spectral data from different wavelengths domains. This enables the detection of spatio-temporal dynamics of environmental variables, like plant-related carbon dynamics in agricultural landscapes. In this paper, we quantify spatial patterns of fresh phytomass and related carbon (C) export using imagery captured by a 12-band multispectral camera mounted on the fixed wing UAV Carolo P360. The study was performed in 2014 at the experimental area CarboZALF-D in NE Germany. From radiometrically corrected and calibrated images of lucerne (Medicago sativa), the performance of four commonly used vegetation indices (VIs) was tested using band combinations of six near-infrared bands. The highest correlation between ground-based measurements of fresh phytomass of lucerne and VIs was obtained for the Enhanced Vegetation Index (EVI) using near-infrared band b(899). The resulting map was transformed into dry phytomass and finally upscaled to total C export by harvest. The observed spatial variability at field- and plot-scale could be attributed to small-scale soil heterogeneity in part.}, language = {en} } @article{GonzalezManriqueKuckeinPastorYabaretal.2016, author = {Gonzalez Manrique, Sergio Javier and Kuckein, Christoph and Pastor Yabar, A. and Collados Vera, M. and Denker, Carsten and Fischer, C. E. and G{\"o}m{\"o}ry, P. and Diercke, Andrea and Gonzalez, N. Bello and Schlichenmaier, R. and Balthasar, H. and Berkefeld, T. and Feller, A. and Hoch, S. and Hofmann, A. and Kneer, F. and Lagg, A. and Nicklas, H. and Orozco Suarez, D. and Schmidt, D. and Schmidt, W. and Sigwarth, M. and Sobotka, M. and Solanki, S. K. and Soltau, D. and Staude, J. and Strassmeier, Klaus G. and Verma, Meetu and Volkmer, R. and von der L{\"u}he, O. and Waldmann, T.}, title = {Fitting peculiar spectral profiles in He I 10830 angstrom absorption features}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {337}, journal = {Astronomische Nachrichten = Astronomical notes}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.201512433}, pages = {1057 -- 1063}, year = {2016}, abstract = {The new generation of solar instruments provides better spectral, spatial, and temporal resolution for a better understanding of the physical processes that take place on the Sun. Multiple-component profiles are more commonly observed with these instruments. Particularly, the He i 10830 triplet presents such peculiar spectral profiles, which give information on the velocity and magnetic fine structure of the upper chromosphere. The purpose of this investigation is to describe a technique to efficiently fit the two blended components of the He i 10830 triplet, which are commonly observed when two atmospheric components are located within the same resolution element. The observations used in this study were taken on 2015 April 17 with the very fast spectroscopic mode of the GREGOR Infrared Spectrograph (GRIS) attached to the 1.5-m GREGOR solar telescope, located at the Observatorio del Teide, Tenerife, Spain. We apply a double-Lorentzian fitting technique using Levenberg-Marquardt least-squares minimization. This technique is very simple and much faster than inversion codes. Line-of-sight Doppler velocities can be inferred for a whole map of pixels within just a few minutes. Our results show sub-and supersonic downflow velocities of up to 32 km s(-1) for the fast component in the vicinity of footpoints of filamentary structures. The slow component presents velocities close to rest. (C) 2016 WILEY-VCH Verlag GmbH\& Co. KGaA, Weinheim}, language = {en} } @article{VermaDenkerBalthasaretal.2016, author = {Verma, Meetu and Denker, Carsten and Balthasar, H. and Kuckein, Christoph and Gonz{\´a}lez Manrique, Sergio Javier and Sobotka, M. and Gonzalez, N. Bello and Hoch, S. and Diercke, Andrea and Kummerow, Philipp and Berkefeld, T. and Collados Vera, M. and Feller, A. and Hofmann, A. and Kneer, F. and Lagg, A. and L{\"o}hner-B{\"o}ttcher, J. and Nicklas, H. and Pastor Yabar, A. and Schlichenmaier, R. and Schmidt, D. and Schmidt, W. and Schubert, M. and Sigwarth, M. and Solanki, S. K. and Soltau, D. and Staude, J. and Strassmeier, Klaus G. and Volkmer, R. and von der L{\"u}he, O. and Waldmann, T.}, title = {Horizontal flow fields in and around a small active region The transition period between flux emergence and decay}, series = {Polymers}, volume = {596}, journal = {Polymers}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201628380}, pages = {12}, year = {2016}, abstract = {Context. The solar magnetic field is responsible for all aspects of solar activity. Thus, emergence of magnetic flux at the surface is the first manifestation of the ensuing solar activity. Aims. Combining high-resolution and synoptic observations aims to provide a comprehensive description of flux emergence at photospheric level and of the growth process that eventually leads to a mature active region. Methods. The small active region NOAA 12118 emerged on 2014 July 17 and was observed one day later with the 1.5-m GREGOR solar telescope on 2014 July 18. High-resolution time-series of blue continuum and G-band images acquired in the blue imaging channel (BIC) of the GREGOR Fabry-Perot Interferometer (GFPI) were complemented by synoptic line-of-sight magnetograms and continuum images obtained with the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). Horizontal proper motions and horizontal plasma velocities were computed with local correlation tracking (LCT) and the differential affine velocity estimator (DAVE), respectively. Morphological image processing was employed to measure the photometric and magnetic area, magnetic flux, and the separation profile of the emerging flux region during its evolution. Results. The computed growth rates for photometric area, magnetic area, and magnetic flux are about twice as high as the respective decay rates. The space-time diagram using HMI magnetograms of five days provides a comprehensive view of growth and decay. It traces a leaf-like structure, which is determined by the initial separation of the two polarities, a rapid expansion phase, a time when the spread stalls, and a period when the region slowly shrinks again. The separation rate of 0.26 km s(-1) is highest in the initial stage, and it decreases when the separation comes to a halt. Horizontal plasma velocities computed at four evolutionary stages indicate a changing pattern of inflows. In LCT maps we find persistent flow patterns such as outward motions in the outer part of the two major pores, a diverging feature near the trailing pore marking the site of upwelling plasma and flux emergence, and low velocities in the interior of dark pores. We detected many elongated rapidly expanding granules between the two major polarities, with dimensions twice as large as the normal granules.}, language = {en} }