@phdthesis{Lindenmaier2007, author = {Lindenmaier, Falk}, title = {Hydrology of a large unstable hillslope at Ebnit, Vorarlberg : identifying dominating processes and structures}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17424}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {The objective of this thesis is to improve the knowledge of control mechanisms of hydrological induced mass movements. To this end, detailed hydrological process studies and physically-based hydrological modelling were applied. The study site is a hillslope in the Dornbirn Ache valley near Bregenz, Austria. This so called Heum{\"o}s slope features a deep-seated translational shear zone and surface near creep movements of up to 10 cm a year. The Cretaceous marlstones of the Austrian Helveticum have a high susceptibility for weathering and might form clay-rich cohesive sediments. In addition, glacial and post-glacial processes formed an unstable hillslope. High yearly precipitation depths of about 2100 mm and rainstorms with both high intensities and precipitation depths govern surface and subsurface hydrological processes. Pressure propagation induced in hydrological active areas influences laterally the groundwater reactions of the moving mass. A complex three-dimensional subsurface pressure system is the cause for fast groundwater reactions despite low hydraulic conductivities. To understand hillslope scale variability, hydrotopes representing specific dominating processes were mapped using vegetation association distribution and soil core analysis. Detailed small-scale soil investigations followed to refine the understanding of these hydrotopes. A perceptional model was developed from the hydrotope distribution and was corroborated by these detailed investigations. The moving hillslope is dominated by surface-runoff generation. Infiltration and deep percolation of water is inhibited through clay-rich gleysols; the yearly average soil moisture is close to saturation. Steep slopes adjacent to the moving hillslope are far more active concerning infiltration, preferential flow and groundwater fluctuations. Spring discharge observations at the toe of the steep slopes are in close relation to groundwater table observations on the moving hillslope body. Evidence of pressure propagation from the steep slopes towards the hillslope body is gathered by comparison of dominating structures and processes. The application of the physically-based hydrological model CATFLOW substantiates the idea of pressure propagation as a key process for groundwater reactions and as a possible trigger for movement in the hillslope.}, language = {en} } @phdthesis{Blume2008, author = {Blume, Theresa}, title = {Hydrological processes in volcanic ash soils : measuring, modelling and understanding runoff generation in an undisturbed catchment}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-16552}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Streamflow dynamics in mountainous environments are controlled by runoff generation processes in the basin upstream. Runoff generation processes are thus a major control of the terrestrial part of the water cycle, influencing both, water quality and water quantity as well as their dynamics. The understanding of these processes becomes especially important for the prediction of floods, erosion, and dangerous mass movements, in particular as hydrological systems often show threshold behavior. In case of extensive environmental changes, be it in climate or in landuse, the understanding of runoff generation processes will allow us to better anticipate the consequences and can thus lead to a more responsible management of resources as well as risks. In this study the runoff generation processes in a small undisturbed catchment in the Chilean Andes were investigated. The research area is characterized by steep hillslopes, volcanic ash soils, undisturbed old growth forest and high rainfall amounts. The investigation of runoff generation processes in this data scarce area is of special interest as a) little is known on the hydrological functioning of the young volcanic ash soils, which are characterized by extremely high porosities and hydraulic conductivities, b) no process studies have been carried out in this area at either slope or catchment scale, and c) understanding the hydrological processes in undisturbed catchments will provide a basis to improve our understanding of disturbed systems, the shift in processes that followed the disturbance and maybe also future process evolution necessary for the achievement of a new steady state. The here studied catchment has thus the potential to serve as a reference catchment for future investigations. As no long term data of rainfall and runoff exists, it was necessary to replace long time series of data with a multitude of experimental methods, using the so called "multi-method approach". These methods cover as many aspects of runoff generation as possible and include not only the measurement of time series such as discharge, rainfall, soil water dynamics and groundwater dynamics, but also various short term measurements and experiments such as determination of throughfall amounts and variability, water chemistry, soil physical parameters, soil mineralogy, geo-electrical soundings and tracer techniques. Assembling the results like pieces of a puzzle produces a maybe not complete but nevertheless useful picture of the dynamic ensemble of runoff generation processes in this catchment. The employed methods were then evaluated for their usefulness vs. expenditures (labour and financial costs). Finally, the hypotheses - the perceptual model of runoff generation generated from the experimental findings - were tested with the physically based model Catflow. Additionally the process-based model Wasim-ETH was used to investigate the influence of landuse on runoff generation at the catchment scale. An initial assessment of hydrologic response of the catchment was achieved with a linear statistical model for the prediction of event runoff coefficients. The parameters identified as best predictors give a first indication of important processes. Various results acquired with the "multi-method approach" show that response to rainfall is generally fast. Preferential vertical flow is of major importance and is reinforced by hydrophobicity during the summer months. Rapid lateral water transport is necessary to produce the fast response signal, however, while lateral subsurface flow was observed at several soil moisture profiles, the location and type of structures causing fast lateral flow on the hillslope scale is still not clear and needs to be investigated in more detail. Surface runoff has not been observed and is unlikely due to the high hydraulic conductivities of the volcanic ash soils. Additionally, a large subsurface storage retains most of the incident rainfall amount during events (>90\%, often even >95\%) and produces streamflow even after several weeks of drought. Several findings suggest a shift in processes from summer to winter causing changes in flow patterns, changes in response of stream chemistry to rainfall events and also in groundwater-surface water interactions. The results of the modelling study confirm the importance of rapid and preferential flow processes. However, due to the limited knowledge on subsurface structures the model still does not fully capture runoff response. Investigating the importance of landuse on runoff generation showed that while peak runoff generally increased with deforested area, the location of these areas also had an effect. Overall, the "multi-method approach" of replacing long time series with a multitude of experimental methods was successful in the identification of dominant hydrological processes and thus proved its applicability for data scarce catchments under the constraint of limited resources.}, language = {en} } @phdthesis{Duy2023, author = {Duy, Nguyen Le}, title = {Hydrological processes in the Vietnamese Mekong Delta}, doi = {10.25932/publishup-60260}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-602607}, school = {Universit{\"a}t Potsdam}, pages = {xxi, 153}, year = {2023}, abstract = {Understanding hydrological processes is of fundamental importance for the Vietnamese national food security and the livelihood of the population in the Vietnamese Mekong Delta (VMD). As a consequence of sparse data in this region, however, hydrologic processes, such as the controlling processes of precipitation, the interaction between surface and groundwater, and groundwater dynamics, have not been thoroughly studied. The lack of this knowledge may negatively impact the long-term strategic planning for sustainable groundwater resources management and may result in insufficient groundwater recharge and freshwater scarcity. It is essential to develop useful methods for a better understanding of hydrological processes in such data-sparse regions. The goal of this dissertation is to advance methodologies that can improve the understanding of fundamental hydrological processes in the VMD, based on the analyses of stable water isotopes and monitoring data. The thesis mainly focuses on the controlling processes of precipitation, the mechanism of surface-groundwater interaction, and the groundwater dynamics. These processes have not been fully addressed in the VMD so far. The thesis is based on statistical analyses of the isotopic data of Global Network of Isotopes in Precipitation (GNIP), of meteorological and hydrological data from Vietnamese agencies, and of the stable water isotopes and monitoring data collected as part of this work. First, the controlling processes of precipitation were quantified by the combination of trajectory analysis, multi-factor linear regression, and relative importance analysis (hereafter, a model-based statistical approach). The validity of this approach is confirmed by similar, but mainly qualitative results obtained in other studies. The total variation in precipitation isotopes (δ18O and δ2H) can be better explained by multiple linear regression (up to 80\%) than single-factor linear regression (30\%). The relative importance analysis indicates that atmospheric moisture regimes control precipitation isotopes rather than local climatic conditions. The most crucial factor is the upstream rainfall along the trajectories of air mass movement. However, the influences of regional and local climatic factors vary in importance over the seasons. The developed model-based statistical approach is a robust tool for the interpretation of precipitation isotopes and could also be applied to understand the controlling processes of precipitation in other regions. Second, the concept of the two-component lumped-parameter model (LPM) in conjunction with stable water isotopes was applied to examine the surface-groundwater interaction in the VMD. A calibration framework was also set up to evaluate the behaviour, parameter identifiability, and uncertainties of two-component LPMs. The modelling results provided insights on the subsurface flow conditions, the recharge contributions, and the spatial variation of groundwater transit time. The subsurface flow conditions at the study site can be best represented by the linear-piston flow distribution. The contributions of the recharge sources change with distance to the river. The mean transit time (mTT) of riverbank infiltration increases with the length of the horizontal flow path and the decreasing gradient between river and groundwater. River water infiltrates horizontally mainly via the highly permeable aquifer, resulting in short mTTs (<40 weeks) for locations close to the river (<200 m). The vertical infiltration from precipitation takes place primarily via a low-permeable overlying aquitard, resulting in considerably longer mTTs (>80 weeks). Notably, the transit time of precipitation infiltration is independent of the distance to the river. All these results are hydrologically plausible and could be quantified by the presented method for the first time. This study indicates that the highly complex mechanism of surface-groundwater interaction at riverbank infiltration systems can be conceptualized by exploiting two-component LPMs. It is illustrated that the model concept can be used as a tool to investigate the hydrological functioning of mixing processes and the flow path of multiple water components in riverbank infiltration systems. Lastly, a suite of time series analysis approaches was applied to examine the groundwater dynamics in the VMD. The assessment was focused on the time-variant trends of groundwater levels (GWLs), the groundwater memory effect (representing the time that an aquifer holds water), and the hydraulic response between surface water and multi-layer alluvial aquifers. The analysis indicates that the aquifers act as low-pass filters to reduce the high-frequency signals in the GWL variations, and limit the recharge to the deep groundwater. The groundwater abstraction has exceeded groundwater recharge between 1997 and 2017, leading to the decline of groundwater levels (0.01-0.55 m/year) in all considered aquifers in the VMD. The memory effect varies according to the geographical location, being shorter in shallow aquifers and flood-prone areas and longer in deep aquifers and coastal regions. Groundwater depth, season, and location primarily control the variation of the response time between the river and alluvial aquifers. These findings are important contributions to the hydrogeological literature of a little-known groundwater system in an alluvial setting. It is suggested that time series analysis can be used as an efficient tool to understand groundwater systems where resources are insufficient to develop a physical-based groundwater model. This doctoral thesis demonstrates that important aspects of hydrological processes can be understood by statistical analysis of stable water isotope and monitoring data. The approaches developed in this thesis can be easily transferred to regions in similar tropical environments, particularly those in alluvial settings. The results of the thesis can be used as a baseline for future isotope-based studies and contribute to the hydrogeological literature of little-known groundwater systems in the VMD.}, language = {en} }