@phdthesis{Branscheid2012, author = {Branscheid, Anja}, title = {Phosphate homeostasis and posttranscriptional gene regulation during arbuscular mycorrhizal symbiosis in Medicago truncatula}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-62106}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Since available phosphate (Pi) resources in soil are limited, symbiotic interactions between plant roots and arbuscular mycorrhizal (AM) fungi are a widespread strategy to improve plant phosphate nutrition. The repression of AM symbiosis by a high plant Pi-status indicates a link between Pi homeostasis signalling and AM symbiosis development. This assumption is supported by the systemic induction of several microRNA399 (miR399) primary transcripts in shoots and a simultaneous accumulation of mature miR399 in roots of mycorrhizal plants. However, the physiological role of this miR399 expression pattern is still elusive and offers the question whether other miRNAs are also involved in AM symbiosis. Therefore, a deep sequencing approach was applied to investigate miRNA-mediated posttranscriptional gene regulation in M. truncatula mycorrhizal roots. Degradome analysis revealed that 185 transcripts were cleaved by miRNAs, of which the majority encoded transcription factors and disease resistance genes, suggesting a tight control of transcriptional reprogramming and a downregulation of defence responses by several miRNAs in mycorrhizal roots. Interestingly, 45 of the miRNA-cleaved transcripts showed a significant differentially regulated between mycorrhizal and non-mycorrhizal roots. In addition, key components of the Pi homeostasis signalling pathway were analyzed concerning their expression during AM symbiosis development. MtPhr1 overexpression and time course expression data suggested a strong interrelation between the components of the PHR1-miR399-PHO2 signalling pathway and AM symbiosis, predominantly during later stages of symbiosis. In situ hybridizations confirmed accumulation of mature miR399 in the phloem and in arbuscule-containing cortex cells of mycorrhizal roots. Moreover, a novel target of the miR399 family, named as MtPt8, was identified by the above mentioned degradome analysis. MtPt8 encodes a Pi-transporter exclusively transcribed in mycorrhizal roots and its promoter activity was restricted to arbuscule-containing cells. At a low Pi-status, MtPt8 transcript abundance inversely correlated with a mature miR399 expression pattern. Increased MtPt8 transcript levels were accompanied by elevated symbiotic Pi-uptake efficiency, indicating its impact on balancing plant and fungal Pi-acquisition. In conclusion, this study provides evidence for a direct link of the regulatory mechanisms of plant Pi-homeostasis and AM symbiosis at a cell-specific level. The results of this study, especially the interaction of miR399 and MtPt8 provide a fundamental step for future studies of plant-microbe-interactions with regard to agricultural and ecological aspects.}, language = {en} } @phdthesis{Devers2011, author = {Devers, Emanuel}, title = {Phosphate homeostasis and novel microRNAs are involved in the regulation of the arbuscular mycorrhizal symbiosis in Medicago truncatula}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-55572}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Die arbuskul{\"a}re Mykorrhiza ist die wahrscheinlich {\"a}lteste Form der Wurzelsymbiosen zwischen Pflanzen und Pilzen und hat sich vor 420 Millionen Jahren entwickelt. In dieser Symbiose, die zwischen nahezu allen Landpflanzen und Pilzen des Reiches Glomeromycota ausgebildet wird, versorgt der Pilz die Pflanze mit N{\"a}hrstoffen, wobei die verbesserte Versorgung mit Phosphat f{\"u}r die Pflanze sicher den gr{\"o}ßten Vorteil darstellt. Im Gegenzug erh{\"a}lt der Pilz Zucker, welche die Pflanze aus der Photosynthese bereitstellt. Zu hohe Phosphatkonzentrationen im Boden oder D{\"u}nger f{\"u}hren allerdings zu einer Verringerung in der Auspr{\"a}gung der arbuskul{\"a}ren Mykorrhiza. Diese Unterdr{\"u}ckung der Symbiose wird nicht durch eine lokale Reaktion der Wurzeln ausgel{\"o}st, sondern in erster Linie durch einen hohen Phosphatgehalt im Pflanzenspross. Somit handelt es sich also um eine systemische, also dem Gesamtsystem „Pflanze" betreffende Antwort. Die molekularen Mechanismen dieser Anpassung sind noch wenig bekannt und sind vor allem f{\"u}r die Agrarwirtschaft von besonderem Interesse. Eine Mikro-RNA (miRNA) des bereits bekannten Phosphathom{\"o}ostasesignalwegs (PHR1-miRNA399-PHO2 Signalweg) akkumuliert verst{\"a}rkt in mykorrhizierten Wurzeln. Das deutet daraufhin, dass dieser Signalweg und diese miRNA eine wichtige Rolle in der Regulation der arbuskul{\"a}ren Mykorrhiza spielen. Ziel dieser Studie war es neue Einblicke in die molekularen Mechanismen, die zur Unterdr{\"u}ckung der arbuskul{\"a}ren Mykorrhiza bei hohen Phosphatkonzentrationen f{\"u}hren, zu gewinnen. Dabei sollte der Einfluss von PHO2, sowie von miRNAs in dieser Symbiose genauer untersucht werden. Ein funktionelles Ortholog von PHO2, MtPho2, wurde in der Pflanze Medicago truncatula identifiziert. MtPho2-Mutanten, welche nicht mehr in der Lage waren ein funktionales PHO2 Protein zu exprimieren, zeigten schnellere Kolonisierung durch den AM-Pilz. Jedoch wurde auch in den mtpho2-Mutanten die Symbiose durch hohe Phosphatkonzentrationen unterdr{\"u}ckt. Dies bedeutet, dass PHO2 und somit der PHR1-miRNA399-PHO2 Signalweg eine wichtige Funktion w{\"a}hrend der fortschreitenden Kolonisierung der Wurzel durch den Pilz hat, aber und weitere Mechanismen in der Unterd{\"u}ckung der Symbiose bei hohen Phosphatkonzentrationen beteiligt sein m{\"u}ssen. Die Analyse von Transkriptionsprofilen von Spross- und Wurzeln mittels Microarrays zeigte, dass die Unterdr{\"u}ckung der AM Symbiose durch hohe Phosphatkonzentrationen m{\"o}glicherweise auf eine Unterdr{\"u}ckung der Expression einer Reihe symbiosespezifischer Gene im Spross der Pflanze beruht. Um die Rolle weiterer miRNA in der AM Symbiose zu untersuchen, wurden mittels einer Hochdurchsatz-Sequenzierung 243 neue und 181 aus anderen Pflanzen bekannte miRNAs in M. truncatula entdeckt. Zwei dieser miRNAs, miR5229 und miR160f*, sind ausschließlich w{\"a}hrend der arbuskul{\"a}ren Mykorrhiza zu finden und weitere miRNAs werden w{\"a}hrend dieser Symbiose verst{\"a}rkt gebildet. Interessanterweise f{\"u}hren einige dieser miRNAs zum Abbau von Transkripten, die eine wichtige Funktion in der arbuskul{\"a}ren Mykorrhiza und Wurzelkn{\"o}llchensymbiose besitzen. Die Ergebnisse dieser Studie liefern eine neue Grundlage f{\"u}r die Untersuchung von regulatorischen Netzwerken, die zur zellul{\"a}ren Umprogrammierung w{\"a}hrend der Interaktion zwischen Pflanzen und arbuskul{\"a}ren Mykorrhiza-Pilzen bei verschiedenen Phosphatbedingungen f{\"u}hren.}, language = {en} }