@misc{ZhongCausaMooreetal.2020, author = {Zhong, Yufei and Causa, Martina and Moore, Gareth John and Krauspe, Philipp and Xiao, Bo and G{\"u}nther, Florian and Kublitski, Jonas and BarOr, Eyal and Zhou, Erjun and Banerji, Natalie}, title = {Sub-picosecond charge-transfer at near-zero driving force in polymer:non-fullerene acceptor blends and bilayers}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-51193}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-511936}, pages = {12}, year = {2020}, abstract = {Organic photovoltaics based on non-fullerene acceptors (NFAs) show record efficiency of 16 to 17\% and increased photovoltage owing to the low driving force for interfacial charge-transfer. However, the low driving force potentially slows down charge generation, leading to a tradeoff between voltage and current. Here, we disentangle the intrinsic charge-transfer rates from morphology-dependent exciton diffusion for a series of polymer:NFA systems. Moreover, we establish the influence of the interfacial energetics on the electron and hole transfer rates separately. We demonstrate that charge-transfer timescales remain at a few hundred femtoseconds even at near-zero driving force, which is consistent with the rates predicted by Marcus theory in the normal region, at moderate electronic coupling and at low re-organization energy. Thus, in the design of highly efficient devices, the energy offset at the donor:acceptor interface can be minimized without jeopardizing the charge-transfer rate and without concerns about a current-voltage tradeoff.}, language = {en} } @phdthesis{Sun2024, author = {Sun, Bowen}, title = {Energy losses in low-offset organic solar cells}, doi = {10.25932/publishup-62143}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-621430}, school = {Universit{\"a}t Potsdam}, pages = {xxi, 190}, year = {2024}, abstract = {Organic solar cells (OSCs) represent a new generation of solar cells with a range of captivating attributes including low-cost, light-weight, aesthetically pleasing appearance, and flexibility. Different from traditional silicon solar cells, the photon-electron conversion in OSCs is usually accomplished in an active layer formed by blending two kinds of organic molecules (donor and acceptor) with different energy levels together. The first part of this thesis focuses on a better understanding of the role of the energetic offset and each recombination channel on the performance of these low-offset OSCs. By combining advanced experimental techniques with optical and electrical simulation, the energetic offsets between CT and excitons, several important insights were achieved: 1. The short circuit current density and fill-factor of low-offset systems are largely determined by field-dependent charge generation in such low-offset OSCs. Interestingly, it is strongly evident that such field-dependent charge generation originates from a field-dependent exciton dissociation yield. 2. The reduced energetic offset was found to be accompanied by strongly enhanced bimolecular recombination coefficient, which cannot be explained solely by exciton repopulation from CT states. This implies the existence of another dark decay channel apart from CT. The second focus of the thesis was on the technical perspective. In this thesis, the influence of optical artifacts in differential absorption spectroscopy upon the change of sample configuration and active layer thickness was studied. It is exemplified and discussed thoroughly and systematically in terms of optical simulations and experiments, how optical artifacts originated from non-uniform carrier profile and interference can manipulate not only the measured spectra, but also the decay dynamics in various measurement conditions. In the end of this study, a generalized methodology based on an inverse optical transfer matrix formalism was provided to correct the spectra and decay dynamics manipulated by optical artifacts. Overall, this thesis paves the way for a deeper understanding of the keys toward higher PCEs in low-offset OSC devices, from the perspectives of both device physics and characterization techniques.}, language = {en} }