@article{BeckerD'AloisioChristensonetal.2021, author = {Becker, George D. and D'Aloisio, Anson and Christenson, Holly M. and Zhu, Yongda and Worseck, G{\´a}bor and Bolton, James S.}, title = {The mean free path of ionizing photons at 5 < z < 6}, series = {Monthly notices of the Royal Astronomical Society}, volume = {508}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stab2696}, pages = {1853 -- 1869}, year = {2021}, abstract = {The mean free path of ionizing photons, lambda(mfp), is a key factor in the photoionization of the intergalactic medium (IGM). At z greater than or similar to 5, however, lambda(mfp) may be short enough that measurements towards QSOs are biased by the QSO proximity effect. We present new direct measurements of lambda(mfp) that address this bias and extend up to z similar to 6 for the first time. Our measurements at z similar to 5 are based on data from the Giant Gemini GMOS survey and new Keck LRIS observations of low-luminosity QSOs. At z similar to 6 we use QSO spectra from Keck ESI and VLT X-Shooter. We measure lambda(mfp) = 9.09(-1.28)(+1.62) proper Mpc and 0.75(-0.45)(+0.65) proper Mpc (68 percent confidence) at z = 5.1 and 6.0, respectively. The results at z = 5.1 are consistent with existing measurements, suggesting that bias from the proximity effect is minor at this redshift. At z = 6.0, however, we find that neglecting the proximity effect biases the result high by a factor of two or more. Our measurement at z = 6.0 falls well below extrapolations from lower redshifts, indicating rapid evolution in lambda(mfp) over 5 < z < 6. This evolution disfavours models in which reionization ended early enough that the IGM had time to fully relax hydrodynamically by z = 6, but is qualitatively consistent with models wherein reionization completed at z = 6 or even significantly later. Our mean free path results are most consistent with late reionization models wherein the IGM is still 20 percent neutral at z = 6, although our measurement at z = 6.0 is even lower than these models prefer.}, language = {en} } @article{IzotovChisholmWorsecketal.2022, author = {Izotov, Yuri I. and Chisholm, John and Worseck, G{\´a}bor and Guseva, Natalia G. and Schaerer, Daniel and Prochaska, Jason Xavier}, title = {Lyman alpha and Lyman continuum emission of Mg II-selected star-forming galaxies}, series = {Monthly notices of the Royal Astronomical Society}, volume = {515}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac1899}, pages = {2864 -- 2881}, year = {2022}, abstract = {We present observations with the Cosmic Origins Spectrograph onboard the Hubble Space Telescope of seven compact low-mass star-forming galaxies at redshifts, z, in the range 0.3161-0.4276, with various O3Mg2 = [O III] lambda 5007/Mg II lambda 2796+2803 and Mg-2 = Mg II lambda 2796/Mg II lambda 2803 emission-line ratios. We aim to study the dependence of leaking Lyman continuum (LyC) emission on the characteristics of Mg ii emission together with the dependencies on other indirect indicators of escaping ionizing radiation. LyC emission with escape fractions f(esc)(LyC) = 3.1-4.6 per cent is detected in four galaxies, whereas only 1 sigma upper limits of f(esc)(LyC) in the remaining three galaxies were derived. A strong narrow Ly alpha emission line with two peaks separated by V-sep similar to 298-592 km s(-1) was observed in four galaxies with detected LyC emission and very weak Ly alpha emission is observed in galaxies with LyC non-detections. Our new data confirm the tight anticorrelation between f(esc)(LyC) and V-sep found for previous low-redshift galaxy samples. V-sep remains the best indirect indicator of LyC leakage among all considered indicators. It is found that escaping LyC emission is detected predominantly in galaxies with Mg-2 greater than or similar to 1.3. A tendency of an increase of f(esc)(LyC) with increasing of both the O3Mg2 and Mg-2 is possibly present. However, there is substantial scatter in these relations not allowing their use for reliable prediction of f(esc)(LyC).}, language = {en} } @article{IzotovWorseckSchaereretal.2018, author = {Izotov, Y. I. and Worseck, G{\´a}bor and Schaerer, Daniel and Guseva, N. G. and Thuan, T. X. and Fricke, K. J. and Verhamme, Anne and Orlitova, I.}, title = {Low-redshift Lyman continuum leaking galaxies with high [O III]/[O II] ratios}, series = {Monthly notices of the Royal Astronomical Society}, volume = {478}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty1378}, pages = {4851 -- 4865}, year = {2018}, abstract = {We present observations with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope of five star-forming galaxies at redshifts z in the range 0.2993-0.4317 and with high emission-line flux ratios O-32 = [O III]lambda 5007/[O II]lambda 3727 similar to 8-27 aiming to detect the Lyman continuum (LyC) emission. We detect LyC emission in all galaxies with the escape fractions f(esc)(LyC) in a range of 2-72 per cent. A narrow Ly alpha emission line with two peaks in four galaxies and with three peaks in one object is seen in medium-resolution COS spectra with a velocity separation between the peaks V-sep varying from similar to 153 to similar to 345 km s(-1). We find a general increase of the LyC escape fraction with increasing O-32 and decreasing stellar mass M-star, but with a large scatter of f(esc)(LyC). A tight anticorrelation is found between f(esc)(LyC) and V-sep making V-sep a good parameter for the indirect determination of the LyC escape fraction. We argue that one possible source driving the escape of ionizing radiation is stellar winds and radiation from hot massive stars.}, language = {en} } @article{PerrottaHamannCristianietal.2018, author = {Perrotta, S. and Hamann, F. and Cristiani, S. and Prochaska, J. X. and Ellison, Sara L. and Lopez, S. and Cupani, G. and Becker, G. and Berg, T. A. M. and Christensen, Lise and Denney, K. D. and Worseck, G{\´a}bor}, title = {Hunting for metals using XQ-100 Legacy Survey composite spectra}, series = {Monthly notices of the Royal Astronomical Society}, volume = {481}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty2205}, pages = {105 -- 121}, year = {2018}, abstract = {We investigate the NV absorption signal along the line of sight of background quasars, in order to test the robustness of the use of this ion as the criterion to select intrinsic (i.e. physically related to the quasar host galaxy) narrow absorption lines (NALs). We build composite spectra from a sample of similar to 1000 CIV absorbers, covering the redshift range 2.55 < z < 4.73, identified in 100 individual sight lines from the XQ-100 Legacy Survey. We detect a statistically significant NV absorption signal only within 5000 km s(-1) of the systemic redshift, z(em). This absorption trough is similar to 15 sigma when only CIV systems with N(CIV) > 10(14) cm(-2) are included in the composite spectrum. This result confirms that NV offers an excellent statistical tool to identify intrinsic systems. We exploit stacks of 11 different ions to show that the gas in proximity to a quasar exhibits a considerably different ionization state with respect to gas in the transverse direction and intervening gas at large velocity separations from the continuum source. Indeed, we find a dearth of cool gas, as traced by low-ionization species and in particular by MgII, in the proximity of the quasar. We compare our findings with the predictions given by a range of CLOUDY ionization models and find that they can be naturally explained by ionization effects of the quasar.}, language = {en} } @article{WorseckKhrykinHennawietal.2021, author = {Worseck, G{\´a}bor and Khrykin, Ilya Sergeevich and Hennawi, Joseph F. and Prochaska, J. Xavier and Farina, Emanuele Paolo}, title = {Dating individual quasars with the He II proximity effect}, series = {Monthly notices of the Royal Astronomical Society}, volume = {505}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stab1685}, pages = {5084 -- 5103}, year = {2021}, abstract = {Constraints on the time-scales of quasar activity are key to understanding the formation and growth of supermassive black holes (SMBHs), quasar triggering mechanisms, and possible feedback effects on their host galaxies. However, observational estimates of this so-called quasar lifetime are highly uncertain (t(Q) similar to 10(4)-10(9) yr), because most methods are indirect and involve many model-dependent assumptions. Direct evidence of earlier activity is gained from the higher ionization state of the intergalactic medium (IGM) in the quasar environs, observable as enhanced Ly alpha transmission in the so-called proximity zone. Due to the similar to 30 Myr equilibration time-scale of He II in the z similar to 3 IGM, the size of the He II proximity zone depends on the time the quasar had been active before our observation t(on) <= t(Q), enabling up to +/- 0.2 dex precise measurements of individual quasar on-times that are comparable to the e-folding time-scale t(S) <= 44 Myr of SMBH growth. Here we present the first statistical sample of 13 quasars whose accurate and precise systemic redshifts allow for measurements of sufficiently precise He II quasar proximity zone sizes between similar or equal to 2 and similar or equal to 15 proper Mpc from science-grade Hubble Space Telescope (HST) spectra. Comparing these sizes to predictions from cosmological hydrodynamical simulations post-processed with 1D radiative transfer, we infer a broad range of quasar on-times from t(on) less than or similar to 1Myr to t(on) > 30 Myr that does not depend on quasar luminosity, black hole mass, or Eddington ratio. These results point to episodic quasar activity over a long duty cycle, but do not rule out substantial SMBH growth during phases of radiative inefficiency or obscuration.}, language = {en} }