@phdthesis{Krivenkov2020, author = {Krivenkov, Maxim}, title = {Spin textures and electron scattering in nanopatterned monolayer graphene}, doi = {10.25932/publishup-48701}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-487017}, school = {Universit{\"a}t Potsdam}, pages = {x, 176}, year = {2020}, abstract = {The current thesis is focused on the properties of graphene supported by metallic substrates and specifically on the behaviour of electrons in such systems. Methods of scanning tunneling microscopy, electron diffraction and photoemission spectroscopy were applied to study the structural and electronic properties of graphene. The purpose of the first part of this work is to introduce the most relevant aspects of graphene physics and the methodical background of experimental techniques used in the current thesis. The scientific part of this work starts with the extensive study by means of scanning tunneling microscopy of the nanostructures that appear in Au intercalated graphene on Ni(111). This study was aimed to explore the possible structural explanations of the Rashba-type spin splitting of ~100 meV experimentally observed in this system — much larger than predicted by theory. It was demonstrated that gold can be intercalated under graphene not only as a dense monolayer, but also in the form of well-periodic arrays of nanoclusters, a structure previously not reported. Such nanocluster arrays are able to decouple graphene from the strongly interacting Ni substrate and render it quasi-free-standing, as demonstrated by our DFT study. At the same time calculations confirm strong enhancement of the proximity-induced SOI in graphene supported by such nanoclusters in comparison to monolayer gold. This effect, attributed to the reduced graphene-Au distance in the case of clusters, provides a large Rashba-type spin splitting of ~60 meV. The obtained results not only provide a possible mechanism of SOI enhancement in this particular system, but they can be also generalized for graphene on other strongly interacting substrates intercalated by nanostructures of heavy noble d metals. Even more intriguing is the proximity of graphene to heavy sp-metals that were predicted to induce an intrinsic SOI and realize a spin Hall effect in graphene. Bismuth is the heaviest stable sp-metal and its compounds demonstrate a plethora of exciting physical phenomena. This was the motivation behind the next part of the current thesis, where structural and electronic properties of a previously unreported phase of Bi-intercalated graphene on Ir(111) were studied by means of scanning tunneling microscopy, spin- and angle-resolved photoemission spectroscopy and electron diffraction. Photoemission experiments revealed a remarkable, nearly ideal graphene band structure with strongly suppressed signatures of interaction between graphene and the Ir(111) substrate, moreover, the characteristic moir{\´e} pattern observed in graphene on Ir(111) by electron diffraction and scanning tunneling microscopy was strongly suppressed after intercalation. The whole set of experimental data evidences that Bi forms a dense intercalated layer that efficiently decouples graphene from the substrate. The interaction manifests itself only in the n-type charge doping (~0.4 eV) and a relatively small band gap at the Dirac point (~190 meV). The origin of this minor band gap is quite intriguing and in this work it was possible to exclude a wide range of mechanisms that could be responsible for it, such as induced intrinsic spin-orbit interaction, hybridization with the substrate states and corrugation of the graphene lattice. The main origin of the band gap was attributed to the A-B symmetry breaking and this conclusion found support in the careful analysis of the interference effects in photoemission that provided the band gap estimate of ~140 meV. While the previous chapters were focused on adjusting the properties of graphene by proximity to heavy metals, graphene on its own is a great object to study various physical effects at crystal surfaces. The final part of this work is devoted to a study of surface scattering resonances by means of photoemission spectroscopy, where this effect manifests itself as a distinct modulation of photoemission intensity. Though scattering resonances were widely studied in the past by means of electron diffraction, studies about their observation in photoemission experiments started to appear only recently and they are very scarce. For a comprehensive study of scattering resonances graphene was selected as a versatile model system with adjustable properties. After the theoretical and historical introduction to the topic of scattering resonances follows a detailed description of the unusual features observed in the photoemission spectra obtained in this work and finally the equivalence between these features and scattering resonances is proven. The obtained photoemission results are in a good qualitative agreement with the existing theory, as verified by our calculations in the framework of the interference model. This simple model gives a suitable explanation for the general experimental observations. The possibilities of engineering the scattering resonances were also explored. A systematic study of graphene on a wide range of substrates revealed that the energy position of the resonances is in a direct relation to the magnitude of charge transfer between graphene and the substrate. Moreover, it was demonstrated that the scattering resonances in graphene on Ir(111) can be suppressed by nanopatterning either by a superlattice of Ir nanoclusters or by atomic hydrogen. These effects were attributed to strong local variations of tork function and/or destruction of long-range order of thephene lattice. The tunability of scattering resonances can be applied for optoelectronic devices based on graphene. Moreover, the results of this study expand the general understanding of the phenomenon of scattering resonances and are applicable to many other materials besides graphene.}, language = {en} } @article{KrivenkovMarchenkoSanchezBarrigaetal.2021, author = {Krivenkov, Maxim and Marchenko, Dimitry and S{\´a}nchez-Barriga, Jaime and Golias, Evangelos and Rader, Oliver and Varykhalov, Andrei}, title = {Origin of the band gap in Bi-intercalated graphene on Ir(111)}, series = {2D Materials}, volume = {8}, journal = {2D Materials}, number = {3}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2053-1583}, doi = {10.1088/2053-1583/abd1e4}, pages = {15}, year = {2021}, abstract = {Proximity to heavy sp-elements is considered promising for reaching a band gap in graphene that could host quantum spin Hall states. The recent report of an induced spin-orbit gap of 0.2 eV in Pb-intercalated graphene detectable by spin-resolved photoemission has spurred renewed interest in such systems (Klimovskikh et al 2017 ACS Nano 11, 368). In the case of Bi intercalation an even larger band gap of 0.4 eV has been observed but was assigned to the influence of a dislocation network (Warmuth et al 2016 Phys. Rev. B 93, 165 437). Here, we study Bi intercalation under graphene on Ir(111) and report a nearly ideal graphene dispersion without band replicas and no indication of hybridization with the substrate. The band gap is small (0.19 eV) and can be tuned by +/- 25 meV through the Bi coverage. The Bi atomic density is higher than in the recent report. By spin-resolved photoemission we exclude induced spin-orbit interaction as origin of the gap. Quantitative agreement of a photoemission intensity analysis with the measured band gap suggests sublattice symmetry breaking as one of the possible band gap opening mechanisms. We test several Bi structures by density functional theory. Our results indicate the possibility that Bi intercalates in the phase of bismuthene forming a graphene-bismuthene van der Waals heterostructure.}, language = {en} } @article{KrivenkovGoliasMarchenkoetal.2017, author = {Krivenkov, Maxim and Golias, Evangelos and Marchenko, Dmitry and Sanchez-Barriga, Jaime and Bihlmayer, Gustav and Rader, Oliver and Varykhalov, Andrei}, title = {Nanostructural origin of giant Rashba effect in intercalated graphene}, series = {2D Materials}, volume = {4}, journal = {2D Materials}, number = {3}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2053-1583}, doi = {10.1088/2053-1583/aa7ad8}, pages = {11}, year = {2017}, abstract = {To enhance the spin-orbit interaction in graphene by a proximity effect without compromising the quasi-free-standing dispersion of the Dirac cones means balancing the opposing demands for strong and weak graphene-substrate interaction. So far, only the intercalation of Au under graphene/Ni(111) has proven successful, which was unexpected since graphene prefers a large separation (similar to 3.3 angstrom) from a Au monolayer in equilibrium. Here, we investigate this system and find the solution in a nanoscale effect. We reveal that the Au largely intercalates as nanoclusters. Our density functional theory calculations show that the graphene is periodically stapled to the Ni substrate, and this attraction presses graphene and Au nanoclusters together. This, in turn, causes a Rashba effect of the giant magnitude observed in experiment. Our findings show that nanopatterning of the substrate can be efficiently used for engineering of spin-orbit effects in graphene.}, language = {en} } @article{SajediKrivenkovMarchenkoetal.2022, author = {Sajedi, Maryam and Krivenkov, Maxim and Marchenko, Dmitry and Sanchez-Barriga, Jaime and Chandran, Anoop K. and Varykhalov, Andrei and Rienks, Emile D. L. and Aguilera, Irene and Bl{\"u}gel, Stefan and Rader, Oliver}, title = {Is there a polaron signature in Angle-Resolved Photoemission of CsPbBr3?}, series = {Physical review letters}, volume = {128}, journal = {Physical review letters}, number = {17}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.128.176405}, pages = {7}, year = {2022}, abstract = {The formation of large polarons has been proposed as reason for the high defect tolerance, low mobility, low charge carrier trapping, and low nonradiative recombination rates of lead halide perovskites. Recently, direct evidence for large-polaron formation has been reported from a 50\% effective mass enhancement in angle-resolved photoemission of CsPbBr3 over theory for the orthorhombic structure. We present in-depth band dispersion measurements of CsPbBr3 and GW calculations, which lead to similar effective masses at the valence band maximum of 0.203 1 0.016 m0 in experiment and 0.226 m0 in orthorhombic theory. We argue that the effective mass can be explained solely on the basis of electron-electron correlation and largepolaron formation cannot be concluded from photoemission data.}, language = {en} } @misc{VarykhalovFreyseAguileraetal.2020, author = {Varykhalov, Andrei and Freyse, Friedrich and Aguilera, Irene and Battiato, Marco and Krivenkov, Maxim and Marchenko, Dmitry and Bihlmayer, Gustav and Blugel, Stefan and Rader, Oliver and Sanchez-Barriga, Jaime}, title = {Effective mass enhancement and ultrafast electron dynamics of Au(111) surface state coupled to a quantum well}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-54989}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-549892}, pages = {11}, year = {2020}, abstract = {We show that, although the equilibrium band dispersion of the Shockley-type surface state of two-dimensional Au(111) quantum films grown on W(110) does not deviate from the expected free-electron-like behavior, its nonequilibrium energy-momentum dispersion probed by time- and angle-resolved photoemission exhibits a remarkable kink above the Fermi level due to a significant enhancement of the effective mass. The kink is pronounced for certain thicknesses of the Au quantum well and vanishes in the very thin limit. We identify the kink as induced by the coupling between the Au(111) surface state and emergent quantum-well states which probe directly the buried gold-tungsten interface. The signatures of the coupling are further revealed by our time-resolved measurements which show that surface state and quantum-well states thermalize together behaving as dynamically locked electron populations. In particular, relaxation of hot carriers following laser excitation is similar for both surface state and quantum-well states and much slower than expected for a bulk metallic system. The influence of quantum confinement on the interplay between elementary scattering processes of the electrons at the surface and ultrafast carrier transport in the direction perpendicular to the surface is shown to be the reason for the slow electron dynamics.}, language = {en} } @article{VarykhalovFreyseAguileraetal.2020, author = {Varykhalov, Andrei and Freyse, Friedrich and Aguilera, Irene and Battiato, Marco and Krivenkov, Maxim and Marchenko, Dmitry and Bihlmayer, Gustav and Blugel, Stefan and Rader, Oliver and Sanchez-Barriga, Jaime}, title = {Effective mass enhancement and ultrafast electron dynamics of Au(111) surface state coupled to a quantum well}, series = {Physical Review Research}, volume = {2}, journal = {Physical Review Research}, number = {1}, publisher = {American Physical Society}, address = {Ridge, NY}, issn = {0031-9007}, doi = {10.1103/PhysRevResearch.2.013343}, pages = {1 -- 9}, year = {2020}, abstract = {We show that, although the equilibrium band dispersion of the Shockley-type surface state of two-dimensional Au(111) quantum films grown on W(110) does not deviate from the expected free-electron-like behavior, its nonequilibrium energy-momentum dispersion probed by time- and angle-resolved photoemission exhibits a remarkable kink above the Fermi level due to a significant enhancement of the effective mass. The kink is pronounced for certain thicknesses of the Au quantum well and vanishes in the very thin limit. We identify the kink as induced by the coupling between the Au(111) surface state and emergent quantum-well states which probe directly the buried gold-tungsten interface. The signatures of the coupling are further revealed by our time-resolved measurements which show that surface state and quantum-well states thermalize together behaving as dynamically locked electron populations. In particular, relaxation of hot carriers following laser excitation is similar for both surface state and quantum-well states and much slower than expected for a bulk metallic system. The influence of quantum confinement on the interplay between elementary scattering processes of the electrons at the surface and ultrafast carrier transport in the direction perpendicular to the surface is shown to be the reason for the slow electron dynamics.}, language = {en} } @article{VoroshninTarasovBokaietal.2022, author = {Voroshnin, Vladimir and Tarasov, Artem V. and Bokai, Kirill A. and Chikina, Alla and Senkovskiy, Boris V. and Ehlen, Niels and Usachov, Dmitry Yu. and Gruneis, Alexander and Krivenkov, Maxim and Sanchez-Barriga, Jaime and Fedorov, Alexander}, title = {Direct spectroscopic evidence of magnetic proximity effect in MoS2 monolayer on graphene/Co}, series = {ACS nano}, volume = {16}, journal = {ACS nano}, number = {5}, publisher = {American Chemical Society}, address = {Washington}, issn = {1936-0851}, doi = {10.1021/acsnano.1c10391}, pages = {7448 -- 7456}, year = {2022}, abstract = {A magnetic field modifies optical properties and provides valley splitting in a molybdenum disulfide (MoS2) monolayer. Here we demonstrate a scalable approach to the epitaxial synthesis of MoS2 monolayer on a magnetic graphene/Co system. Using spin- and angle-resolved photoemission spectroscopy we observe a magnetic proximity effect that causes a 20 meV spin-splitting at the (Gamma) over bar point and canting of spins at the (K) over bar point in the valence band toward the in-plane direction of cobalt magnetization. Our density functional theory calculations reveal that the in-plane spin component at (K) over bar is localized on Co atoms in the valence band, while in the conduction band it is localized on the MoS2 layer. The calculations also predict a 16 meV spin-splitting at the (Gamma) over bar point and 8 meV (K) over bar-(K) over bar' valley asymmetry for an out-of-plane magnetization. These findings suggest control over optical transitions in MoS2 via Co magnetization. Our estimations show that the magnetic proximity effect is equivalent to the action of the magnetic field as large as 100 T.}, language = {en} } @article{SajediKrivenkovMarchenkoetal.2020, author = {Sajedi, Maryam and Krivenkov, Maxim and Marchenko, Dmitry and Varykhalov, Andrei and Sanchez-Barriga, Jaime and Rienks, Emile D. L. and Rader, Oliver}, title = {Absence of a giant Rashba effect in the valence band of lead halide perovskites}, series = {Physical review : B, Condensed matter and materials physics}, volume = {102}, journal = {Physical review : B, Condensed matter and materials physics}, number = {8}, publisher = {American Institute of Physics; American Physical Society (APS)}, address = {Woodbury, NY}, issn = {2469-9950}, doi = {10.1103/PhysRevB.102.081116}, pages = {6}, year = {2020}, abstract = {For hybrid organic-inorganic as well as all-inorganic lead halide perovskites a Rashba effect has been invoked to explain the high efficiency in energy conversion by prohibiting direct recombination. Both a bulk and surface Rashba effect have been predicted. In the valence band of methylammonium (MA) lead bromide a Rashba effect has been reported by angle-resolved photoemission and circular dichroism with giant values of 7-11 eV angstrom. We present band dispersion measurements of MAPbBr(3) and spin-resolved photoemission of CsPbBr3 to show that a large Rashba effect detectable by photoemission or circular dichroism does not exist and cannot be the origin of the high effciency.}, language = {en} }