@article{SteigertKojdaIbacetaJanaetal.2022, author = {Steigert, Alexander and Kojda, Sandrino Danny and Ibaceta-Ja{\~n}a, Josefa Fernanda and Abou-Ras, Daniel and Gunder, Ren{\´e} and Alktash, Nivin and Habicht, Klaus and Wagner, Markus Raphael and Klenk, Reiner and Raoux, Simone and Szyszka, Bernd and Lauermann, Iver and Muydinov, Ruslan}, title = {Water-assisted crystallization of amorphous indium zinc oxide films}, series = {Materials today. Communications}, volume = {31}, journal = {Materials today. Communications}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2352-4928}, doi = {10.1016/j.mtcomm.2022.103213}, pages = {10}, year = {2022}, abstract = {Transparent conductive materials based on indium oxide remain yet irreplaceable in various optoelectronic applications. Amorphous oxides appear especially attractive for technology as they are isotropic, demonstrate relatively high electron mobility and can be processed at low temperatures. Among them is indium zinc oxide (IZO) with a large zinc content that is crucial for keeping the amorphous state but redundant for the doping. In this work we investigated water-free and water containing IZO films obtained by radio frequency sputtering. The correlation between temperature driven changes of the chemical state, the optical and electrical properties as well as the progression of crystallization was in focus. Such characterization methods as: scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, temperature dependent Hall-effect measurements and others were applied. Temperature dependent electrical properties of amorphous IZO and IZO:H2O films were found to evolve similarly. Based on our experience in In2O3:H2O (In2O3:H or IOH) we proposed an explanation for the changes observed. Water admixture was found to decrease crystallization temperature of IZO significantly from similar to 550 degrees C to similar to 280 degrees C. Herewith, the presence and concentration of water and/or hydroxyls was found to determine Zn distribution in the film. In particular, Zn enrichment was detected at the film's surface respective to the high water and/or hydroxyl amount. Raman spectra revealed a two-dimensional crystallization of w-ZnO which precedes regardless water presence an extensive In2O3 crystallization. An abrupt loss of electron mobility as a result of crystallization was attributed to the formation of ZnO interlayer on grain boundaries.}, language = {en} } @article{CrovettoHempelRusuetal.2020, author = {Crovetto, Andrea and Hempel, Hannes and Rusu, Marin and Choubrac, Leo and Kojda, Sandrino Danny and Habicht, Klaus and Unold, Thomas}, title = {Water adsorption enhances electrical conductivity in transparent p-type CuI}, series = {ACS applied materials \& interfaces}, volume = {12}, journal = {ACS applied materials \& interfaces}, number = {43}, publisher = {American Chemical Society}, address = {Washington, DC}, issn = {1944-8244}, doi = {10.1021/acsami.0c11040}, pages = {48741 -- 48747}, year = {2020}, abstract = {CuI has been recently rediscovered as a p-type transparent conductor with a high figure of merit. Even though many metal iodides are hygroscopic, the effect of moisture on the electrical properties of CuI has not been clarified. In this work, we observe a 2-fold increase in the conductivity of CuI after exposure to ambient humidity for 5 h, followed by slight long-term degradation. Simultaneously, the work function of CuI decreases by almost 1 eV, which can explain the large spread in the previously reported work function values. The conductivity increase is partially reversible and is maximized at intermediate humidity levels. On the basis of the large intragrain mobility measured by THz spectroscopy, we suggest that hydration of grain boundaries may be beneficial for the overall hole mobility.}, language = {en} } @misc{MazzioThulasimaniRylletal.2018, author = {Mazzio, Katherine A. and Thulasimani, Monika Raja and Ryll, Britta and Kojda, Sandrino Danny and Habicht, Klaus and Raoux, Simone}, title = {Synthetic manipulation of hybrid thermoelectric materials}, series = {Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS}, volume = {255}, journal = {Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS}, publisher = {American Chemical Society}, address = {Washington}, issn = {0065-7727}, pages = {1}, year = {2018}, language = {en} } @article{PanchalKojdaSahooetal.2022, author = {Panchal, Gyanendra and Kojda, Sandrino Danny and Sahoo, Sophia and Bagri, Anita and Kunwar, Hemant Singh and Bocklage, Lars and Panchwanee, Anjali and Sathe, Vasant G. and Fritsch, Katharina and Habicht, Klaus and Choudhary, Ram Janay and Phase, Deodutta M.}, title = {Strain and electric field control of magnetic and electrical transport properties in a magnetoelastically coupled Fe3O4/BaTiO3 (001) heterostructure}, series = {Physical review : B, Condensed matter and materials physics}, volume = {105}, journal = {Physical review : B, Condensed matter and materials physics}, number = {22}, publisher = {The American Institute of Physics}, address = {Woodbury, NY}, issn = {2469-9950}, doi = {10.1103/PhysRevB.105.224419}, pages = {8}, year = {2022}, abstract = {We present a study of the control of electric field induced strain on the magnetic and electrical transport properties in a magnetoelastically coupled artificial multiferroic Fe3O4/BaTiO3 heterostructure. In this Fe3O4/BaTiO3 heterostructure, the Fe3O4 thin film is epitaxially grown in the form of bilateral domains, analogous to a-c stripe domains of the underlying BaTiO3(001) substrate. By in situ electric field dependent magnetization measurements, we demonstrate the extrinsic control of the magnetic anisotropy and the characteristic Verwey metal-insulator transition of the epitaxial Fe3O4 thin film in a wide temperature range between 20-300 K, via strain mediated converse magnetoelectric coupling. In addition, we observe strain induced modulations in the magnetic and electrical transport properties of the Fe3O4 thin film across the thermally driven intrinsic ferroelectric and structural phase transitions of the BaTiO3 substrate. In situ electric field dependent Raman measurements reveal that the electric field does not significantly modify the antiphase boundary defects in the Fe3O4 thin film once it is thermodynamically stable after deposition and that the modification of the magnetic properties is mainly caused by strain induced lattice distortions and magnetic anisotropy. These results provide a framework to realize electrical control of the magnetization in a classical highly correlated transition metal oxide.}, language = {en} } @article{MazzioKojdaRubioGoveaetal.2020, author = {Mazzio, Katherine A. and Kojda, Sandrino Danny and Rubio-Govea, Rodrigo and Niederhausen, Jens and Ryll, Britta and Raja-Thulasimani, Monika and Habicht, Klaus and Raoux, Simone}, title = {P-type-to-n-type transition in hybrid AgxTe/PEDOT:PSS thermoelectric materials via stoichiometric control during solution-based synthesis}, series = {ACS applied energy materials}, volume = {3}, journal = {ACS applied energy materials}, number = {11}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {2574-0962}, doi = {10.1021/acsaem.0c01774}, pages = {10734 -- 10743}, year = {2020}, abstract = {This work demonstrates the production of high-performing p- type and n-type hybrid AgxTe/poly(3,4-ethylenedioxythiopene):polystyrene sulfonic acid (PE-DOT:PSS) thermoelectric materials from the same Te/PEDOT:PSS parent structure during aqueous-based synthesis. All samples were solution-processed and analyzed in thin- film architectures. We were able to demonstrate a power factor of 44 mu W m(-1) K-2 for our highest-performing n-type material. In addition, we were also able to realize a 68\% improvement in the power factor of our p-type compositions relative to the parent structure through manipulation of the inorganic nanostructure composition. We demonstrate control over the thermoelectric properties by varying the stoichiometry of AgxTe nanoparticles in AgxTe/PEDOT:PSS hybrid materials via a topotactic chemical transformation process at room temperature. This process offers a simple, low-temperature, and cost-effective route toward the production of both efficient n-type and p-type hybrid thermoelectric materials.}, language = {en} }