@misc{FondellEckertJayetal.2017, author = {Fondell, Mattis and Eckert, Sebastian and Jay, Raphael Martin and Weniger, Christian and Quevedo, Wilson and Niskanen, Johannes and Kennedy, Brian and Sorgenfrei, Nomi and Schick, Daniel and Giangrisostomi, Erika and Ovsyannikov, Ruslan and Adamczyk, Katrin and Huse, Nils and Wernet, Philippe and Mitzner, Rolf and F{\"o}hlisch, Alexander}, title = {Time-resolved soft X-ray absorption spectroscopy in transmission mode on liquids at MHz repetition rates}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {780}, issn = {1866-8372}, doi = {10.25932/publishup-43752}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437529}, pages = {12}, year = {2017}, abstract = {We present a setup combining a liquid flatjet sample delivery and a MHz laser system for time-resolved soft X-ray absorption measurements of liquid samples at the high brilliance undulator beamline UE52-SGM at Bessy II yielding unprecedented statistics in this spectral range. We demonstrate that the efficient detection of transient absorption changes in transmission mode enables the identification of photoexcited species in dilute samples. With iron(II)-trisbipyridine in aqueous solution as a benchmark system, we present absorption measurements at various edges in the soft X-ray regime. In combination with the wavelength tunability of the laser system, the set-up opens up opportunities to study the photochemistry of many systems at low concentrations, relevant to materials sciences, chemistry, and biology.}, language = {en} } @article{BornJohanssonLeitneretal.2022, author = {Born, Artur and Johansson, Fredrik O. L. and Leitner, Torsten and Bidermane, Ieva and Kuehn, Danilo and Martensson, Nils and F{\"o}hlisch, Alexander}, title = {The degree of electron itinerancy and shell closing in the core-ionized state of transition metals probed by Auger-photoelectron coincidence spectroscopy}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {24}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {32}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d2cp02477b}, pages = {19218 -- 19222}, year = {2022}, abstract = {Auger-photoelectron coincidence spectroscopy (APECS) has been used to examine the electron correlation and itinerance effects in transition metals Cu, Ni and Co. It is shown that the LVV Auger, in coincidence with 2p photoelectrons, spectra can be represented using atomic multiplet positions if the 3d-shell is localized (atomic-like) and with a self-convoluted valence band for band-like (itinerant) materials as explained using the Cini-Sawatzky model. For transition metals, the 3d band changes from band-like to localized with increasing atomic number, with the possibility of a mixed behavior. Our result shows that the LVV spectra of Cu can be represented by atomic multiplet calculations, those of Co resemble the self-convolution of the valence band and those of Ni are a mixture of both, consistent with the Cini-Sawatzky model.}, language = {en} } @misc{KubinGuoKrolletal.2018, author = {Kubin, Markus and Guo, Meiyuan and Kroll, Thomas and L{\"o}chel, Heike and K{\"a}llman, Erik and Baker, Michael L. and Mitzner, Rolf and Gul, Sheraz and Kern, Jan and F{\"o}hlisch, Alexander and Erko, Alexei and Bergmann, Uwe and Yachandra, Vittal and Yano, Junko and Lundberg, Marcus and Wernet, Philippe}, title = {Probing the oxidation state of transition metal complexes}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {656}, issn = {1866-8372}, doi = {10.25932/publishup-42505}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-425057}, pages = {17}, year = {2018}, abstract = {Transition metals in inorganic systems and metalloproteins can occur in different oxidation states, which makes them ideal redox-active catalysts. To gain a mechanistic understanding of the catalytic reactions, knowledge of the oxidation state of the active metals, ideally in operando, is therefore critical. L-edge X-ray absorption spectroscopy (XAS) is a powerful technique that is frequently used to infer the oxidation state via a distinct blue shift of L-edge absorption energies with increasing oxidation state. A unified description accounting for quantum-chemical notions whereupon oxidation does not occur locally on the metal but on the whole molecule and the basic understanding that L-edge XAS probes the electronic structure locally at the metal has been missing to date. Here we quantify how charge and spin densities change at the metal and throughout the molecule for both redox and core-excitation processes. We explain the origin of the L-edge XAS shift between the high-spin complexes Mn-II(acac)(2) and Mn-III(acac)(3) as representative model systems and use ab initio theory to uncouple effects of oxidation-state changes from geometric effects. The shift reflects an increased electron affinity of Mn-III in the core-excited states compared to the ground state due to a contraction of the Mn 3d shell upon core-excitation with accompanied changes in the classical Coulomb interactions. This new picture quantifies how the metal-centered core hole probes changes in formal oxidation state and encloses and substantiates earlier explanations. The approach is broadly applicable to mechanistic studies of redox-catalytic reactions in molecular systems where charge and spin localization/delocalization determine reaction pathways.}, language = {en} } @article{PochIstiqomahQuiricoetal.2020, author = {Poch, Olivier and Istiqomah, Istiqomah and Quirico, Eric and Beck, Pierre and Schmitt, Bernard and Theul{\´e}, Patrice and Faure, Alexandre and Hily-Blant, Pierre and Bonal, Lydie and Kappel, David}, title = {Ammonium salts are a reservoir of nitrogen on a cometary nucleus and possibly on some asteroids}, series = {Science}, volume = {367}, journal = {Science}, number = {6483}, publisher = {AAAS, American Association for the Advancement of Science}, address = {Washington, DC}, issn = {1095-9203}, doi = {10.1126/science.aaw7462}, pages = {1 -- 8}, year = {2020}, abstract = {The measured nitrogen-to-carbon ratio in comets is lower than for the Sun, a discrepancy which could be alleviated if there is an unknown reservoir of nitrogen in comets. The nucleus of comet 67P/Churyumov-Gerasimenko exhibits an unidentified broad spectral reflectance feature around 3.2 micrometers, which is ubiquitous across its surface. On the basis of laboratory experiments, we attribute this absorption band to ammonium salts mixed with dust on the surface. The depth of the band indicates that semivolatile ammonium salts are a substantial reservoir of nitrogen in the comet, potentially dominating over refractory organic matter and more volatile species. Similar absorption features appear in the spectra of some asteroids, implying a compositional link between asteroids, comets, and the parent interstellar cloud.}, language = {en} } @misc{PochIstiqomahQuiricoetal.2020, author = {Poch, Olivier and Istiqomah, Istiqomah and Quirico, Eric and Beck, Pierre and Schmitt, Bernard and Theul{\´e}, Patrice and Faure, Alexandre and Hily-Blant, Pierre and Bonal, Lydie and Kappel, David}, title = {Ammonium salts are a reservoir of nitrogen on a cometary nucleus and possibly on some asteroids}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {6483}, issn = {1866-8372}, doi = {10.25932/publishup-51375}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-513751}, pages = {10}, year = {2020}, abstract = {The measured nitrogen-to-carbon ratio in comets is lower than for the Sun, a discrepancy which could be alleviated if there is an unknown reservoir of nitrogen in comets. The nucleus of comet 67P/Churyumov-Gerasimenko exhibits an unidentified broad spectral reflectance feature around 3.2 micrometers, which is ubiquitous across its surface. On the basis of laboratory experiments, we attribute this absorption band to ammonium salts mixed with dust on the surface. The depth of the band indicates that semivolatile ammonium salts are a substantial reservoir of nitrogen in the comet, potentially dominating over refractory organic matter and more volatile species. Similar absorption features appear in the spectra of some asteroids, implying a compositional link between asteroids, comets, and the parent interstellar cloud.}, language = {en} } @misc{EhlertHolzweberLippitzetal.2016, author = {Ehlert, Christopher and Holzweber, Markus and Lippitz, Andreas and Unger, Wolfgang E. S. and Saalfrank, Peter}, title = {A detailed assignment of NEXAFS resonances of imidazolium based ionic liquids}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394417}, pages = {8654 -- 8661}, year = {2016}, abstract = {In Near Edge X-Ray Absorption Fine Structure (NEXAFS) spectroscopy X-Ray photons are used to excite tightly bound core electrons to low-lying unoccupied orbitals of the system. This technique offers insight into the electronic structure of the system as well as useful structural information. In this work, we apply NEXAFS to two kinds of imidazolium based ionic liquids ([CnC1im]+[NTf2]- and [C4C1im]+[I]-). A combination of measurements and quantum chemical calculations of C K and N K NEXAFS resonances is presented. The simulations, based on the transition potential density functional theory method (TP-DFT), reproduce all characteristic features observed by the experiment. Furthermore, a detailed assignment of resonance features to excitation centers (carbon or nitrogen atoms) leads to a consistent interpretation of the spectra.}, language = {en} }