@phdthesis{Farhan2019, author = {Farhan, Muhammad}, title = {Multifunctional reprogrammable actuators based on polymer networks with crystallizable segments}, school = {Universit{\"a}t Potsdam}, year = {2019}, abstract = {Soft polymeric materials, which can change their shape reversibly in response to external stimuli, can serve as actuating components in robotic systems. Besides electroactive polymers (EAP), hydrogels and liquid crystalline elastomers (LCE), crosslinked crystallizable shape-memory polymers networks have been introduced recently as reprogrammable thermo-reversible actuators. The integration of additional functions in such materials will lead to multifunctional polymeric actuators, which meet the complex requirements of modern robotic applications. The primary aim of this thesis was to achieve multifunctional reprogrammable thermo-reversible actuators based on thermoplastic polymers. Here, three different actuators providing additional functionalities such as surface modification capability (i), self-healing capability (ii) or a tailorable non-response function enabling noncontinuous multi-step motions (iii) were realized. At first, it was hypothesized that surface modifiable polymeric actuators (i) can be achieved by crosslinking of crystallizable thermoplastic terpolymers having reactive moieties, where subsequent thermomechanical programming enables reversible actuations while the sustained reactive groups allow post surface modification. For the second actuator type (ii) it was hypothesized that self-healing during reprogramming of polymeric actuators prepared by crosslinking of crystallizable linear homopolymers, can be achieved by adjusting the amount of freely interpenetrating extractable polymer moieties. Finally, it was hypothesized that thermo-reversible actuators providing a non-response function (iii) and thus enable multistep motions upon continuous normal stimulation, can be achieved by a crosslinked blend of two thermoplastic polymers with co-continuous morphology having a well-separated melting and crystallization transitions. In addition, these actuators can be physically reprogrammed by heating above all melting transitions to provide a different actuating shape. In this study, surface functionalizable actuators were realized from crosslinked poly[(ethylene)-co-(ethyl acrylate)-co-(maleic anhydride)] (cPEEAMA) based networks. Here crystallizable polyethylene (PE) segments should serve as actuation segments, ethyl acrylate (EA) provides elasticity to the system required for deformation, while reactive maleic anhydride (MA) will be used as chemically modifiable entities for post surface modification. Networks with varied crosslink density were prepared and its effect on thermomechanical properties as well as actuation performance was analyzed. Cyclic thermomechanical experiments were employed to investigate the actuation capability, which revealed a reversible actuation (ε׳rev) between 5 and 15\%. Fourier-transform infrared spectroscopy (FTIR) measurements confirmed that MA groups were sustained at the sample surface after processing and programming, which could be modified by reaction with ethylene diamine. Such amine functionalization allows the attachment of bioactive molecules to the actuator surface, which might provide a route to actuating substrates for biotechnology. Self-healable actuating materials were realized by poly(ε-caprolactone) (PCL) polymer networks with extractable linear PCL fractions of 5 to 60 wt\%. A detailed evaluation of the actuation capabilities by cyclic experiments revealed the highest reversible change in strain of Δε = 24\% for the cPCL network with 30 wt\% of linear polymer. The thermal treatment of damaged samples resulted in the healing of the network when heated to 80 °C. Here a linear polymer fraction ≥ 30 wt\% was necessary to achieve a self-healing efficiency of ≥ 50\%. The application of such high temperatures erases the programmed actuator shape and at the same time allows to reprogram a new actuating shape. Such sustainable actuators with self-healing function are of great interest for future robotic devices. Afore mentioned actuators operate continuously between two shapes and their movements can only be interrupted when the temperature is stopped. To overcome this limitation, noncontinuously responding actuators enabling multi-step actuation were realized from crosslinked blend networks prepared from PCL and poly[(ethylene)-co-(vinyl acetate)] (PEVA). These polymers (PCL and PEVA) were selected due to their immiscible character, where crystallizable PE and PCL segments provide two different actuation units, while vinyl acetate (VA) segment enabled sufficient elasticity of the system. A gap of 20 K in the melting and crystallization temperature of PE and PCL was achieved by selecting PEVA with 5 wt\% VA content (cPCL-PEVA5) providing a co-continuous phase morphology. Cyclic thermomechanical investigations were employed to investigate noncontinuous actuation, which revealed a high Δε = 25\% with a similar contribution from PCL and PE actuation units with a non-response region in the temperature range from 50 to 71 °C in heating step and 30 to 60 °C in cooling step. The actuation related to PCL part changed from 13 to 2\% by altering the heating and cooling rates from 3 to 10 K·min-1. Free-standing reversible noncontinuous actuation was realized by rotating demonstrator which exhibits reversible angle change in a custom-made setup. For this purpose, cPCL-PEVA5 stripe was programmed by twisting and reversible rotational actuation was realized from 0 to 180° while pausing in the 90° position during non-response. These blends can be physically programmed to perform reversible noncontinuous actuations, while the programmed geometry can be erased by heating it to temperature above all melting transitions. By physically reprogramming of the material various different actuation modes can be obtained. Such a noncontinuous actuator would be relevant for designing interruptive actuating soft robots at continuous trigger signals.}, language = {en} } @article{RazzaqBehlHeucheletal.2019, author = {Razzaq, Muhammad Yasar and Behl, Marc and Heuchel, Matthias and Lendlein, Andreas}, title = {Matching magnetic heating and thermal actuation for sequential coupling in hybrid composites by design}, series = {Macromolecular rapid communications}, volume = {41}, journal = {Macromolecular rapid communications}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1336}, doi = {10.1002/marc.201900440}, pages = {7}, year = {2019}, abstract = {Sequentially coupling two material functions requires matching the output from the first with the input of the second function. Here, magnetic heating controls thermal actuation of a hybrid composite in a challenging system environment causing an elevated level of heat loss. The concept is a hierarchical design consisting of an inner actuator of nanocomposite material, which can be remotely heated by exposure to an alternating magnetic field (AMF) and outer layers of a porous composite system with a closed pore morphology. These porous layers act as heat insulators and as barriers to the surrounding water. By exposure to the AMF, a local bulk temperature of 71 degrees C enables the magnetic actuation of the device, while the temperature of the surrounding water is kept below 50 degrees C. Interestingly, the heat loss during magnetic heating leads to an increase of the water phase (small volume) temperature. The temperature increase is able to sequentially trigger an adjacent thermal actuator attached to the actuator composite. In this way it could be demonstrated how the AMF is able to initiate two kinds of independent actuations, which might be interesting for robotics operating in aqueous environments.}, language = {en} } @article{FarhanRudolphNoecheletal.2018, author = {Farhan, Muhammad and Rudolph, Tobias and N{\"o}chel, Ulrich and Kratz, Karl and Lendlein, Andreas}, title = {Extractable Free Polymer Chains Enhance Actuation Performance of Crystallizable Poly(epsilon-caprolactone) Networks and Enable Self-Healing}, series = {Polymers}, volume = {10}, journal = {Polymers}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym10030255}, pages = {15}, year = {2018}, abstract = {Crosslinking of thermoplastics is a versatile method to create crystallizable polymer networks, which are of high interest for shape-memory actuators. Here, crosslinked poly(epsilon-caprolactone) thermosets (cPCLs) were prepared from linear starting material, whereby the amount of extractable polymer was varied. Fractions of 5-60 wt \% of non-crosslinked polymer chains, which freely interpenetrate the crosslinked network, were achieved leading to differences in the resulting phase of the bulk material. This can be described as "sponge-like" with open or closed compartments depending on the amount of interpenetrating polymer. The crosslinking density and the average network chain length remained in a similar range for all network structures, while the theoretical accessible volume for reptation of the free polymer content is affected. This feature could influence or introduce new functions into the material created by thermomechanical treatment. The effect of interpenetrating PCL in cPCLs on the reversible actuation was analyzed by cyclic, uniaxial tensile tests. Here, high reversible strains of up to Delta epsilon = 24\% showed the enhanced actuation performance of networks with a non-crosslinked PCL content of 30 wt \% resulting from the crystal formation in the phase of the non-crosslinked PCL and co-crystallization with network structures. Additional functionalities are reprogrammability and self-healing capabilities for networks with high contents of extractable polymer enabling reusability and providing durable actuator materials.}, language = {en} }