@article{SoemerSchiefele2020, author = {Soemer, Alexander and Schiefele, Ulrich}, title = {Working memory capacity and (in)voluntary mind wandering}, series = {Psychonomic bulletin \& review : a journal of the Psychonomic Society}, volume = {27}, journal = {Psychonomic bulletin \& review : a journal of the Psychonomic Society}, number = {4}, publisher = {Springer}, address = {New York}, issn = {1069-9384}, doi = {10.3758/s13423-020-01737-4}, pages = {758 -- 767}, year = {2020}, abstract = {According to influential accounts of mind wandering (MW), working memory capacity (WMC) plays a key role in controlling the amount of off-task thought during the execution of a demanding task. Whereas WMC has primarily been associated with reduced levels of involuntarily occurring MW episodes in prior research, here we demonstrate for the first time that high-WMC individuals exhibit lower levels of voluntary MW. One hundred and eighty participants carried out a demanding reading task and reported their attentional state in response to random thought probes. In addition, participants' WMC was measured with two common complex span tasks (operation span and symmetry span). As a result, WMC was negatively related to both voluntary and involuntary MW, and the two forms of MW partially mediated the positive effect of WMC on reading performance. Furthermore, the negative relation between voluntary WM and reading remained significant after controlling for interest. Thus, in contrast to prior research suggesting that voluntary MW might be more closely related to motivation rather than WMC, the present results demonstrate that high-WMC individuals tend to limit both involuntary and voluntary MW more strictly than low-WMC individuals.}, language = {en} } @phdthesis{Schad2012, author = {Schad, Daniel}, title = {Mindless reading and eye movements : theory, experiments and computational modeling}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70822}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {It sometimes happens that we finish reading a passage of text just to realize that we have no idea what we just read. During these episodes of mindless reading our mind is elsewhere yet the eyes still move across the text. The phenomenon of mindless reading is common and seems to be widely recognized in lay psychology. However, the scientific investigation of mindless reading has long been underdeveloped. Recent progress in research on mindless reading has been based on self-report measures and on treating it as an all-or-none phenomenon (dichotomy-hypothesis). Here, we introduce the levels-of-inattention hypothesis proposing that mindless reading is graded and occurs at different levels of cognitive processing. Moreover, we introduce two new behavioral paradigms to study mindless reading at different levels in the eye-tracking laboratory. First (Chapter 2), we introduce shuffled text reading as a paradigm to approximate states of weak mindless reading experimentally and compare it to reading of normal text. Results from statistical analyses of eye movements that subjects perform in this task qualitatively support the 'mindless' hypothesis that cognitive influences on eye movements are reduced and the 'foveal load' hypothesis that the response of the zoom lens of attention to local text difficulty is enhanced when reading shuffled text. We introduce and validate an advanced version of the SWIFT model (SWIFT 3) incorporating the zoom lens of attention (Chapter 3) and use it to explain eye movements during shuffled text reading. Simulations of the SWIFT 3 model provide fully quantitative support for the 'mindless' and the 'foveal load' hypothesis. They moreover demonstrate that the zoom lens is an important concept to explain eye movements across reading and mindless reading tasks. Second (Chapter 4), we introduce the sustained attention to stimulus task (SAST) to catch episodes when external attention spontaneously lapses (i.e., attentional decoupling or mind wandering) via the overlooking of errors in the text and via signal detection analyses of error detection. Analyses of eye movements in the SAST revealed reduced influences from cognitive text processing during mindless reading. Based on these findings, we demonstrate that it is possible to predict states of mindless reading from eye movement recordings online. That cognition is not always needed to move the eyes supports autonomous mechanisms for saccade initiation. Results from analyses of error detection and eye movements provide support to our levels-of-inattention hypothesis that errors at different levels of the text assess different levels of decoupling. Analyses of pupil size in the SAST (Chapter 5) provide further support to the levels of inattention hypothesis and to the decoupling hypothesis that off-line thought is a distinct mode of cognitive functioning that demands cognitive resources and is associated with deep levels of decoupling. The present work demonstrates that the elusive phenomenon of mindless reading can be vigorously investigated in the cognitive laboratory and further incorporated in the theoretical framework of cognitive science.}, language = {en} } @misc{KuschpelLiuSchadetal.2015, author = {Kuschpel, Maxim S. and Liu, Shuyan and Schad, Daniel and Heinzel, Stephan and Heinz, Andreas and Rapp, Michael A.}, title = {Differential effects of wakeful rest, music and video game playing on working memory performance in the n-back task}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-85151}, year = {2015}, abstract = {The interruption of learning processes by breaks filled with diverse activities is common in everyday life. We investigated the effects of active computer gaming and passive relaxation (rest and music) breaks on working memory performance. Young adults were exposed to breaks involving (i) eyes-open resting, (ii) listening to music and (iii) playing the video game "Angry Birds" before performing the n-back working memory task. Based on linear mixed-effects modeling, we found that playing the "Angry Birds" video game during a short learning break led to a decline in task performance over the course of the task as compared to eyes-open resting and listening to music, although overall task performance was not impaired. This effect was associated with high levels of daily mind wandering and low self-reported ability to concentrate. These findings indicate that video games can negatively affect working memory performance over time when played in between learning tasks. We suggest further investigation of these effects because of their relevance to everyday activity.}, language = {en} } @article{KuschpelLiuSchadetal.2015, author = {Kuschpel, Maxim S. and Liu, Shuyan and Schad, Daniel and Heinzel, Stephan and Heinz, Andreas and Rapp, Michael A.}, title = {Differential effects of wakeful rest, music and video game playing on working memory performance in the n-back task}, series = {Frontiers in psychology}, journal = {Frontiers in psychology}, number = {6}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2015.01683}, year = {2015}, abstract = {The interruption of learning processes by breaks filled with diverse activities is common in everyday life. We investigated the effects of active computer gaming and passive relaxation (rest and music) breaks on working memory performance. Young adults were exposed to breaks involving (i) eyes-open resting, (ii) listening to music and (iii) playing the video game "Angry Birds" before performing the n-back working memory task. Based on linear mixed-effects modeling, we found that playing the "Angry Birds" video game during a short learning break led to a decline in task performance over the course of the task as compared to eyes-open resting and listening to music, although overall task performance was not impaired. This effect was associated with high levels of daily mind wandering and low self-reported ability to concentrate. These findings indicate that video games can negatively affect working memory performance over time when played in between learning tasks. We suggest further investigation of these effects because of their relevance to everyday activity.}, language = {en} } @misc{GerickeSoemerSchiefele2022, author = {Gericke, Christian and Soemer, Alexander and Schiefele, Ulrich}, title = {Benefits of Mind Wandering for Learning in School Through Its Positive Effects on Creativity}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {835}, issn = {1866-8364}, doi = {10.25932/publishup-58873}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-588731}, pages = {11}, year = {2022}, abstract = {There is broad agreement among researchers to view mind wandering as an obstacle to learning because it draws attention away from learning tasks. Accordingly, empirical findings revealed negative correlations between the frequency of mind wandering during learning and various kinds of learning outcomes (e.g., text retention). However, a few studies have indicated positive effects of mind wandering on creativity in real-world learning environments. The present article reviews these studies and highlights potential benefits of mind wandering for learning mediated through creative processes. Furthermore, we propose various ways to promote useful mind wandering and, at the same time, minimize its negative impact on learning.}, language = {en} } @article{GerickeSoemerSchiefele2022, author = {Gericke, Christian and Soemer, Alexander and Schiefele, Ulrich}, title = {Benefits of Mind Wandering for Learning in School Through Its Positive Effects on Creativity}, series = {Frontiers in Education}, volume = {7}, journal = {Frontiers in Education}, publisher = {Frontiers Media SA}, address = {Lausanne, Schweiz}, issn = {2504-284X}, doi = {10.3389/feduc.2022.774731}, pages = {11}, year = {2022}, abstract = {There is broad agreement among researchers to view mind wandering as an obstacle to learning because it draws attention away from learning tasks. Accordingly, empirical findings revealed negative correlations between the frequency of mind wandering during learning and various kinds of learning outcomes (e.g., text retention). However, a few studies have indicated positive effects of mind wandering on creativity in real-world learning environments. The present article reviews these studies and highlights potential benefits of mind wandering for learning mediated through creative processes. Furthermore, we propose various ways to promote useful mind wandering and, at the same time, minimize its negative impact on learning.}, language = {en} }