@phdthesis{Solopow2019, author = {Solopow, Sergej}, title = {Wavelength dependent demagnetization dynamics in Co2MnGa Heusler-alloy}, doi = {10.25932/publishup-42786}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-427860}, school = {Universit{\"a}t Potsdam}, pages = {91}, year = {2019}, abstract = {In dieser Arbeit haben wir ultraschnelle Entmagnetisierung an einer Heusler-Legierung untersucht. Es handelt sich um ein Halbmetall, das sich in einer ferromagnetischen Phase befindet. Die Besonderheit dieses Materials besteht im Aufbau einer Bandstruktur. Diese bildet Zustandsdichten, in der die Majorit{\"a}tselektronen eine metallische B{\"a}nderbildung aufweisen und die Minorit{\"a}tselektronen eine Bandl{\"u}cke in der N{\"a}he des Fermi-Niveaus aufweisen, das dem Aufbau eines Halbleiters entspricht. Mit Hilfe der Pump-Probe-Experimente haben wir zeitaufgel{\"o}ste Messungen durchgef{\"u}hrt. F{\"u}r das Pumpen wurden ultrakurze Laserpulse mit einer Pulsdauer von 100 fs benutzt. Wir haben dabei zwei verschiedene Wellenl{\"a}ngen mit 400 nm und 1240 nm benutzt, um den Effekt der Prim{\"a}ranregung und der Bandl{\"u}cke in den Minorit{\"a}tszust{\"a}nden zu untersuchen. Dabei wurde zum ersten Mal OPA (Optical Parametrical Amplifier) f{\"u}r die Erzeugung der langwelligen Pulse an der FEMTOSPEX-Beamline getestet und erfolgreich bei den Experimenten verwendet. Wir haben Wellenl{\"a}ngen bedingte Unterschiede in der Entmagnetisierungszeit gemessen. Mit der Erh{\"o}hung der Photonenenergie ist der Prozess der Entmagnetisierung deutlich schneller als bei einer niedrigeren Photonenenergie. Wir verkn{\"u}pften diese Ergebnisse mit der Existenz der Energiel{\"u}cke f{\"u}r Minorit{\"a}tselektronen. Mit Hilfe lokaler Elliot-Yafet-Streuprozesse k{\"o}nnen die beobachteten Zeiten gut erkl{\"a}rt werden. Wir haben in dieser Arbeit auch eine neue Probe-Methode f{\"u}r die Magnetisierung angewandt und somit experimentell deren Effektivit{\"a}t, n{\"a}mlich XMCD in Refletiongeometry, best{\"a}tigen k{\"o}nnen. Statische Experimente liefern somit deutliche Indizien daf{\"u}r, dass eine magnetische von einer rein elektronischen Antwort des Systems getrennt werden kann. Unter der Voraussetzung, dass die Photonenenergie der R{\"o}ntgenstrahlung auf die L3 Kante des entsprechenden Elements eingestellt, ein geeigneter Einfallswinkel gew{\"a}hlt und die zirkulare Polarisation fixiert wird, ist es m{\"o}glich, diese Methode zur Analyse magnetischer und elektronischer Respons anzuwenden.}, language = {en} } @phdthesis{Sobal2003, author = {Sobal, Neli}, title = {Kolloidale Nanosysteme aus magnetischen und metallischen Materialien : Synthese und Charakterisierung}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001071}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {Ein Spezialgebiet der modernen Mikroelektronik ist die Miniaturisierung und Entwicklung von neuen nanostrukturierten und Komposit-Materialen aus 3d-Metallen. Durch geeignete Zusammensetzungen k{\"o}nnen diese sowohl mit einer hohen S{\"a}ttigungsmagnetisierung und Koerzitivfeldst{\"a}rke als mit besserer Oxidationsbest{\"a}ndigkeit im Vergleich zu den reinen Elementen erzielt werden. In der vorliegenden Arbeit werden neue Methoden f{\"u}r die Herstellung von bimetallischen kolloidalen Nanopartikeln vor allem mit einer Kern-H{\"u}lle-Struktur (Kern@H{\"u}lle) pr{\"a}sentiert. Bei der {\"u}berwiegenden Zahl der vorgestellten Reaktionen handelt es sich um die thermische Zersetzung von metallorganischen Verbindungen wie Kobaltcarbonyl, Palladium- und Platinacetylacetonate oder die chemische Reduktion von Metallsalze mit langkettigem Alkohol in organischem L{\"o}sungsmittel. Daneben sind auch Kombinationen aus diesen beiden Verfahren beschrieben. Es wurden Kolloide aus einem reinen Edelmetall (Pt, Pd, Ag) in einem organischen L{\"o}sungsmittel synthetisiert und daraus neue, bisher in dieser Form nicht bekannte Ag@Co-, Pt@Co-, Pd@Co- und Pt@Pd@Co-Nanopartikel gewonnen. Der Kobaltgehalt der Ag@Co-, Teilchen konnte im Bereich von 5 bis 73 At. \% beliebig eingestellt werden. Der mittlere Durchmesser der Ag@Co-Partikel wurde von 5 nm bis 15 nm variiert. Bei der Herstellung von Pt@Co-Teilchen wurde eine unterschiedlich dicke Kobalt-H{\"u}lle von ca. 1,0 bis 2,5 nm erzielt. Im Fall des Palladiums wurden sowohl monodispere als auch polydisperse Pd-Nanopartikel mit einer maximal 1,7-2,0nm dicken Kobalth{\"u}lle synthetisiert. Ein großer Teil dieser Arbeit befasst sich mit den magnetischen Eigenschaften der kolloidalen Teilchen, wobei die SQUID-Magnetometrie und R{\"o}ntgenzirkulardichroismus (XMCD) daf{\"u}r eingesetzt wurden. Weil magnetische Messungen alleine nur indirekte Schl{\"u}sse {\"u}ber die untersuchten Systeme erlauben, wurde dabei besonderer Wert auf die m{\"o}glichst genaue strukturelle Charakterisierung der Proben mittels moderner Untersuchungsmethoden gelegt. R{\"o}ntgendiffraktometrie (XRD), R{\"o}ntgenabsorptionsfeinstruktur- (EXAFS) und UV-Vis-Spektroskopie sowie Transmissionselektronenmikroskopie (TEM) in Kombination mit Elektronen Energieverlustspektroskopie (EELS) und energiedispersive R{\"o}ntgenfluoreszensanalyse (EDX) wurden verwendet.}, language = {de} } @article{SchickLeGuyaderPontiusetal.2016, author = {Schick, Daniel and Le Guyader, Loic and Pontius, Niko and Radu, Ilie and Kachel, Torsten and Mitzner, Rolf and Zeschke, Thomas and Schuessler-Langeheine, Christian and F{\"o}hlisch, Alexander and Holldack, Karsten}, title = {Analysis of the halo background in femtosecond slicing experiments}, series = {Journal of synchrotron radiation}, volume = {23}, journal = {Journal of synchrotron radiation}, publisher = {International Union of Crystallography}, address = {Chester}, issn = {1600-5775}, doi = {10.1107/S160057751600401X}, pages = {700 -- 711}, year = {2016}, abstract = {The slicing facility FemtoSpeX at BESSY II offers unique opportunities to study photo-induced dynamics on femtosecond time scales by means of X-ray magnetic circular dichroism, resonant and non-resonant X-ray diffraction, and X-ray absorption spectroscopy experiments in the soft X-ray regime. Besides femtosecond X-ray pulses, slicing sources inherently also produce a so-called `halo' background with a different time structure, polarization and pointing. Here a detailed experimental characterization of the halo radiation is presented, and a method is demonstrated for its correct and unambiguous removal from femtosecond time-resolved data using a special laser triggering scheme as well as analytical models. Examples are given for time-resolved measurements with corresponding halo correction, and errors of the relevant physical quantities caused by either neglecting or by applying a simplified model to describe this background are estimated.}, language = {en} }