@phdthesis{Garnier2005, author = {Garnier, S{\´e}bastien}, title = {Novel amphiphilic diblock copolymers by RAFT-polymerization, their self-organization and surfactant properties}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-6395}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {The Reversible Addition Fragmentation Chain Transfer (RAFT) process using the new RAFT agent benzyldithiophenyl acetate is shown to be a powerful polymerization tool to synthesize novel well-defined amphiphilic diblock copolymers composed of the constant hydrophobic block poly(butyl acrylate) and of 6 different hydrophilic blocks with various polarities, namely a series of non-ionic, non-ionic comb-like, anionic and cationic hydrophilic blocks. The controlled character of the polymerizations was supported by the linear increase of the molar masses with conversion, monomodal molar mass distributions with low polydispersities and high degrees of end-group functionalization. The new macro-surfactants form micelles in water, whose size and geometry strongly depend on their composition, according to dynamic and static light scattering measurements. The micellization is shown to be thermodynamically favored, due to the high incompatibility of the blocks as indicated by thermal analysis of the block copolymers in bulk. The thermodynamic state in solution is found to be in the strong or super strong segregation limit. Nevertheless, due to the low glass transition temperature of the core-forming block, unimer exchange occurs between the micelles. Despite the dynamic character of the polymeric micellar systems, the aggregation behavior is strongly dependent on the history of the sample, i.e., on the preparation conditions. The aqueous micelles exhibit high stability upon temperature cycles, except for an irreversibly precipitating block copolymer containing a hydrophilic block exhibiting a lower critical solution temperature (LCST). Their exceptional stability upon dilution indicates very low critical micelle concentrations (CMC) (below 4∙10-4 g∙L-1). All non-ionic copolymers with sufficiently long solvophobic blocks aggregated into direct micelles in DMSO, too. Additionally, a new low-toxic highly hydrophilic sulfoxide block enables the formation of inverse micelles in organic solvents. The high potential of the new polymeric surfactants for many applications is demonstrated, in comparison to reference surfactants. The diblock copolymers are weakly surface-active, as indicated by the graduate decrease of the surface tension of their aqueous solutions with increasing concentration. No CMC could be detected. Their surface properties at the air/water interface confer anti-foaming properties. The macro-surfactants synthesized are surface-active at the interface between two liquid phases, too, since they are able to stabilize emulsions. The polymeric micelles are shown to exhibit a high ability to solubilize hydrophobic substances in water.}, subject = {Blockcopolymere}, language = {en} } @article{BrunacciWischkeNaolouetal.2017, author = {Brunacci, Nadia and Wischke, Christian and Naolou, Toufik and Neffe, Axel T. and Lendlein, Andreas}, title = {Influence of surfactants on depsipeptide submicron particle formation}, series = {European Journal of Pharmaceutics and Biopharmaceutics}, volume = {116}, journal = {European Journal of Pharmaceutics and Biopharmaceutics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0939-6411}, doi = {10.1016/j.ejpb.2016.11.011}, pages = {61 -- 65}, year = {2017}, abstract = {Surfactants are required for the formation and stabilization of hydrophobic polymeric particles in aqueous environment. In order to form submicron particles of varying sizes from oligo[3-(S)-sec-butylmorpholine-2,5-dione]diols ((OBMD)-diol), different surfactants were investigated. As new surfactants, four-armed star-shaped oligo(ethylene glycol)s of molecular weights of 5-20 kDa functionalized with desamino-tyrosine (sOEG-DAT) resulted in smaller particles with lower PDI than with desaminotyrosyl tyrosine (sOEG-DATT) in an emulsion/solvent evaporation method. In a second set of experiments, sOEG-DAT of M-n= 10 kDa was compared with the commonly employed emulsifiers polyvinylalcohol (PVA), polyoxyethylene (20) sorbitan monolaurate (Tween 20), and D-alpha-tocopherol polyethylene glycol succinate (VIT E-TPGS) for OBMD particle preparation. sOEG-DAT allowed to systematically change sizes in a range of 300 up to 900 nm with narrow polydispersity, while in the other cases, a lower size range (250-400 nm, PVA; 300 nm, Tween 20) or no effective particle formation was observed. The ability of tailoring particle size in a broad range makes sOEG-DAT of particular interest for the formation of oligodepsipeptide particles, which can further be investigated as drug carriers for controlled delivery. (C) 2016 Elsevier B.V. All rights reserved.}, language = {en} } @article{LopezManovaHoppeetal.2018, author = {Lopez, Carlos G. and Manova, Anna and Hoppe, Corinna and Dreja, Michael and Schmiedel, Peter and Job, Mareile and Richtering, Walter and B{\"o}ker, Alexander and Tsarkova, Larisa A.}, title = {Combined UV-Vis-absorbance and reflectance spectroscopy study of dye transfer kinetics in aqueous mixtures of surfactants}, series = {Colloids and surfaces : an international journal devoted to the principles and applications of colloid and interface science ; A, Physicochemical and engineering aspects}, volume = {550}, journal = {Colloids and surfaces : an international journal devoted to the principles and applications of colloid and interface science ; A, Physicochemical and engineering aspects}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0927-7757}, doi = {10.1016/j.colsurfa.2018.04.024}, pages = {74 -- 81}, year = {2018}, abstract = {We report an analytical approach to study the competitive processes of solubilisation in micelles and of adsorption onto hydrophobic surfaces of poorly soluble hydrophobic dyes. The method is demonstrated on model systems containing two sources of Disperse Red 60: a bulk powder and a donor red textile, with molecularly dissolved dye stabilised in an aqueous environment by mixed micelles of anionic and non-ionic surfactants. The process of dye transfer between a donor textile (red polyester), surfactant micelles and an acceptor textile (white polyamide) was quantified by a combination of colorimetric analyses. UV-Vis absorbance was used to follow the extraction of the dye and to evaluate the solubilisation capacity of the micellar solution. A calibration curve for textile reflectance versus the adsorbed dye was generated to quantify the mass of dye transferred onto the acceptor textile. A combination of both techniques allowed us to compare the amount of dye desorbed from the donor textile and adsorbed onto the acceptor textile as a function of time for systems undergoing exhaustion-solubilisation mechanisms and only solubilisation mechanism. Up to similar or equal to 10 min of the washing process, the released dye is predominantly solubilised in surfactant micelles. At later times, the adsorption of the dye on the hydrophobic surface is energetically favoured. The shift of the desorption equilibrium in the presence of the acceptor textile results in similar or equal to 30\% increase in the release of the dye. The reported methodology provides direct comparative analysis between the solubilisation capacity of amphiphilic stabilisers and the tendency of the dye to adsorb on solid substrates, important for designing novel concepts of disperse dye solubilisation and dye transfer inhibition during textile washing.}, language = {en} }