@article{KoerppenThim2020, author = {K{\"o}rppen, Tim and Thim, Christof}, title = {Visualisierung des digitalen Zwillings mit AR}, series = {Fabriksoftware : die digitale Fabrik realisieren}, volume = {25}, journal = {Fabriksoftware : die digitale Fabrik realisieren}, number = {4}, publisher = {GITO mbH}, address = {Berlin}, issn = {2569-7692}, doi = {10.30844/FS20-4_19-22}, pages = {19 -- 22}, year = {2020}, abstract = {F{\"u}r die Transformation der industriellen Fertigung stellt die Integration der Realwelt und die parallele Abbildung in der Digitalwelt eine wichtige Anforderung dar. Hier greift das Konzept des digitalen Zwillings zur digitalen Repr{\"a}sentation physischer Objekte. Zur Verbesserung der Mensch-Maschinen-Interaktion zwischen Fabrikpersonal, Anlagen sowie Werkst{\"u}cken und Steigerung der Transparenz am Shopfloor, kann ein solcher digitaler Zwilling relevante Daten liefern. In diesem Beitrag wird ein Konzept zur Visualisierung des digitalen Zwillings mittels Augmented Reality vorgestellt und evaluiert.}, language = {de} } @phdthesis{Stojanovic2021, author = {Stojanovic, Vladeta}, title = {Digital twins for indoor built environments}, doi = {10.25932/publishup-50913}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-509134}, school = {Universit{\"a}t Potsdam}, pages = {xxiii, 181}, year = {2021}, abstract = {One of the key challenges in modern Facility Management (FM) is to digitally reflect the current state of the built environment, referred to as-is or as-built versus as-designed representation. While the use of Building Information Modeling (BIM) can address the issue of digital representation, the generation and maintenance of BIM data requires a considerable amount of manual work and domain expertise. Another key challenge is being able to monitor the current state of the built environment, which is used to provide feedback and enhance decision making. The need for an integrated solution for all data associated with the operational life cycle of a building is becoming more pronounced as practices from Industry 4.0 are currently being evaluated and adopted for FM use. This research presents an approach for digital representation of indoor environments in their current state within the life cycle of a given building. Such an approach requires the fusion of various sources of digital data. The key to solving such a complex issue of digital data integration, processing and representation is with the use of a Digital Twin (DT). A DT is a digital duplicate of the physical environment, states, and processes. A DT fuses as-designed and as-built digital representations of built environment with as-is data, typically in the form of floorplans, point clouds and BIMs, with additional information layers pertaining to the current and predicted states of an indoor environment or a complete building (e.g., sensor data). The design, implementation and initial testing of prototypical DT software services for indoor environments is presented and described. These DT software services are implemented within a service-oriented paradigm, and their feasibility is presented through functioning and tested key software components within prototypical Service-Oriented System (SOS) implementations. The main outcome of this research shows that key data related to the built environment can be semantically enriched and combined to enable digital representations of indoor environments, based on the concept of a DT. Furthermore, the outcomes of this research show that digital data, related to FM and Architecture, Construction, Engineering, Owner and Occupant (AECOO) activity, can be combined, analyzed and visualized in real-time using a service-oriented approach. This has great potential to benefit decision making related to Operation and Maintenance (O\&M) procedures within the scope of the post-construction life cycle stages of typical office buildings.}, language = {en} }