@article{SchmelzbachTronickeDietrich2011, author = {Schmelzbach, C. and Tronicke, Jens and Dietrich, P.}, title = {Three-dimensional hydrostratigraphic models from ground-penetrating radar and direct-push data}, series = {Journal of hydrology}, volume = {398}, journal = {Journal of hydrology}, number = {3-4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2010.12.023}, pages = {235 -- 245}, year = {2011}, abstract = {Three-dimensional models of hydraulic conductivity and porosity are essential to understand and simulate groundwater flow in heterogeneous geological environments. However, considering the inherent limitations of traditional hydrogeological field methods in terms of resolution, alternative field approaches are needed to establish such 3-D models with sufficient accuracy. In this study, we developed a workflow combining 3-D structural information extracted from ground penetrating radar (GPR) images with 1-D in situ physical-property estimates from direct-push (DP) logging to construct a 3-D hydrostratigraphic model. To illustrate this workflow, we collected an similar to 70 m x 90 m 100 MHz 3-D GPR data set over a shallow sedimentary aquifer system resolving six different GPR facies down to similar to 15 m depth. DP logs of the relative dielectric permittivity, the relative hydraulic conductivity, the cone resistance, the sleeve friction and the pore pressure provided crucial data (1) to establish a GPR velocity model for 3-D depth migration and to check the time-to-depth conversion of the GPR data, and (2) to construct a 3-D hydrostratigraphic model. This model was built by assigning porosity values, which were computed from the DP relative dielectric permittivity logs, and DP relative hydraulic conductivity estimates to the identified GPR facies. We conclude that the integration of 3-D GPR structural images and 1-D DP logs of target physical parameters provides an efficient way for detailed 3-D subsurface characterization as needed, for example, for groundwater flow simulations.}, language = {en} } @phdthesis{Lerm2012, author = {Lerm, Stephanie}, title = {Mikroorganismen in geothermischen Aquiferen : Einfluss mikrobieller Prozesse auf den Anlagenbetrieb}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-63705}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {In Fluid-, Filter- und Sedimentproben von vier geothermischen Anlagen des Norddeutschen Beckens wurden mit molekulargenetischen Verfahren unterschiedliche mikrobielle Gemeinschaften nachgewiesen. Die mikrobielle Zusammensetzung in den Prozessw{\"a}ssern wurde dabei durch die Aquiferteufe, die Salinit{\"a}t, die Temperatur und den verf{\"u}gbaren Elektronendonatoren und -akzeptoren beeinflusst. Die in den anoxischen Prozessw{\"a}ssern identifizierten Organismen zeichneten sich durch einen chemoheterotrophen oder chemoautotrophen Stoffwechsel aus, wobei Nitrat, Sulfat, Eisen (III) oder Bikarbonat als terminale Elektronenakzeptoren fungierten. Mikroorganismen beeinflussten den Betrieb von zwei Anlagen negativ. So reduzierten im Prozesswasser des K{\"a}ltespeichers am Berliner Reichstag vorhandene Eisenoxidierer, nahe verwandt zu der Gattung Gallionella, die Injektivit{\"a}t der Bohrungen durch Eisenhydroxidausf{\"a}llungen in den Filterschlitzen. Biofilme, die von schwefeloxidierenden Bakterien der Gattung Thiothrix in den Filtern der obert{\"a}gigen Anlage gebildet wurden, f{\"u}hrten ebenfalls zu Betriebsst{\"o}rungen, indem sie die Injektion des Fluids in den Aquifer behinderten. Beim W{\"a}rmespeicher in Neubrandenburg waren Sulfatreduzierer vermutlich an der Bildung von Eisensulfidausf{\"a}llungen in den obert{\"a}gigen Filtern und im bohrlochnahen Bereich beteiligt und verst{\"a}rkten Korrosionsprozesse an der Pumpe im Bohrloch der kalten Aquiferseite. Organische S{\"a}uren in den Fluiden sowie mineralische Ausf{\"a}llungen in den Filtern der obert{\"a}gigen Anlagen waren Belege f{\"u}r die Aktivit{\"a}t der in den verschiedenen Anlagen vorhandenen Mikroorganismen. Es wurde zudem deutlich, dass Mikroorganismen auf Grund der hohen Durchflussraten in den Anlagen chemische Ver{\"a}nderungen in den Prozessw{\"a}ssern deutlich sensitiver anzeigen als chemische Analyseverfahren. So deuteten {\"A}nderungen in der Zusammensetzung der mikrobiellen Bioz{\"o}nosen und speziell die Identifikation von Indikatororganismen wie Eisen- und Schwefeloxidierern, fermentativen Bakterien und Sulfatreduzierern auf eine erh{\"o}hte Verf{\"u}gbarkeit von Elektronendonatoren oder akzeptoren in den Prozessw{\"a}ssern hin. Die Ursachen f{\"u}r die an den Geothermieanlagen auftretenden Betriebsst{\"o}rungen konnten dadurch erkannt werden.}, language = {de} }