@article{KroenerAlexeievKovachetal.2017, author = {Kr{\"o}ner, A. and Alexeiev, D. V. and Kovach, V. P. and Rojas-Agramonte, Y. and Tretyakov, A. A. and Mikolaichuk, A. V. and Xie, H. and Sobel, Edward}, title = {Zircon ages, geochemistry and Nd isotopic systematics for the Palaeoproterozoic 2.3-1.8 Ga Kuilyu Complex, East Kyrgyzstan}, series = {Journal of Asian earth sciences}, volume = {135}, journal = {Journal of Asian earth sciences}, publisher = {Elsevier}, address = {Oxford}, issn = {1367-9120}, doi = {10.1016/j.jseaes.2016.12.022}, pages = {122 -- 135}, year = {2017}, abstract = {Precambrian microcontinents represent key tectonic units in the accretionary collages of the western Central Asian Orogenic Belt (CAOB), and their geological history is reasonably well established since the Mesoproterozoic but remains weakly constrained for older epochs due to a scarcity of exposed Palaeoproterozoic and Archaean rocks. Early Precambrian rocks were previously reported from several metamorphic complexes in the Kyrgyz Tianshan orogenic belt, mainly based on multigrain conventional zircon dating, but the present study only confirmed such rocks at one site, namely in the Kuilyu Complex of eastern Kyrgyzstan. New single grain SHRIMP II zircon ages, geochemical data, and whole-rock Nd isotopic compositions for granitoid gneisses of the Kuilyu Complex elucidate the age, origin and tectonic settings of this oldest continental fragment in the Tianshan. The Kuilyu Complex is part of the basement in the Ishim - Middle Tianshan microcontinent. It consist of a strongly deformed and metamorphosed supracrustal assemblage of paragneisses and schists which are tectonically interlayered with amphibolites, migmatites and granitoid gneisses. Our zircon dating indicates that the Kuilyu Complex contains two suites of Palaeoproterozoic granitoid gneisses with magmatic protolith ages of ca. 2.32-2.33 Ga and 1.85 Ga. Granitoid magmatism at 1.85 Ga was almost immediately followed by amphibolite-facies metamorphism at ca 1.83 Ga, evidenced by growth of metamorphic zircon rims. The older, ca 2.3 Ga granitoid gneisses chemically correspond to calc-alkaline, metaluminous, I-type magnesian quartz diorite and granodiorite. The protolith of the younger, ca. 1.85 Ga granite-gneiss is an alkalic-calcic, metaluminous to peraluminous, ferroan medium-grained porphyric granite with chemical features resembling A-type granites. The 2.3 Ga and 1.85 Ga granitoid gneisses have slightly to distinctly negative initial epsilon(Nd) values of -1.2 and -6.6, and similar depleted mantle Nd model ages of 2.7-2.6 Ga, which imply melting of Neoarchaean continental crust. The zircon age patterns of the Kuilyu Complex resemble those of exposed rocks in the Tarim Craton, where episodes of granitoid magmatism at ca. 2.3-2.4 and 1.85 Ga, followed by amphibolite-facies metamorphism at ca 1.85 Ga, are also recorded. Similarities in the early Precambrian magmatic and metamorphic episodes as well as similar histories during the Neoproterozoic and early Palaeozoic suggest that the Ishim-Middle Tianshan microcontinent was rifted off the Tarim Craton. Similar age patterns also suggest possible tectonic links of the Kuilyu and Tarim continental blocks with the Baidrag Block of central Mongolia. In contrast, substantial differences in age and Precambrian evolution between the Anrakhai block of southern Kazakhstan and the Kuilyu Complex argue against a previous connection and suggest the former to represent an independent continental terrane. Current data show that early Precambrian rocks in the western CAOB outside Tarim only occur at two sites, namely in the Anrakhai Complex of southern Kazakhstan and in the Kuilyu Complex of eastern Kyrgyzstan. (C) 2016 Elsevier Ltd. All rights reserved.}, language = {en} } @misc{ZapataSobelDelPapaetal.2020, author = {Zapata, Sebastian and Sobel, Edward and Del Papa, Cecilia and Glodny, Johannes}, title = {Upper Plate Controls on the Formation of Broken Foreland Basins in the Andean Retroarc Between 26°S and 28°S}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {7}, issn = {1866-8372}, doi = {10.25932/publishup-52382}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-523823}, pages = {24}, year = {2020}, abstract = {Marked along-strike changes in stratigraphy, mountain belt morphology, basement exhumation, and deformation styles characterize the Andean retroarc; these changes have previously been related to spatiotemporal variations in the subduction angle. We modeled new apatite fission track and apatite (U-Th-Sm)/He data from nine ranges located between 26 degrees S and 28 degrees S. Using new and previously published data, we constructed a Cretaceous to Pliocene paleogeographic model that delineates a four-stage tectonic evolution: extensional tectonics during the Cretaceous (120-75 Ma), the formation of a broken foreland basin between 55 and 30 Ma, reheating due to burial beneath sedimentary rocks (18-13 Ma), and deformation, exhumation, and surface uplift during the Late Miocene and the Pliocene (13-3 Ma). Our model highlights how preexisting upper plate structures control the deformation patterns of broken foreland basins. Because retroarc deformation predates flat-slab subduction, we propose that slab anchoring may have been the precursor of Eocene-Oligocene compression in the Andean retroarc. Our model challenges models which consider broken foreland basins and retroarc deformation in the NW Argentinian Andes to be directly related to Miocene flat subduction.}, language = {en} } @article{ZapataSobelDelPapaetal.2020, author = {Zapata, Sebastian and Sobel, Edward and Del Papa, Cecilia and Glodny, Johannes}, title = {Upper Plate Controls on the Formation of Broken Foreland Basins in the Andean Retroarc Between 26°S and 28°S}, series = {Geochemistry, Geophysics, Geosystems}, volume = {21}, journal = {Geochemistry, Geophysics, Geosystems}, number = {7}, publisher = {John Wiley \& Sons, Inc.}, address = {New Jersey}, pages = {22}, year = {2020}, abstract = {Marked along-strike changes in stratigraphy, mountain belt morphology, basement exhumation, and deformation styles characterize the Andean retroarc; these changes have previously been related to spatiotemporal variations in the subduction angle. We modeled new apatite fission track and apatite (U-Th-Sm)/He data from nine ranges located between 26 degrees S and 28 degrees S. Using new and previously published data, we constructed a Cretaceous to Pliocene paleogeographic model that delineates a four-stage tectonic evolution: extensional tectonics during the Cretaceous (120-75 Ma), the formation of a broken foreland basin between 55 and 30 Ma, reheating due to burial beneath sedimentary rocks (18-13 Ma), and deformation, exhumation, and surface uplift during the Late Miocene and the Pliocene (13-3 Ma). Our model highlights how preexisting upper plate structures control the deformation patterns of broken foreland basins. Because retroarc deformation predates flat-slab subduction, we propose that slab anchoring may have been the precursor of Eocene-Oligocene compression in the Andean retroarc. Our model challenges models which consider broken foreland basins and retroarc deformation in the NW Argentinian Andes to be directly related to Miocene flat subduction.}, language = {en} } @article{ZhouAitchisonLokhoetal.2020, author = {Zhou, Renjie and Aitchison, Jonathan C. and Lokho, Kapesa and Sobel, Edward and Feng, Yuexing and Zhao, Jian-xin}, title = {Unroofing the Ladakh Batholith: constraints from autochthonous molasse of the Indus Basin, NW Himalaya}, series = {Journal of the Geological Society}, volume = {177}, journal = {Journal of the Geological Society}, number = {4}, publisher = {Geological Society (London)}, address = {London}, issn = {0016-7649}, doi = {10.1144/jgs2019-188}, pages = {818 -- 825}, year = {2020}, abstract = {The Indus Molasse records orogenic sedimentation associated with uplift and erosion of the southern margin of Asia in the course of ongoing India-Eurasia collision. Detailed field investigation clarifies the nature and extent of the depositional contact between this molasse and the underlying basement units. We report the first dataset on detrital zircon U-Pb ages, Hf isotopes and apatite U-Pb ages for the autochthonous molasse in the Indus Suture Zone. A latest Oligocene depositional age is proposed on the basis of the youngest detrital zircon U-Pb age peak and is consistent with published biostratigraphic data. Multiple provenance indicators suggest exclusively northerly derivation with no input from India in the lowermost parts of the section. The results provide constraints on the uplift and erosion history of the Ladakh Range following the initial India-Asia collision.}, language = {en} } @article{ZhuangJohnstoneHouriganetal.2018, author = {Zhuang, Guangsheng and Johnstone, Samuel A. and Hourigan, Jeremy and Ritts, Bradley and Robinson, Alexander and Sobel, Edward}, title = {Understanding the geologic evolution of Northern Tibetan Plateau with multiple thermochronometers}, series = {Gondwana research : international geoscience journal ; official journal of the International Association for Gondwana Research}, volume = {58}, journal = {Gondwana research : international geoscience journal ; official journal of the International Association for Gondwana Research}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1342-937X}, doi = {10.1016/j.gr.2018.02.014}, pages = {195 -- 210}, year = {2018}, abstract = {The early onset of deformation following the India-Asia collision, Neogene expanse of uplift, and complex systems that comprise strike-slip faults, thrust faults, and intermontane basins characterize the Cenozoic tectonism of Northern Tibetan Plateau and raise two prominent questions in orogenic geodynamics: 1) What mechanism(s) control(s) the transfer of stress related to the India-Asia collision across the distance of >2000 km; and 2) Why the development of high topography was delayed in the Northern Tibetan Plateau and what does it reveal about how the internal forces and external boundary conditions evolved. To address these two questions, we reconstruct a holistic spatial-temporal deformation history of the Northern Tibetan Plateau by using a range of thermochronometers, with closure temperature spanning from 350 degrees C to-60-70 degrees C. This multi-thermochronometer study reveals three stages of faulting related cooling, in the early Cretaceous, in Paleocene-Eocene and in middle-late Miocene. We observe that Paleocene-Eocene deformation was spatially restricted and mostly occurred on reactivated Cretaceous structures, indicating a control of pre-existing weakness on early Cenozoic deformation. Extensive Neogene deformation contrasts with restricted Paleocene-Eocene deformation and relatively quiescent shortening during the Oligocene-early Miocene, which implies a change in the regional tectonics regime. Global plate reconstructions show that this tectonic reorganization is coeval with an increase in Pacific-Asia plate convergence rates. We argue that this change in regional tectonics is a result of increasing constrictive environment of the eastern plate boundary, which changed the behavior of the Altyn Tagh fault the boundary fault of Northern Tibetan Plateau, causing it to change from feeding slip into structures out of the plateau to feeding slip into structures at plateau margins.}, language = {en} } @article{LeonCardonaParraetal.2018, author = {Leon, Santiago and Cardona, Agustin and Parra, Mauricio and Sobel, Edward and Jaramillo, Juan S. and Glodny, Johannes and Valencia, Victor A. and Chew, David and Montes, Camilo and Posada, Gustavo and Monsalve, Gaspar and Pardo-Trujillo, Andres}, title = {Transition from collisional to subduction-related regimes}, series = {Tectonics}, volume = {37}, journal = {Tectonics}, number = {1}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1002/2017TC004785}, pages = {119 -- 139}, year = {2018}, abstract = {A geological transect across the suture separating northwestern South America from the Panama Arc helps document the provenance and thermal history of both crustal domains and the suture zone. During middle Miocene, strata were being accumulated over the suture zone between the Panama Arc and the continental margin. Integrated provenance analyses of those middle Miocene strata show the presence of mixed sources that includes material derived from the two major crustal domains: the old northwestern South American orogens and the younger Panama Arc. Coeval moderately rapid exhumation of Upper Cretaceous to Paleogene sediments forming the reference continental margin is suggested from our inverse thermal modeling. Strata within the suture zone are intruded by similar to 12 Ma magmatic arc-related plutons, marking the transition from a collisional orogen to a subduction-related one. Renewed late Miocene to Pliocene acceleration of the exhumation rates is the consequence of a second tectonic pulse, which is likely to be triggered by the onset of a flat-slab subduction of the Nazca plate underneath the northernmost Andes of Colombia, suggesting that late Miocene to Pliocene orogeny in the Northern Andes is controlled by at least two different tectonic mechanisms.}, language = {en} } @article{TimmermanKrmicekKrmičkovaetal.2023, author = {Timmerman, Martin Jan and Krmicek, Lukas and Krm{\´i}čkov{\´a}, Simona and Slama, Jiri and Sudo, Masafumi and Sobel, Edward}, title = {Tonian-Ediacaran evolution of the Brunovistulian microcontinent (Czech Republic) deciphered from LA-ICP-MS U-Pb zircon and 40Ar/39Ar muscovite ages}, series = {Precambrian research}, volume = {387}, journal = {Precambrian research}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0301-9268}, doi = {10.1016/j.precamres.2023.106981}, pages = {20}, year = {2023}, abstract = {Granitoids of the Slavkov Domain of the Brunovistulian microcontinent (BVM) in the Czech Republic have Ediacaran U-Pb zircon crystallization ages with the dominant magmatic activity occurring between ca. 597 and 595 Ma. The ages overlap published ages for the adjacent Thaya Domain, showing that both domains formed coevally in the same subduction setting. The data support published models in which the Slavkov Domain formed as arc crust. The main stage of magmatism stopped after ca. 595-590 Ma and was quickly followed by cooling accompanied by intrusion of small volumes of rhyolite dykes at ca. 594 Ma. Slavkov Domain metasedimentary rocks are dominated by Cryogenian-Ediacaran detrital zircon populations and their protoliths were locally derived erosional products of Cryogenian to Ediacaran arc rocks of the Thaya and Slavkov domains. Metasedi-mentary rocks from the NE part of the BVM contain younger, ca. 550 Ma zircons indicating that the BVM grew northeastward by accretion of progressively younger material derived from magmatic rocks with latest Ediacaran crystallization ages. In contrast to the Thaya and Slavkov domains, the Metavolcanic Zone that lies between them formed between ca. 740 and 725 Ma in the late Tonian to early Cryogenian. It predates the main stage magmatic activity in the BVM by 135 to 150 Ma and is probably a relic of older crust that formed during rifting of the Rodinia supercontinent. At ca. 552-551 Ma in the latest Ediacaran, parts of the BVM were exposed at the surface, during which time red, terrestrial siliciclastic sediments (Basal Clastics) were deposited. These largely had (very) proximal sources such as the main stage granitoids of the Thaya and Slavkov domains. Clasts of (meta)sandstones contain much older zircon populations and provide evidence that Neoarchaean and Palaeo-, meso- and early Neoproterozoic crustal rocks were exposed in erosional position nearby.}, language = {en} } @article{EzpeletaParraColloetal.2022, author = {Ezpeleta, Miguel and Parra, Mauricio and Collo, Gilda and Wunderlin, Cecilia and Borrego, Angeles G. and Sobel, Edward and Glodny, Johannes}, title = {Thermochronometry unveils ancient thermal regimes in the NW Pampean Ranges, Argentina}, series = {Basin research}, volume = {34}, journal = {Basin research}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {0950-091X}, doi = {10.1111/bre.12693}, pages = {1983 -- 2012}, year = {2022}, abstract = {Reconstructing thermal histories in thrust belts is commonly used to infer the age and rates of thrusting and hence the driving mechanisms of orogenesis. In areas where ancient basins have been incorporated into the orogenic wedge, a quantitative reconstruction of the thermal history helps distinguish among potential mechanisms responsible for heating events. We present such a reconstruction for the Ischigualasto-Villa Union basin in the western Pampean Ranges of Argentina, where Triassic rifting and late Cretaceous-Cenozoic retroarc foreland basin development has been widely documented, including Miocene flat-slab subduction. We report results of organic and inorganic thermal indicators acquired along three stratigraphic sections, including vitrinite reflectance and X-ray diffractometry in claystones and new thermochronological [(apatite fission-track and apatite and zircon [U-Th]/He)] analyses. Despite up to 5 km-thick Cenozoic overburden and unlike previously thought, the thermal peak in the basin is not due to Cenozoic burial but occurred in the Triassic, associated with a high heat flow of up to 90 mWm(-2) and <2 km of burial, which heated the base of the Triassic strata to similar to 160 degrees C. Following exhumation, attested by the development of an unconformity between the Triassic and Late-Cretaceous-Cenozoic sequences, Cenozoic re-burial increased the temperature to similar to 110 degrees C at the base of the Triassic section and only similar to 50 degrees C 7 km upsection, suggesting a dramatic decrease in the thermal gradient. The onset of Cenozoic cooling occurred at similar to 10(-8) Ma, concomitant with sediment accumulation and thus preceding the latest Miocene onset of thrusting that has been independently documented by stratigraphic-cross-cutting relationships. We argue that the onset of cooling is associated with lithospheric refrigeration following establishment of flat-slab subduction, leading to the eastward displacement of the asthenospheric wedge beneath the South American plate. Our study places time and temperature constraints on flat-slab cooling that calls for a careful interpretation of exhumation signals in thrustbelts inferred from thermochronology only.}, language = {en} } @article{MacaulaySobelMikolaichuketal.2013, author = {Macaulay, Euan A. and Sobel, Edward and Mikolaichuk, Alexander and Landgraf, Angela and Kohn, Barry and Stuart, Finlay}, title = {Thermochronologic insight into late Cenozoic deformation in the basement-cored Terskey Range, Kyrgyz Tien Shan}, series = {Tectonics}, volume = {32}, journal = {Tectonics}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1002/tect.20040}, pages = {487 -- 500}, year = {2013}, abstract = {Basement-cored ranges formed by reverse faulting within intracontinental mountain belts are often composed of poly-deformed lithologies. Geological data capable of constraining the timing, magnitude, and distribution of the most recent deformational phase are usually missing in such ranges. In this paper, we present new low temperature thermochronological and geological data from a transect through the basement-cored Terskey Range, located in the Kyrgyz Tien Shan. Using these data, we are able to investigate the range's late Cenozoic deformation for the first time. Displacements on reactivated faults are constrained and deformation of thermochronologically derived structural markers is assessed. These structural markers postdate the earlier deformational phases, providing the only record of Cenozoic deformation and of the reactivation of structures within the Terskey Range. Overall, these structural markers have a southern inclination, interpreted to reflect the decreasing inclination of the reverse fault bounding the Terskey Range. Our thermochronological data are also used to investigate spatial and temporal variations in the exhumation of the Terskey Range, identifying a three-stage Cenozoic exhumation history: (1) virtually no exhumation in the Paleogene, (2) increase to slightly higher exhumation rates at similar to 26-20Ma, and (3) significant increase in exhumation starting at similar to 10Ma.}, language = {en} } @article{MacaulaySobelMikolaichuketal.2016, author = {Macaulay, Euan A. and Sobel, Edward and Mikolaichuk, Alexander and Wack, Michael and Gilder, Stuart A. and Mulch, Andreas and Fortuna, Alla B. and Hynek, Scott and Apayarov, Farid}, title = {The sedimentary record of the Issyk Kul basin, Kyrgyzstan: climatic and tectonic inferences}, series = {Basin research}, volume = {28}, journal = {Basin research}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0950-091X}, doi = {10.1111/bre.12098}, pages = {57 -- 80}, year = {2016}, abstract = {A broad array of new provenance and stable isotope data are presented from two magnetostratigraphically dated sections in the south-eastern Issyk Kul basin of the Central Kyrgyz Tien Shan. The results presented here are discussed and interpreted for two plausible magnetostratigraphic age models. A combination of zircon U-Pb provenance, paleocurrent and conglomerate clast count analyses is used to determine sediment provenance. This analysis reveals that the first coarse-grained, syntectonic sediments (Dzhety Oguz formation) were sourced from the nearby Terskey Range, supporting previous thermochronology-based estimates of a ca. 25-20 Ma onset of deformation in the range. Climate variations are inferred using carbonate stable isotope (delta O-18 and delta C-13) data from 53 samples collected in the two sections and are compared with the oxygen isotope compositions of modern water from 128 samples. Two key features are identified in the stable isotope data set derived from the sediments: (1) isotope values, in particular delta C-13, decrease between ca. 26.0 and 23.6 or 25.6 and 21.0 Ma, and (2) the scatter of delta O-18 values increased significantly after ca. 22.6 or 16.9 Ma. The first feature is interpreted to reflect progressively wetter conditions. Because this feature slightly post-dates the onset of deformation in the Terskey Range, we suggest that it has been caused by orographically enhanced precipitation, implying that surface uplift accompanied late Cenozoic deformation and rock uplift in the Terskey Range. The increased scatter could reflect variable moisture source or availability caused by global climate change following the onset of Miocene glaciations at ca. 22.6 Ma, or enhanced evaporation during the Mid-Miocene climatic optimum at ca. 17-15 Ma.}, language = {en} } @article{CarrapaReyesBywaterSafipouretal.2014, author = {Carrapa, Barbara and Reyes-Bywater, Sharon and Safipour, Roxana and Sobel, Edward and Schoenbohm, Lindsay M. and DeCelles, Peter G. and Reiners, Peter W. and Stockli, Daniel}, title = {The effect of inherited paleotopography on exhumation of the Central Andes of NW Argentina}, series = {Geological Society of America bulletin}, volume = {126}, journal = {Geological Society of America bulletin}, number = {1-2}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0016-7606}, doi = {10.1130/B30844.1}, pages = {66 -- 77}, year = {2014}, abstract = {Differential exhumation in the Puna Plateau and Eastern Cordillera of NW Argentina is controlled by inherited paleostructures and resulting paleotopography related to the Cretaceous Salta Rift paleomargins. The Ceno zoic deformation front related to the development of the Andean retro-arc orogenic system is generally associated with >4 km of exhumation, which is recorded by Cenozoic apatite fi ssion-track (AFT) and (U-Th-[Sm])/He ages (He ages) in the Eastern Cordillera of NW Argentina. New AFT ages from the top of the Nevado de Cachi document Oligocene (ca. 28 Ma) cooling, which, combined with existing data, indicates exhumation of this range between ca. 28 Ma and ca. 14 Ma. However, some of the highest ranges in the Eastern Cordillera preserve Cretaceous ages indicative of limited Cenozoic exhumation. Samples collected from an similar to 3-km-elevation transect along the northern part of the Sierra de Quilmes paleorift fl ank (Laguna Brava) show AFT ages between ca. 80 and ca. 50 Ma and He ages between ca. 45 and ca. 10 Ma. Another set of samples from an similar to 1-km-elevation transect farther to the southwest (La Quebrada) shows Cretaceous AFT ages between ca. 116 Ma and ca. 76 Ma, and mainly Cretaceous He ages, in agreement with AFT data. Analysis of existing AFT and He ages from the area once occupied by the Salta Rift reveals a pattern characterized by Cretaceous ages along paleorift highs and Cenozoic ages within paleorift hanging-wall basins and later foreland basin depocenters. This pattern is interrupted by the Sierras Pampeanas at similar to 28 degrees S, which record mid-Cenozoic ages. Our data are consistent with a complex inherited pattern of pre-Andean paleostructures, likely associated with paleotopography, which was beveled by the Cenozoic regional foreland basin and reactivated during the late Neogene (ca. <10 Ma), strongly controlling the magnitude of Cenozoic uplift and exhumation and thus cooling age distribution. This, combined with variable lithologic erodibility, resulted in an irregular distribution of themochronological ages.}, language = {en} } @article{AlonsoBookhagenCarrapaetal.2006, author = {Alonso, Ricardo N. and Bookhagen, Bodo and Carrapa, Barbara and Coutand, Isabelle and Haschke, Michael and Hilley, George E. and Schoenbohm, Lindsay M. and Sobel, Edward and Strecker, Manfred and Trauth, Martin H. and Villanueva, Arturo}, title = {Tectonics, climate and landscape evolution of the Southern Central Andes : the Argentine Puna Plateau and adjacent regions between 22 and 30°S}, isbn = {978-3-540- 24329-8}, year = {2006}, language = {en} } @article{BlayneyDupontNivetNajmanetal.2019, author = {Blayney, Tamsin and Dupont-Nivet, Guillaume and Najman, Yani and Proust, Jean-Noel and Meijer, Niels and Roperch, Pierrick and Sobel, Edward and Millar, Ian and Guo, Zhaojie}, title = {Tectonic Evolution of the Pamir Recorded in the Western Tarim Basin (China)}, series = {Tectonics}, volume = {38}, journal = {Tectonics}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1029/2018TC005146}, pages = {492 -- 515}, year = {2019}, abstract = {The northward indentation of the Pamir salient into the Tarim basin at the western syntaxis of the India-Asia collision zone is the focus of controversial models linking lithospheric to surface and atmospheric processes. Here we report on tectonic events recorded in the most complete and best-dated sedimentary sequences from the western Tarim basin flanking the eastern Pamir (the Aertashi section), based on sedimentologic, provenance, and magnetostratigraphic analyses. Increased tectonic subsidence and a shift from marine to continental fluvio-deltaic deposition at 41Ma indicate that far-field deformation from the south started to affect the Tarim region. A sediment accumulation hiatus from 24.3 to 21.6Ma followed by deposition of proximal conglomerates is linked to fault propagation into the Tarim basin. From 21.6 to 15.0Ma, increasing accumulation rates of fining upward clastics is interpreted as the expression of a major dextral transtensional system linking the Kunlun to the Tian Shan ahead of the northward Pamir indentation. At 15.0Ma, the appearance of North Pamir-sourced conglomerates followed at 11Ma by Central Pamir-sourced volcanics coincides with a shift to E-W compression, clockwise vertical-axis rotations and the onset of growth strata associated with the activation of the local east vergent Qimugen thrust wedge. Together, this enables us to interpret that Pamir indentation into Tarim had started by 24.3Ma, reached the study location by 15.0Ma and had passed it by 11Ma, providing kinematic constraints on proposed tectonic models involving intracontinental subduction and delamination.}, language = {en} } @article{GhaniZeilingerSobeletal.2018, author = {Ghani, Humaad and Zeilinger, Gerold and Sobel, Edward and Heidarzadeh, Ghasem}, title = {Structural variation within the Himalayan fold and thrust belt}, series = {Journal of structural geology}, volume = {116}, journal = {Journal of structural geology}, publisher = {Elsevier Science Publishers Ltd.}, address = {Oxford}, issn = {0191-8141}, doi = {10.1016/j.jsg.2018.07.022}, pages = {34 -- 46}, year = {2018}, abstract = {The Kohat and Potwar fold thrust belts (KP-FTB) in Pakistan exhibit structural variations over 250 km along strike within the Himalayan fold and thrust system. Our 3D deformation model shows that Kohat surface structures evolved above an active roof thrust in Eocene evaporites. The ramp-forming duplexes in the Kohat were stacked and passively transported toward the foreland above new ramps, resulting in up to 5 km of thickening between the two decollements. Ramps from the Kohat extend into the Potwar as thrust tips of fault propagation folds. The basement slope changes from flat (beta < 1 degrees) below the northern part to north-dipping (beta > 1 degrees) below the southern part, corresponding to the change in structural style and complexity of the KP-FTB. The Kalabagh Fault Zone, linking the two belts, is interpreted as a zone of complex dextral strike-slip rotational faulting. Salt expulsed from the hanging walls of normal faults and under synclines in the Kalabagh Fault Zone moved toward the footwall of normal faults, accumulated in the cores of anticlines, and formed lobe structures at the deformation front. The fundamental reasons for the variable structural styles are changes in decollement strength, basement slope, preexisting normal faulting, presence of a secondary decollement and spatially-variable salt mobility and accumulation.}, language = {en} } @article{GhaniSobelZeilingeretal.2021, author = {Ghani, Humaad and Sobel, Edward and Zeilinger, Gerold and Glodny, Johannes and Irum, Irum and Sajid, Muhammad}, title = {Spatio-temporal structural evolution of the Kohat fold and thrust belt of Pakistan}, series = {Journal of structural geology}, volume = {145}, journal = {Journal of structural geology}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0191-8141}, doi = {10.1016/j.jsg.2021.104310}, pages = {16}, year = {2021}, abstract = {The Kohat fold and thrust belt in Pakistan shows a significantly different structural style due to the structural evolution on the double d{\´e}collement compared to the rest of the Subhimalaya. In order to better understand the spatio-temporal structural evolution of the Kohat fold and thrust belt, we combine balanced cross sections with apatite (U?Th-Sm)/He (AHe) and apatite fission track (AFT) dating. The AHe and AFT ages appear to be totally reset, allowing us to date exhumation above structural ramps. The results suggest that deformation began on the frontal Surghar thrust at-15 Ma, predating or coeval with the development of the Main Boundary thrust at-12 Ma. Deformation propagated southward from the Main Boundary thrust on double de?collements between 10 Ma and 2 Ma, resulting in a disharmonic structural style inside the Kohat fold and thrust belt. Thermal modeling of the thermochronologic data suggest that samples inside Kohat fold and thrust belt experienced cooling due to formation of the duplexes; this deformation facilitated tectonic thickening of the wedge and erosion of the Miocene to Pliocene foreland strata. The spatial distribution of AHe and AFT ages in combination with the structural forward model suggest that, in the Kohat fold and thrust belt, the wedge deformed in-sequence as a supercritical wedge (-15-12 Ma), then readjusted by out-sequence deformation (-12-0 Ma) within the Kohat fold and thrust belt into a sub-critical wedge.}, language = {en} } @article{EugsterThiedeScherleretal.2018, author = {Eugster, Patricia and Thiede, Rasmus Christoph and Scherler, Dirk and St{\"u}bner, Konstanze and Sobel, Edward and Strecker, Manfred}, title = {Segmentation of the Main Himalayan Thrust Revealed by Low-Temperature Thermochronometry in the Western Indian Himalaya}, series = {Tectonics}, volume = {37}, journal = {Tectonics}, number = {8}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1029/2017TC004752}, pages = {2710 -- 2726}, year = {2018}, abstract = {Despite remarkable tectonostratigraphic similarities along the Himalayan arc, pronounced topographic and exhumational variability exists in different morphotectonic segments. The processes responsible for this segmentation are debated. Of particular interest is a 30- to 40-km-wide orogen-parallel belt of rapid exhumation that extends from central Nepal to the western Himalaya and its possible linkage to a midcrustal ramp in the basal decollement, and the related growth of Lesser Himalayan duplex structures. Here we present 26 new apatite fission track cooling ages from the Beas-Lahul region, at the transition from the Central to the Western Himalaya (77 degrees-78 degrees E) to investigate segmentation in the Himalayan arc from a thermochronologic perspective. Together with previously published data from this part of the orogen, we document significant lateral changes in exhumation between the Dhauladar Range to the west, the Beas-Lahul region, and the Sutlej area to the east of the study area. In contrast to the Himalayan front farther east, exhumation in the far western sectors is focused at the frontal parts of the mountain range and associated with the hanging wall of the Main Boundary Thrust fault ramp. Our results allow us to spatially correlate the termination of the rapid exhumation belt with a midcrustal ramp to the west. We suggest that a plunging anticline at the northwestern edge of the Larji-Kullu-Rampur window represents the termination of the Central Himalayan segment, which is related to the evolution of the Lesser Himalayan duplex. Key Points}, language = {en} } @article{ZhouSchoenbohmSobeletal.2016, author = {Zhou, Renjie and Schoenbohm, Lindsay M. and Sobel, Edward and Carrapa, Barbara and Davis, Donald W.}, title = {Sedimentary record of regional deformation and dynamics of the thick-skinned southern Puna Plateau, central Andes (26-27 degrees S)}, series = {Earth \& planetary science letters}, volume = {433}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2015.11.012}, pages = {317 -- 325}, year = {2016}, abstract = {The Puna Plateau, adjacent Eastern Cordillera and the Sierras Pampeanas of the central Andes are largely characterized by thick-skinned, basement-involved deformation. The Puna Plateau hosts similar to N-S trending bedrock ranges bounded by deep-seated reverse faults and sedimentary basins. We contribute to the understanding of thick-skinned dynamics in the Puna Plateau by constraining regional kinematics of the poorly understood southern Puna Plateau through a multidisciplinary approach. On the southeastern plateau, sandstone modal composition and detrital zircon U-Pb and apatite fission-track data from Cenozoic strata indicate basin accumulation during the late Eocene to early Oligocene (similar to 38-28 Ma). Provenance analysis reveals the existence of a regional-scale basin covering the southern Puna Plateau during late Eocene to early Oligocene time (similar to 38-28 Ma) that was sourced from both the western plateau and the eastern plateau margin and had a depocenter located to the west. Petrographic and detrital zircon U-Pb data reveal erosion of proximal western and eastern sources after 12 Ma, in mid-late Miocene time. This indicates that the regional basin was compartmentalized into small-scale depocenters by the growth of basement-cored ranges continuing into the late Miocene (similar to 12-8 Ma). We suggest that the Cenozoic history of the southern Puna Plateau records the formation of a regional basin that was possibly driven by lithospheric flexure during the late Eocene to early Oligocene, before the growth of distributed basement-cored ranges starting as early as the late Oligocene. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{LoebensSobelBenseetal.2013, author = {Loebens, Stefan and Sobel, Edward and Bense, Frithjof A. and Wemmer, Klaus and Dunkl, Istvan and Siegesmund, Siegfried}, title = {Refined exhumation history of the northern Sierras Pampeanas, Argentina}, series = {Tectonics}, volume = {32}, journal = {Tectonics}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1002/tect.20038}, pages = {453 -- 472}, year = {2013}, abstract = {The Sierra de Aconquija and Cumbres Calchaquies in the thick-skinned northern Sierras Pampeanas, NW Argentina present an ideal setting to investigate the tectonically and erosionally controlled exhumation and uplift history of mountain ranges using thermochronological methods. Although these ranges are located along strike of one another, their spatiotemporal evolution varies significantly. Integrating modeled cooling histories constrained by K-Ar ages of muscovite and biotite, apatite fission track data as well as (U-Th)/He measurement of zircon and apatite reveal the structural evolution of these ranges beginning in the late stage of the Paleozoic Famatinian Orogeny. Following localized rift-related exhumation in the central part of the study area and slow erosion elsewhere, growth of the modern topography commenced in the Cenozoic during Andean deformation. The main activity occurred during the late Miocene, with varying magnitudes of rock uplift, surface uplift, and exhumation in the two mountain ranges. The Cumbres Calchaquies is characterized by a total of 5-7km of vertical rock uplift, around 3km of crestal surface uplift, and a maximum exhumation of 2-4km since that time. The Sierra de Aconquija experienced 10-13km of vertical rock uplift, similar to 4-5km of peak surface uplift, and 6-8km of exhumation since around 9Ma. Much of this exhumation occurred along a previously poorly recognized fault. Miocene reactivation of Cretaceous rift structures may explain along-strike variations within these ranges. Dating of sedimentary samples from adjacent basins supports the evolutionary model developed for the mountain ranges.}, language = {en} } @article{CoutandCarrapaDeekenetal.2006, author = {Coutand, Isabelle and Carrapa, Barbara and Deeken, Anke and Schmitt, Axel K. and Sobel, Edward and Strecker, Manfred}, title = {Propagation of orographic barriers along an active range front : insights from sandstone petrography and detrital apatite fission-track thermochronology in the intramontane Angastaco basin, NW Argentina}, issn = {0950-091X}, doi = {10.1111/j.1365-2117.2006.00283.x}, year = {2006}, abstract = {The arid Puna plateau of the southern Central Andes is characterized by Cenozoic distributed shortening forming intramontane basins that are disconnected from the humid foreland because of the defeat of orogen-traversing channels. Thick Tertiary and Quaternary sedimentary fills in Puna basins have reduced topographic contrasts between the compressional basins and ranges, leading to a typical low-relief plateau morphology. Structurally identical basins that are still externally drained straddle the eastern border of the Puna and document the eastward propagation of orographic barriers and ensuing aridification. One of them, the Angastaco basin, is transitional between the highly compartmentalized Puna highlands and the undeformed Andean foreland. Sandstone petrography, structural and stratigraphic analysis, combined with detrital apatite fission-track thermochronology from a similar to 6200-m-thick Miocene to Pliocene stratigraphic section in the Angastaco basin, document the late Eocene to late Pliocene exhumation history of source regions along the eastern border of the Puna (Eastern Cordillera (EC)) as well as the construction of orographic barriers along the southeastern flank of the Central Andes. Onset of exhumation of a source in the EC in late Eocene time as well as a rapid exhumation of the Sierra de Luracatao (in the EC) at about 20 Ma are recorded in the detrital sediments of the Angastaco basin. Sediment accumulation in the basin began similar to 15 Ma, a time at which the EC had already built sufficient topography to prevent Puna sourced detritus from reaching the basin. After similar to 13 Ma, shortening shifted eastward, exhuming ranges that preserve an apatite fission-track partial annealing zone recording cooling during the late Cretaceous rifting event. Facies changes and fossil content suggest that after 9 Ma, the EC constituted an effective orographic barrier that prevented moisture penetration into the plateau. Between 3.4 and 2.4 Ma, another orographic barrier was uplifted to the east, leading to further aridification and pronounced precipitation gradients along the mountain front. This study emphasizes the important role of tectonics in the evolution of climate in this part of the Andes}, language = {en} } @misc{GhaniSobelZeilingeretal.2021, author = {Ghani, Humaad and Sobel, Edward and Zeilinger, Gerold and Glodny, Johannes and Zapata, Sebastian and Irum, Irum}, title = {Palaeozoic and Pliocene tectonic evolution of the Salt Range constrained by low-temperature thermochronology}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {3}, issn = {1866-8372}, doi = {10.25932/publishup-56256}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-562567}, pages = {15}, year = {2021}, abstract = {The Salt Range in Pakistan exposes Precambrian to Pleistocene strata outcropping along the Salt Range Thrust (SRT). To better understand the in-situ Cambrian and Pliocene tectonic evolution of the Pakistan Subhimalaya, we have conducted low-temperature thermochronological analysis using apatite (U-Th-Sm)/He and fission track dating. We combine cooling ages from different samples located along the thrust front of the SRT into a thermal model that shows two major cooling events associated with rifting and regional erosion in the Late Palaeozoic and SRT activity since the Pliocene. Our results suggest that the SRT maintained a long-term average shortening rate of similar to 5-6 mm/yr and a high exhumation rate above the SRT ramp since similar to 4 Ma.}, language = {en} } @article{GhaniSobelZeilingeretal.2020, author = {Ghani, Humaad and Sobel, Edward and Zeilinger, Gerold and Glodny, Johannes and Zapata, Sebastian and Irum, Irum}, title = {Palaeozoic and Pliocene tectonic evolution of the Salt Range constrained by low-temperature thermochronology}, series = {Terra nova}, volume = {33}, journal = {Terra nova}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {0954-4879}, doi = {10.1111/ter.12515}, pages = {293 -- 305}, year = {2020}, abstract = {The Salt Range in Pakistan exposes Precambrian to Pleistocene strata outcropping along the Salt Range Thrust (SRT). To better understand the in-situ Cambrian and Pliocene tectonic evolution of the Pakistan Subhimalaya, we have conducted low-temperature thermochronological analysis using apatite (U-Th-Sm)/He and fission track dating. We combine cooling ages from different samples located along the thrust front of the SRT into a thermal model that shows two major cooling events associated with rifting and regional erosion in the Late Palaeozoic and SRT activity since the Pliocene. Our results suggest that the SRT maintained a long-term average shortening rate of similar to 5-6 mm/yr and a high exhumation rate above the SRT ramp since similar to 4 Ma.}, language = {en} } @article{ZhangNajmanMeietal.2019, author = {Zhang, Peng and Najman, Yani and Mei, Lianfu and Millar, Ian and Sobel, Edward and Carter, Andrew and Barfod, Dan and Dhuime, Bruno and Garzanti, Eduardo and Govin, Gwladys and Vezzoli, Giovanni and Hu, Xiaolin}, title = {Palaeodrainage evolution of the large rivers of East Asia, and Himalayan-Tibet tectonics}, series = {Earth science reviews}, volume = {192}, journal = {Earth science reviews}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-8252}, doi = {10.1016/j.earscirev.2019.02.003}, pages = {601 -- 630}, year = {2019}, abstract = {A number of sedimentary provenance studies have been undertaken in order to determine whether the palaeo-Red River was once a river of continental proportions into which the upper reaches of the Yangtze, Salween, Mekong, Irrawaddy, and Yarlung drained. We have assessed the evidence that the Yarlung originally flowed into the palaeo-Red river, and then sequentially into the Irrawaddy and Brahmaputra, connecting to the latter first via the Lohit and then the Siang. For this river system, we have integrated our new data from the Paleogene-Recent Irrawaddy drainage basin (detrital zircon U-Pb with Hf and fission track, rutile U-Pb, mica Ar-Ar, bulk rock Sr-Nd, and petrography) with previously published data, to produce a palaeodrainage model that is consistent with all datasets. In our model, the Yarlung never flowed into the Irrawaddy drainage: during the Paleogene, the Yarlung suture zone was an internally drained basin, and from Neogene times onwards the Yarlung drained into the Brahmaputra in the Bengal Basin. The Central Myanmar Basin, through which the Irrawaddy River flows today, received predominantly locally-derived detritus until the Middle Eocene, the Irrawaddy initiated as a through-going river draining the Mogok Metamorphic Belt and Bomi-Chayu granites to the north sometime in the Late Eocene to Early Oligocene, and the river was dominated by a stable MMB-dominated drainage throughout the Neogene to present day. Existing evidence does not support any connection between the Yarlung and the Red River in the past, but there is a paucity of suitable palaeo-Red River deposits with which to make a robust comparison. We argue that this limitation also precludes a robust assessment of a palaeo-connection between the Yangtze/ Salween/Mekong and the Red River; it is difficult to unequivocally interpret the recorded provenance changes as the result of specific drainage reorganisations. We highlight the palaeo-Red River deposits of the Hanoi Basin as a potential location for future research focus in view of the near-complete Cenozoic record of palaeo-Red River deposits at this location. A majority of previous studies consider that if a major continental-scale drainage ever existed at all, it fragmented early in the Cenozoic. Such a viewpoint would agree with the growing body of evidence from palaeoaltitude studies that large parts of SE Tibet were uplifted by this period. This then leads towards the intriguing question as to the mechanisms which caused the major period of river incision in the Miocene in this region.}, language = {en} } @article{ParraMoraJaramilloetal.2009, author = {Parra, Mauricio and Mora, Andr{\´e}s and Jaramillo, Carlos and Strecker, Manfred and Sobel, Edward and Quiroz, Luis and Rueda, Milton and Torres, Vladimir}, title = {Orogenic wedge advance in the northern Andes : evidence from the Oligocene-Miocene sedimentary record of the Medina Basin, Eastern Cordillera, Colombia}, issn = {0016-7606}, doi = {10.1130/B26257.1}, year = {2009}, abstract = {Foreland basin development in the Andes of central Colombia has been suggested to have started in the Late Cretaceous through tectonic loading of the Central Cordillera. Eastward migration of the Cenozoic orogenic front has also been inferred from the foreland basin record west of the Eastern Cordillera. However, farther east, limited data provided by foreland basin strata and the adjacent Eastern Cordillera complicate any correlation among mountain building, exhumation, and foreland basin sedimentation. In this study, we present new data from the Medina Basin in the eastern foothills of the Eastern Cordillera of Colombia. We report sedimentological data and palynological ages that link an eastward-thinning early Oligocene to early Miocene syntectonic wedge containing rapid facies changes with an episode of fast tectonic subsidence starting at ca. 31 Ma. This record may represent the first evidence of topographic loading generated by slip along the principal basement-bounding thrusts in the Eastern Cordillera to the southwest of the basin. Zircon fission-track ages and paleo-current analysis reveal the location of these thrust loads and illustrate a time lag between the sedimentary signal of topographic loading and the timing of exhumation (ca. 18 Ma). This lag may reflect the period between the onset of range uplift and significant removal of overburden. Vitrinite reflectance data document northward along-strike propagation of the deformation front and folding of the Oligocene syntectonic wedge. This deformation was coupled with a nonuniform incorporation of the basin into the wedge-top depozone. Thus, our data set constitutes unique evidence for the early growth and propagation of the deformation front in the Eastern Cordillera, which may also improve our understanding of spatiotemporal patterns of foreland evolution in other mountain belts.}, language = {en} } @article{CarrapaAdelmannHilleyetal.2005, author = {Carrapa, Barbara and Adelmann, Dirk and Hilley, G. E. and Mortimer, Estelle and Sobel, Edward and Strecker, Manfred}, title = {Oligocene range uplift and development of plateau morphology in the southern central Andes}, year = {2005}, abstract = {[1] The Puna-Altiplano plateau in South America is a high-elevation, low internal relief landform that is characterized by internal drainage and hyperaridity. Thermochronologic and sedimentologic observations from the Sierra de Calalaste region in the southwestern Puna plateau, Argentina, place new constraints on early plateau evolution by resolving the timing of uplift of mountain ranges that bound present-day basins and the filling pattern of these basins during late Eocene-Miocene time. Paleocurrent indicators, sedimentary provenance analyses, and apatite fission track thermochronology indicate that the original paleodrainage setting was disrupted by exhumation and uplift of the Sierra de Calalaste range between 24 and 29 Ma. This event was responsible for basin reorganization and the disruption of the regional fluvial system that has ultimately led to the formation of internal drainage conditions, which, in the Salar de Antofalla, were established not later than late Miocene. Upper Eocene-Oligocene sedimentary rocks flanking the range contain features that suggest an arid environment existed prior to and during its uplift. Provenance data indicate a common similar source located to the west for both the southern Puna and the Altiplano of Bolivia during the late Eocene- Oligocene with sporadic local sources. This suggests the existence of an extensive, longitudinally oriented foreland basin along the central Andes during this time}, language = {en} } @article{SobelChenSchoenbohmetal.2013, author = {Sobel, Edward and Chen, Jie and Schoenbohm, Lindsay M. and Thiede, Rasmus Christoph and Stockli, Daniel F. and Sudo, Masafumi and Strecker, Manfred}, title = {Oceanic-style subduction controls late Cenozoic deformation of the Northern Pamir orogen}, series = {Earth \& planetary science letters}, volume = {363}, journal = {Earth \& planetary science letters}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2012.12.009}, pages = {204 -- 218}, year = {2013}, abstract = {The northern part of the Pamir orogen is the preeminent example of an active intracontinental subduction zone in the early stages of continent-continent collision. Such zones are the least understood type of plate boundaries because modern examples are few and of limited access, and ancient analogs have been extensively overprinted by subsequent tectonic and erosion processes. In the Pamir, it has been assumed that most of the plate convergence was accommodated by overthrusting along the plate-bounding Main Pamir Thrust (MPT), which forms the principal northern mountain and deformation front of the Pamir. However, the synopsis of our new and previously published thermochronologic data from this region shows that the hanging wall of the MPT experienced relatively minor amounts of late Cenozoic exhumation. The Pamir orogen as a whole is an integral part of the overriding plate in a subduction system, while the remnant basin to the north constitutes the downgoing plate, with the bulk of the convergence accommodated by underthrusting. Herein, we demonstrate that the observed deformation of the upper and lower plates within the Pamir-Alai convergence zone resembles highly arcuate oceanic subduction systems characterized by slab rollback, subduction erosion, subduction accretion, and marginal slab-tear faults. We suggest that the curvature of the North Pamir is genetically linked to the short width and rollback of the south-dipping Alai slab; northward motion (indentation) of the Pamir is accommodated by crustal processes related to this rollback. The onset of south-dipping subduction is tentatively linked to intense Pamir contraction following break-off of the north-dipping Indian slab beneath the Karakoram.}, language = {en} } @article{CarrapaMustaphaCoscaetal.2014, author = {Carrapa, Barbara and Mustapha, Fariq Shazanee and Cosca, Michael and Gehrels, George and Schoenbohm, Lindsay M. and Sobel, Edward and DeCelles, Peter G. and Russell, Joellen and Goodman, Paul}, title = {Multisystem dating of modern river detritus from Tajikistan and China: Implications for crustal evolution and exhumation of the Pamir}, series = {Lithosphere}, volume = {6}, journal = {Lithosphere}, number = {6}, publisher = {Geological Society of America}, address = {Boulder}, issn = {1941-8264}, doi = {10.1130/L360.1}, pages = {443 -- 455}, year = {2014}, abstract = {The Pamir is the western continuation of Tibet and the site of some of the highest mountains on Earth, yet comparatively little is known about its crustal and tectonic evolution and erosional history. Both Tibet and the Pamir are characterized by similar terranes and sutures that can be correlated along strike, although the details of such correlations remain controversial. The erosional history of the Pamir with respect to Tibet is significantly different as well: Most of Tibet has been characterized by internal drainage and low erosion rates since the early Cenozoic; in contrast, the Pamir is externally drained and topographically more rugged, and it has a strongly asymmetric drainage pattern. Here, we report 700 new U-Pb and Lu-Hf isotope determinations and >300 Ar-40/Ar-39 ages from detrital minerals derived from rivers in China draining the northeastern Pamir and >1000 apatite fission-track (AFT) ages from 12 rivers in Tajikistan and China draining the northeastern, central, and southern Pamir. U-Pb ages from rivers draining the northeastern Pamir are Mesozoic to Proterozoic and show affinity with the Songpan-Ganzi terrane of northern Tibet, whereas rivers draining the central and southern Pamir are mainly Mesozoic and show some affinity with the Qiangtang terrane of central Tibet. The epsilon(Hf) values are juvenile, between 15 and -5, for the northeastern Pamir and juvenile to moderately evolved, between 10 and -40, for the central and southern Pamir. Detrital mica Ar-40/Ar-39 ages for the northeastern Pamir (eastern drainages) are generally older than ages from the central and southern Pamir (western drainages), indicating younger or lower-magnitude exhumation of the northeastern Pamir compared to the central and southern Pamir. AFT data show strong Miocene-Pliocene signals at the orogen scale, indicating rapid erosion at the regional scale. Despite localized exhumation of the Mustagh-Ata and Kongur-Shan domes, average erosion rates for the northeastern Pamir are up to one order of magnitude lower than erosion rates recorded by the central and southern Pamir. Deeper exhumation of the central and southern Pamir is associated with tectonic exhumation of central Pamir domes. Deeper exhumation coincides with western and asymmetric drainages and with higher precipitation today, suggesting an orographic effect on exhumation. A younging-southward trend of cooling ages may reflect tectonic processes. Overall, cooling ages derived from the Pamir are younger than ages recorded in Tibet, indicating younger and higher magnitudes of erosion in the Pamir.}, language = {en} } @article{BallatoParraSchildgenetal.2018, author = {Ballato, Paolo and Parra, Mauricio and Schildgen, Taylor F. and Dunkl, I. and Yildirim, C. and {\"O}zsayin, Erman and Sobel, Edward and Echtler, H. and Strecker, Manfred}, title = {Multiple exhumation phases in the Central Pontides (N Turkey)}, series = {Tectonics}, volume = {37}, journal = {Tectonics}, number = {6}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1029/2017TC004808}, pages = {1831 -- 1857}, year = {2018}, abstract = {The Central Pontides of N Turkey represents a mobile orogenic belt of the southern Eurasian margin that experienced several phases of exhumation associated with the consumption of different branches of the Neo-Tethys Ocean and the amalgamation of continental domains. Our new low-temperature thermochronology data help to constrain the timing of these episodes, providing new insights into associated geodynamic processes. In particular, our data suggest that exhumation occurred at (1) similar to 110 to 90Ma, most likely during tectonic accretion and exhumation of metamorphic rocks from the subduction zone; (2) from similar to 60 to 40Ma, during the collision of the Kirehir and Anatolide-Tauride microcontinental domains with the Eurasian margin; (3) from similar to 0 to 25Ma, either during the early stages of the Arabia-Eurasia collision (soft collision) when the Arabian passive margin reached the trench, implying 70 to 530km of subduction of the Arabian passive margin, or during a phase of trench advance predating hard collision at similar to 20Ma; and (4) similar to 11Ma to the present, during transpression associated with the westward motion of Anatolia. Our findings document the punctuated nature of fault-related exhumation, with episodes of fast cooling followed by periods of slow cooling or subsidence, the role of inverted normal faults in controlling the Paleogene exhumation pattern, and of the North Anatolian Fault in dictating the most recent pattern of exhumation.}, language = {en} } @article{RoudWackGilderetal.2021, author = {Roud, Sophie and Wack, Michael Richard and Gilder, Stuart A. and Kudriavtseva, Anna and Sobel, Edward}, title = {Miocene to early pleistocene depositional history and tectonic evolution of the Issyk-Kul Basin, Central Tian Shan}, series = {Geochemistry, geophysics, geosystems : G 3 ; an electronic journal of the earth sciences}, volume = {22}, journal = {Geochemistry, geophysics, geosystems : G 3 ; an electronic journal of the earth sciences}, number = {4}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {1525-2027}, doi = {10.1029/2020GC009556}, pages = {16}, year = {2021}, abstract = {The Issyk-Kul Basin (Kyrgyzstan), situated in the central Tian Shan Mountains, hosts the largest and deepest mountain lake in Central Asia. Erosion of the surrounding Terskey and Kungey ranges led to the accumulation of up to 4 km of sediment in the adjacent depression. Creation of the basin from regional shortening and uplift likely initiated around the Oligocene-Miocene, yet precise age control is sparse. To better understand the timing of these processes, we obtained magnetostratigraphic age constraints on fossil-poor, fluvio-lacustrine sediments exposed south of Lake Issyk-Kul, that agree well with previous age constraints of the equivalent strata outside the Issyk-Kul Basin. Two 500-650 m thick sections comprised mainly of Chu Group sediments were dated at 6.3-2.8 Ma and 7.0-2.4 Ma (late Miocene to early Pleistocene). Together with reinterpreted magnetostratigraphic constraints from underlying strata, we find that syn-tectonic deposition commenced at similar to 22 Ma with average sedimentation rates <10 cm/ka. Sedimentation rates increased to 10-30 cm/ka at 7 Ma, concurrent with accelerated uplift in the Terskey Range to the south. A deformation event in one section (Kaji-Say) between 5 and 3 Ma together with concurrent shifts of depositional centers throughout the basin signal the onset of substantial uplift of the Kungey Range to the north at similar to 5 Ma. This uplift and deformation transformed the Issyk-Kul area into a closed basin that facilitated the formation of a deep lake. Lacustrine facies deposited around 3 Ma mark the existence of Lake Issyk-Kul by that time.}, language = {en} } @article{ZapataSobelPapaetal.2019, author = {Zapata, Sebastian Henao and Sobel, Edward and Papa, Cecilia Eugenia del and Muruaga, Claudia and Zhou, R.}, title = {Miocene fragmentation of the Central Andean foreland basins between 26 and 28 degrees S}, series = {Journal of South American earth sciences}, volume = {94}, journal = {Journal of South American earth sciences}, publisher = {Elsevier}, address = {Oxford}, issn = {0895-9811}, doi = {10.1016/j.jsames.2019.102238}, pages = {18}, year = {2019}, abstract = {We present new U-Pb LA-ICP-MS data from the Central Andean foreland basins combined with new and published stratigraphic information in order to reconstruct the Miocene fragmentation of the Andean foreland between 26 and 28 degrees S. The disruption of this foreland basin and the subsequent development of elevated intermountain basins have been the focus of several studies. However, the absence of temporal constraints in the Miocene to Pliocene sedimentary record of the low elevation Choromoro and Tucuman foreland basins has presented an obstacle for precise paleogeographic reconstructions. We describe 11 discontinuous stratigraphic sections and use the U-Pb LA-ICP-MS method to date 10 pyroclastic-bearing sediments in order to reconstruct the stratigraphic evolution of the Choromoro and Tucuman basins. We combine our results with published strati graphic and thermochronologic data from adjacent basins to present a refined Miocene paleogeographic model. In a first stage, a continuous Early Miocene foreland lacustrine basin developed, filling up the preexisting Paleogene topography. The second stage is characterized by basin unroofing around similar to 12 Ma; the easily eroded sedimentary cover was removed, leading to the uplift of the underlying basement rocks and the segmentation of the lacustrine system. In the third stage, relief increase took place after similar to 6 Ma due to the low erodibility of the basement blocks; as a result, stable fluvial systems developed. Progressive relief development caused pronounced unconformities in the basins and the development of proximal fluvial-gravitational depositional systems after 3 Ma. This model emphasizes on the relations between tectonics, climate, and erodibility, and their control on the evolution of the depositional systems and relief.}, language = {en} } @article{SobczykSobelGeorgieva2019, author = {Sobczyk, Artur and Sobel, Edward and Georgieva, Viktoria}, title = {Meso-Cenozoic cooling and exhumation history of the Orlica-snie(z) over dotnik Dome (Sudetes, NE Bohemian Massif, Central Europe)}, series = {Terra nova}, volume = {32}, journal = {Terra nova}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {0954-4879}, doi = {10.1111/ter.12449}, pages = {122 -- 133}, year = {2019}, abstract = {This study presents the first suite of apatite fission-track (AFT) ages from the SE part of the Western Sudetes. AFT cooling ages from the Orlica-snie(z) over dotnik Dome and the Upper Nysa Klodzka Graben range from Late Cretaceous (84 Ma) to Early Palaeocene-Middle Eocene (64-45 Ma). The first stage of basin evolution (similar to 100-90 Ma) was marked by the formation of a local extensional depocentre and disruption of the Mesozoic planation surface. Subsequent far-field convergence of European microplates resulted in Coniacian-Santonian (similar to 89-83 Ma) thrust faulting. AFT data from both metamorphic basement and Mesozoic sedimentary cover indicate homogenous Late Cretaceous burial of the entire Western Sudetes. Thermal history modeling suggests that the onset of cooling could be constrained between 89 and 63 Ma with a climax during the Palaeocene-Middle Eocene basin inversion phase.}, language = {en} } @article{RasskazovChuvashovaMikolaichuketal.2015, author = {Rasskazov, Sergei V. and Chuvashova, Irina S. and Mikolaichuk, Alexander V. and Sobel, Edward and Yasnygina, Tatiana A. and Fefelov, N. N. and Saranina, Elena V.}, title = {Lateral change of sources for the Cretaceous-Paleogene magmatism of the Tian Shan}, series = {Petrology}, volume = {23}, journal = {Petrology}, number = {3}, publisher = {Pleiades Publ.}, address = {New York}, issn = {0869-5911}, doi = {10.1134/S0869591115010038}, pages = {281 -- 308}, year = {2015}, abstract = {The Southern and Northern-Central Tian Shan are sharply different in the character of the evolution of Cretaceous-Paleogene magmatism. The Southern Tian Shan comprises a picrobasalt-trachybasalt-basanite-phonotephrite-phonolite volcanic series, which was formed over a considerable time interval from 122 to 46 Ma, whereas the Northern-Central Tian Shan hosts a foidite-basanite-trachybasalt-basaltbasaltic andesite volcanic association, which erupted within a rather narrow time interval between 61 and 53 Ma. The entire volcanic series of the former region was derived from a shallow garnet-free mantle source. The volcanic assemblage of the latter region included basanites and foidites derived from a deep garnet-bearing mantle source, whereas trachybasalt, basalt, and basaltic andesite melts were generated in the lower crust. It is supposed that the change of sources and different evolutionary trends of Cretaceous-Paleogene magmatism in the Southern and Northern-Central Tian Shan were caused by the activation of the heterogeneous lithosphere beneath the converging shores of the Late Paleozoic Turkestan paleoocean.}, language = {en} } @article{SobelChenHeermance2006, author = {Sobel, Edward and Chen, Jie and Heermance, Richard V.}, title = {Late Oligocene-Early Miocene initiation of shortening in the Southwestern Chinese Tian Shan : implications for Neogene shortening rate variations}, doi = {10.1016/j.epsl.2006.03.048}, year = {2006}, abstract = {The Cenozoic Tian Shan is one of the preeminent examples of an intracontinental orogen. However, there remains a significant controversy over when deformation related to the India-Asia collision commenced and therefore how shortening within the mountains has been partitioned over time. One approach has been to look at the modem shortening rate as measured by geodetic studies, combined with estimates of the total shortening across the range and extrapolate backwards. This approach suggests that the onset of range construction was ca. 10 Ma [K.Y. Abdrakhmatov, S.A. Aldazhanov, B.H. Hager, M.W Hamburger, T.A. Herring, K.B. Kalabaev, K.B. Kalabayev, V.I. Makarov, P. Molnar, S.V Panasyuk, M.T. Prilepin, R.E. Reilinger, I.S. Sadybakasov, B.J. Souter, Y.A. Trapeznikov, V.Y. Tsurkov, A.V. Zubovich, Relatively recent construction of the Tien Shan inferred from GPS measurements of present-day crustal deformation rates, Nature 384 (6608) (1996) 450-453]. An alternate method is to determine the age of the onset of exhumation using thermochronology. We present 19 new apatite fission-track (AFT) results from the southwestern Chinese portion of the belt; this region represents the first area exhumed during the late Tertiary along a transect at ca. 76 degrees E. Exhumation commenced at the Oligocene-Miocene boundary (similar to 24 Ma) along the Maidan and Muziduke thrusts, which bound the southern side of the Kokshaal range. Subsequently, deformation propagated ca. 20 km south to the Kashi basin- bounding thrust (KBT), which was exhumed by no earlier than 18.9 +/- 3.3 Ma. Three detrital AFT samples from Plio- Pleistocene strata deposited ca. 20 km farther south contain fission track grain age peaks that young monotonically upwards from 20.9 + 7.0/- 5.3 Ma to 15.9 + 5.4/- 4.0 Ma with a fairly constant lag time of 16 to 18 Ma. These ages, combined with structural data, suggest that both the hanging wall and the footwall of the KBT experienced a renewed episode of exhumation during the latest Cenozoic. The discrepancy between the Late Oligocene-Miocene initiation of significant exhumation shown herein and the 10 Ma initiation estimate from geodesy suggests that the Tian Shan has undergone a complex Late Cenozoic shortening history. Assuming that the present shortening rate could account for the total amount of Cenozoic shortening in 10 Ma and realizing that shortening initiated at least 15 Myr earlier, we conclude that the shortening rate must have varied over time, possibly in pulsed-southward migrating events, and that the present rate may not reflect the average rate since initiation of range uplift. (c) 2006 Elsevier B.V. All rights reserved}, language = {en} } @article{SobelSchoenbohmChenetal.2011, author = {Sobel, Edward and Schoenbohm, Lindsay M. and Chen, Jie and Thiede, Rasmus Christoph and Stockli, Daniel F. and Sudo, Masafumi and Strecker, Manfred}, title = {Late Miocene-Pliocene deceleration of dextral slip between Pamir and Tarim: Implications for Pamir orogenesis}, series = {EARTH AND PLANETARY SCIENCE LETTERS}, volume = {304}, journal = {EARTH AND PLANETARY SCIENCE LETTERS}, number = {3-4}, publisher = {ELSEVIER SCIENCE BV}, address = {AMSTERDAM}, issn = {0012-821X}, doi = {10.1016/j.epsl.2011.02.012}, pages = {369 -- 378}, year = {2011}, abstract = {The timing of the late Cenozoic collision between the Pamir salient and the Tien Shan as well as changes in the relative motion between the Pamir and Tarim are poorly constrained. The northern margin of the Pamir salient indented northward by similar to 300 km during the late Cenozoic, accommodated by south-dipping intracontinental subduction along the Main Pamir Thrust (MPT) coupled to strike-slip faults on the eastern flank of the orogen and both strike-slip and thrust faults on the western margin. The Kashgar-Yecheng transfer system (KYTS) is the main dextral slip shear zone separating Tarim from the Eastern Pamir, with an estimated cumulative offset of similar to 280 km at an average late Cenozoic dextral slip rate of 11-15 mm/a (Cowgill, 2010). In order to better constrain the slip history of the KYTS, we collected thermochronologic samples along the eastward-flowing, deeply incised, antecedent Tashkorgan-Yarkand River, which crosses the fault system on the eastern flank of the orogen. We present 29 new biotite (40)Ar/(39)Ar ages, apatite and zircon (U-Th-Sm)/He ages, and apatite fission track (AFT) analysis, combined with published muscovite and biotite (40)Ar/(39)Ar and AFT data, to create a unique thermochronologic dataset in this poorly studied and remote region. We constrain the timing of four major N-trending faults: the latter three are strands of the KYTS. The westernmost, the Kuke fault, experienced significant dip-slip, west-side-up displacement between > 12 and 6 Ma. To the east, within the KYTS, our new thermochronologic data and geomorphic observations suggest that the Kumtag and Kusilaf dextral slip faults have been inactive since at least 3-5 Ma. Long-term incision rates across the Aertashi dextral slip fault, the easternmost strand of the KYTS, are compatible with slow horizontal slip rates of 1.7-5.3 mm/a over the past 3 to 5 Ma. In summary, these data show that the slip rate of the KYTS decreased substantially during the late Miocene or Pliocene. Furthermore, Miocene-present regional kinematic reconstructions suggest that this deceleration reflects the substantial increase of northward motion of Tarim rather than a significant decrease of the northward velocity of the Pamir. (C) 2011 Elsevier B.V. All rights reserved.}, language = {en} } @article{ThiedeSobelChenetal.2013, author = {Thiede, Rasmus Christoph and Sobel, Edward and Chen, Jie and Schoenbohm, Lindsay M. and Stockli, Daniel F. and Sudo, Masafumi and Strecker, Manfred}, title = {Late Cenozoic extension and crustal doming in the India-Eurasia collision zone new thermochronologic constraints from the NE Chinese Pamir}, series = {Tectonics}, volume = {32}, journal = {Tectonics}, number = {3}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1002/tect.20050}, pages = {763 -- 779}, year = {2013}, abstract = {The northward motion of the Pamir indenter with respect to Eurasia has resulted in coeval thrusting, strike-slip faulting, and normal faulting. The eastern Pamir is currently deformed by east-west oriented extension, accompanied by uplift and exhumation of the Kongur Shan (7719m) and Muztagh Ata (7546m) gneiss domes. Both domes are an integral part of the footwall of the Kongur Shan extensional fault system (KES), a 250 km long, north-south oriented graben. Why active normal faulting within the Pamir is primarily localized along the KES and not distributed more widely throughout the orogen has remained unclear. In addition, relatively little is known about how deformation has evolved throughout the Cenozoic, despite refined estimates on present-day crustal deformation rates and microseismicity, which indicate where crustal deformation is presently being accommodated. To better constrain the spatiotemporal evolution of faulting along the KES, we present 39 new apatite fission track, zircon U-Th-Sm/He, and Ar-40/Ar-39 cooling ages from a series of footwall transects along the KES graben shoulder. Combining these data with present-day topographic relief, 1-D thermokinematic and exhumational modeling documents successive stages, rather than synchronous deformation and gneiss dome exhumation. While the exhumation of the Kongur Shan commenced during the late Miocene, extensional processes in the Muztagh Ata massif began earlier and have slowed down since the late Miocene. We present a new model of synorogenic extension suggesting that thermal and density effects associated with a lithospheric tear fault along the eastern margin of the subducting Alai slab localize extensional upper plate deformation along the KES and decouple crustal motion between the central/western Pamir and eastern Pamir/Tarim basin.}, language = {en} } @phdthesis{Sobel2007, author = {Sobel, Edward}, title = {Interactions between deformation, exhumation, and climate in arid regions constrained by apatite fission-track analysis}, address = {Potsdam}, pages = {Getr. Z{\"a}hlung : graph. Darst., Kt.}, year = {2007}, language = {en} } @article{SobelSeward2010, author = {Sobel, Edward and Seward, Diane}, title = {Influence of etching conditions on apatite fission-track etch pit diameter}, issn = {0009-2541}, doi = {10.1016/j.chemgeo.2009.12.012}, year = {2010}, abstract = {The temperature range of the apatite fission-track partial annealing zone (PAZ) varies as a function of the kinetic characteristics of the apatite crystal as well as the cooling rate. These kinetic characteristics are controlled largely by the chemical composition of the apatites; fission-track etch pit diameter (D-par) has been shown to be a proxy for quantifying these characteristics. Since some annealing models explicitly use D-par as a kinetic indicator, the question of whether D-par varies according to either operator variability or etching conditions has serious implications. The influence of etching conditions includes both minor variations in temperature and etch time as well as larger variations between the three popular concentrations of nitric acid that are presently in use within the fission- track community: 5 and 5.5 M HNO3 at 21 degrees C for 20 s, and 1.6 M (7 vol.\%) HNO3 at 21 degrees C for 45 or 50 s. We have conducted a systematic study of D-par in two widely used apatite age standards: Durango and Fish Canyon Tuff (FCT). Samples were analyzed by at least 2 operators in 2 laboratories; over 15,000 etch pits were measured. Operator imprecision is small compared to other effects both within and between operators. The measured D-par parameters depend primarily on etching conditions including concentration of etchant, and the time and temperature of etching. D-par size increases linearly with time but non-linearly with temperature. Differences between D-par size of Durango and FCT are significantly smaller for the 1.6 M etch compared to the other two etches, implying that the weak etch has less resolving power for D-par measurements. In addition, when etching conditions are changed, confined track lengths for different apatite compositions and D-par values co-vary in a complex fashion. Therefore, the 5 or 5.5 M etch is recommended for studies that employ D-par as a proxy for chemistry; the 1.6 M etch and other weak etches are not recommended. We propose a linear correction for D-par based on measuring D-par in two widely available AFT age standards, Durango and FCT, and cross-plotting the results with those obtained by R. Donelick. The slope of the resulting curve, which passes through the origin, provides a correction factor. This system yields reasonably good corrected values for 3 test samples using the 5 M and 5.5 M HNO3 etches.}, language = {en} } @article{BlayneyNajmanDupontNivetetal.2016, author = {Blayney, Tamsin and Najman, Yani and Dupont-Nivet, Guillaume and Carter, Andrew and Millar, Ian and Garzanti, Eduardo and Sobel, Edward and Rittner, Martin and Ando, Sergio and Guo, Zhaojie and Vezzoli, Giovanni}, title = {Indentation of the Pamirs with respect to the northern margin of Tibet: Constraints from the Tarim basin sedimentary record}, series = {Tectonics}, volume = {35}, journal = {Tectonics}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1002/2016TC004222}, pages = {2345 -- 2369}, year = {2016}, abstract = {The Pamirs represent the indented westward continuation of the northern margin of the Tibetan Plateau, dividing the Tarim and Tajik basins. Their evolution may be a key factor influencing aridification of the Asian interior, yet the tectonics of the Pamir Salient are poorly understood. We present a provenance study of the Aertashi section, a Paleogene to late Neogene clastic succession deposited in the Tarim basin to the north of the NW margin of Tibet (the West Kunlun) and to the east of the Pamirs. Our detrital zircon U-Pb ages coupled with zircon fission track, bulk rock Sm-Nd, and petrography data document changes in contributing source terranes during the Oligocene to Miocene, which can be correlated to regional tectonics. We propose a model for the evolution of the Pamir and West Kunlun (WKL), in which the WKL formed topography since at least similar to 200 Ma. By similar to 25 Ma, movement along the Pamir-bounding faults such as the Kashgar-Yecheng Transfer System had commenced, marking the onset of Pamir indentation into the Tarim-Tajik basin. This is coincident with basinward expansion of the northern WKL margin, which changed the palaeodrainage pattern within the Kunlun, progressively cutting off the more southerly WKL sources from the Tarim basin. An abrupt change in the provenance and facies of sediments at Aertashi has a maximum age of 14 Ma; this change records when the Pamir indenter had propagated sufficiently far north that the North Pamir was now located proximal to the Aertashi region.}, language = {en} } @article{SchoenbohmChenStutzetal.2014, author = {Schoenbohm, Lindsay M. and Chen, Jie and Stutz, Jamey and Sobel, Edward and Thiede, Rasmus Christoph and Kirby, Benjamin and Strecker, Manfred}, title = {Glacial morphology in the Chinese Pamir: Connections among climate, erosion, topography, lithology and exhumation}, series = {Geomorphology : an international journal on pure and applied geomorphology}, volume = {221}, journal = {Geomorphology : an international journal on pure and applied geomorphology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-555X}, doi = {10.1016/j.geomorph.2014.05.023}, pages = {1 -- 17}, year = {2014}, abstract = {Modification of the landscape by glacial erosion reflects the dynamic interplay of climate through temperature, precipitation, and prevailing wind direction, and tectonics through rock uplift and exhumation rate, lithology, and range and fault geometry. We investigate these relationships in the northeast Pamir Mountains using mapping and dating of moraines and terraces to determine the glacial history. We analyze modem glacial morphology to determine glacier area, spacing, headwall relief, debris cover, and equilibrium line altitude (ELA) using the area x altitude balance ratio (AABR), toe-to-headwall altitude ratio (THAR) and toe-to-summit altitude method (TSAM) for 156 glaciers and compare this to lithologic, tectonic, and climatic data We observe a pronounced asymmetry in glacial ELA, area, debris cover, and headwall relief that we interpret to reflect both structural and climatic control: glaciers on the downwind (eastern) side of the range are larger, more debris covered, have steeper headwalls, and tend to erode headward, truncating the smaller glaciers of the upwind, fault-controlled side of the range. We explain this by the transfer of moisture deep into the range as wind-blown or avalanched snow and by limitations imposed on glacial area on the upwind side of the range by the geometry of the Kongur extensional system (KES). The correspondence between rapid exhumation along the KES and maxima in glacier debris cover and headwall relief and minimums in all measures of ELA suggest that taller glacier headwalls develop in a response to more rapid exhumation rates. However, we find that glaciers in the Muji valley did not extend beyond the range front until at least 43 ka, in contrast to extensive glaciation since 300 ka in the south around the high peaks, a pattern which does not clearly reflect uplift rate. Instead, the difference in glacial history and the presence of large peaks (Muztagh Ata and Kongur Shan) with flanking glaciers likely reflects lithologic control (i.e., the location of crustal gneiss domes) and the formation of peaks that rise above the ELA and escape the glacial buzzsaw. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @misc{RembeSobelKleyetal.2022, author = {Rembe, Johannes and Sobel, Edward and Kley, Jonas and Terbishalieva, Baiansulu and Musiol, Antje and Chen, Jie and Zhou, Renjie}, title = {Geochronology, Geochemistry, and Geodynamic Implications of Permo-Triassic Back-Arc Basin Successions in the North Pamir, Central Asia}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1309}, issn = {1866-8372}, doi = {10.25932/publishup-58331}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-583318}, pages = {21}, year = {2022}, abstract = {The Permo-Triassic period marks the time interval between Hercynian (Variscan) orogenic events in the Tien Shan and the North Pamir, and the Cimmerian accretion of the Gondwana-derived Central and South Pamir to the southern margin of the Paleo-Asian continent. A well-preserved Permo-Triassic volcano-sedimentary sequence from the Chinese North Pamir yields important information on the geodynamic evolution of Asia's pre-Cimmerian southern margin. The oldest volcanic rocks from that section are dated to the late Guadalupian epoch by a rhyolite and a dacitic dike that gave zircon U-Pb ages of ~260 Ma. Permian volcanism was largely pyroclastic and mafic to intermediate. Upsection, a massive ignimbritic crystal tuff in the Chinese Qimgan valley was dated to 244.1 +/- 1.1 Ma, a similar unit in the nearby Gez valley to 245 +/- 11 Ma, and an associated rhyolite to 233.4 +/- 1.1 Ma. Deposition of the locally ~200 m thick crystal tuff unit follows an unconformity and marks the onset of intense, mainly mafic to intermediate, calc-alkaline magmatic activity. Triassic volcanic activity in the North Pamir was coeval with the major phase of Cimmerian intrusive activity in the Karakul-Mazar arc-accretionary complex to the south, caused by northward subduction of the Paleo-Tethys. It also coincided with the emplacement of basanitic and carbonatitic dikes and a thermal event in the South Tien Shan, to the north of our study area. Evidence for arc-related magmatic activity in a back-arc position provides strong arguments for back-arc extension or transtension and basin formation. This puts the Qimgan succession in line with a more than 1000 km long realm of extensional Triassic back-arc basins known from the North Pamir in the Kyrgyz Altyn Darya valley (Myntekin formation), the North Pamir of Tajikistan and Afghanistan, and the Afghan Hindukush (Doab formation) and further west from the Paropamisus and Kopet Dag (Aghdarband, NE Iran).}, language = {en} } @article{RembeSobelKleyetal.2022, author = {Rembe, Johannes and Sobel, Edward and Kley, Jonas and Terbishalieva, Baiansulu and Musiol, Antje and Chen, Jie and Zhou, Renjie}, title = {Geochronology, Geochemistry, and Geodynamic Implications of Permo-Triassic Back-Arc Basin Successions in the North Pamir, Central Asia}, series = {Lithosphere}, volume = {2022}, journal = {Lithosphere}, number = {1}, publisher = {GeoScienceWorld, Geological Society of America}, address = {Boulder, Colorado, USA}, issn = {1947-4253}, doi = {10.2113/2022/7514691}, pages = {21}, year = {2022}, abstract = {The Permo-Triassic period marks the time interval between Hercynian (Variscan) orogenic events in the Tien Shan and the North Pamir, and the Cimmerian accretion of the Gondwana-derived Central and South Pamir to the southern margin of the Paleo-Asian continent. A well-preserved Permo-Triassic volcano-sedimentary sequence from the Chinese North Pamir yields important information on the geodynamic evolution of Asia's pre-Cimmerian southern margin. The oldest volcanic rocks from that section are dated to the late Guadalupian epoch by a rhyolite and a dacitic dike that gave zircon U-Pb ages of ~260 Ma. Permian volcanism was largely pyroclastic and mafic to intermediate. Upsection, a massive ignimbritic crystal tuff in the Chinese Qimgan valley was dated to 244.1 +/- 1.1 Ma, a similar unit in the nearby Gez valley to 245 +/- 11 Ma, and an associated rhyolite to 233.4 +/- 1.1 Ma. Deposition of the locally ~200 m thick crystal tuff unit follows an unconformity and marks the onset of intense, mainly mafic to intermediate, calc-alkaline magmatic activity. Triassic volcanic activity in the North Pamir was coeval with the major phase of Cimmerian intrusive activity in the Karakul-Mazar arc-accretionary complex to the south, caused by northward subduction of the Paleo-Tethys. It also coincided with the emplacement of basanitic and carbonatitic dikes and a thermal event in the South Tien Shan, to the north of our study area. Evidence for arc-related magmatic activity in a back-arc position provides strong arguments for back-arc extension or transtension and basin formation. This puts the Qimgan succession in line with a more than 1000 km long realm of extensional Triassic back-arc basins known from the North Pamir in the Kyrgyz Altyn Darya valley (Myntekin formation), the North Pamir of Tajikistan and Afghanistan, and the Afghan Hindukush (Doab formation) and further west from the Paropamisus and Kopet Dag (Aghdarband, NE Iran).}, language = {en} } @article{ThiedeArrowsmithBookhagenetal.2005, author = {Thiede, Rasmus Christoph and Arrowsmith, J. Ram{\´o}n and Bookhagen, Bodo and McWilliams, Michael O. and Sobel, Edward and Strecker, Manfred}, title = {From tectonically to erosionally controlled development of the Himalayan orogen}, issn = {0091-7613}, year = {2005}, abstract = {Whether variations in the spatial distribution of erosion influence the location, style, and magnitude of deformation within the Himalayan orogen is a matter of debate. We report new Ar-40/Ar-39 white mica and apatite fission- track (AFT) ages that measure the vertical component of exhumation rates along an similar to 120-km-wide NE-SW transect spanning the greater Sutlej region of northwest India. The Ar-40/Ar-39 data indicate that first the High Himalayan Crystalline units cooled below their closing temperature during the early to middle Miocene. Subsequently, Lesser Himalayan Crystalline nappes cooled rapidly, indicating southward propagation of the orogen during late Miocene to Pliocene time. The AFT data, in contrast, imply synchronous exhumation of a NE-SW-oriented similar to 80 x 40 km region spanning both crystalline nappes during the Pliocene-Quaternary. The locus of pronounced exhumation defined by the AFT data correlates with a region of high precipitation, discharge, and sediment flux rates during the Holocene. This correlation suggests that although tectonic processes exerted the dominant control on the denudation pattern before and until the middle Miocene; erosion may have been the most important factor since the Pliocene}, language = {en} } @article{DeekenThiedeSobeletal.2011, author = {Deeken, Anke and Thiede, Rasmus Christoph and Sobel, Edward and Hourigan, J. K. and Strecker, Manfred}, title = {Exhumational variability within the Himalaya of northwest India}, series = {Earth \& planetary science letters}, volume = {305}, journal = {Earth \& planetary science letters}, number = {1-2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2011.02.045}, pages = {103 -- 114}, year = {2011}, abstract = {In the Himalaya of Chamba, NW India, a major orographic barrier in front of the Greater Himalayan Range extracts a high proportion of the monsoonal rainfall along its southern slopes and effectively shields the orogen interior from moisture-bearing winds. Along a similar to 100-km-long orogen perpendicular transect, 28 new apatite fission track (AFT) and 30 new zircon (U-Th)/He (ZHe) cooling ages reveal marked variations in age distributions and long-term exhumation rates between the humid frontal range and the semi-arid orogen interior. On the southern topographic front, very young, elevation-invariant AFT ages of <4 Ma have been obtained that are concentrated in a similar to 30-km-wide zone; 1-D-thermal modeling suggests a Plio-Pleistocene mean erosion rate of 0.8-1.9 mm yr(-1). In contrast, AFT and ZHe ages within the orogen interior are older (4-9 and 7-18 Ma, respectively), are positively correlated with sample elevation, and yield lower mean erosion rates (0.3-0.9 mm yr(-1)). Protracted low exhumation rates within the orogen interior over the last similar to 15 Myr prevailed contemporaneously with overall humid conditions and an effective erosional regime within the southern Himalaya. This suggests that the frontal Dhauladar Range was sufficiently high during this time to form an orographic barrier, focusing climatically enhanced erosional processes and tectonic deformation there. Thrusting along the two frontal range-bounding thrust, the Main Central Thrust and the Main Boundary Thrusts, was initiated at least similar to 15 Ma ago and has remained localized since then. The lack of evidence for localized uplift farther north indicates either a rather flat decollement with no ramp or the absence of active duplex systems beneath the interior of Chamba. Exhumational variability within Chamba is best explained as the result of continuous thrusting along a major basal decollement, with a flat beneath the slowly exhuming internal compartments and a steep frontal ramp at the rapidly exhuming frontal range. The pattern in Chamba contrasts with what is observed elsewhere along the Himalaya, where exhumation is focused in a zone similar to 150 km north of the orogenic front. In the NW Himalaya, preserved High Himalayan Crystalline nappes and Lesser Himalayan windows alternate on a relatively small scale of <100 km; these alternations are closely correlated with the pattern of exhumation. Although the spatial distribution of high-exhumation zones varies considerably between individual Himalayan sectors, all of these zones are closely correlated with locally higher rock-uplift rates, sharp topographic discontinuities, and focused orographic precipitation, suggesting strong feedbacks between tectonically driven rock uplift, orographically enhanced precipitation, and erosional processes.}, language = {en} } @article{SobelOskinBurbanketal.2006, author = {Sobel, Edward and Oskin, Michael and Burbank, Douglas W. and Mikolaichuk, Alexander}, title = {Exhumation of basement-cored uplifts : Example of the Kyrgyz Range quantified with apatite fission track thermochronology}, doi = {10.1029/2005TC001809}, year = {2006}, abstract = {[1] The Kyrgyz Range, the northernmost portion of the Kyrgyzstan Tien Shan, displays topographic evidence for lateral propagation of surface uplift and exhumation. The highest, most deeply dissected segment lies in the center of the range. To the east, topography and relief decrease, and preserved remnants of a Cretaceous regional erosion surface imply minimal amounts of bedrock exhumation. The timing of exhumation of range segments defines the lateral propagation rate of the range-bounding reverse fault and quantifies the time and erosion depth needed to transform a mountain range from a juvenile to a mature morphology. New multicompositional apatite fission track ( AFT) data from three transects from the eastern Kyrgyz Range, combined with published AFT data, demonstrate that the range has propagated over 110 km eastward over the last similar to 7 - 11 Myr. On the basis of the thermal and topographic evolutionary history, we present a model for a time-varying exhumation rate driven by rock uplift and changes in erodability and the timescale of geomorphic adjustment to surface uplift. Easily eroded, Cenozoic sedimentary rocks overlying resistant basement control early, rapid exhumation and exhibit slow surface uplift rates. As increasing amounts of resistant basement are exposed, exhumation rates decrease while surface uplift rates are sustained or increase, thereby growing topography. As the range becomes high enough to cause ice accumulation and to develop steep river valleys, fluvial and glacial erosion becomes more powerful, and exhumation rates once again increase. Independently determined range-normal shortening rates also varied over time, suggesting a feedback between erosional efficiency and shortening rate}, language = {en} } @article{SobelSeward2010, author = {Sobel, Edward and Seward, Diane}, title = {Erratum to "Influence of etching conditions on apatite fission-track etch pit diameter by E.R. Sobel and D. Seward" [Chem. Geol. 271 (2010) 59-69]}, issn = {0009-2541}, doi = {10.1016/j.chemgeo.2010.08.005}, year = {2010}, language = {en} } @article{ParraMoraSobeletal.2009, author = {Parra, Mauricio and Mora, Andr{\´e}s and Sobel, Edward and Strecker, Manfred and Gonz{\´a}lez, Rom{\´a}n}, title = {Episodic orogenic front migration in the northern Andes : constraints from low-temperature thermochronology in the Eastern Cordillera, Colombia}, issn = {0278-7407}, doi = {10.1029/2008tc002423}, year = {2009}, abstract = {New thermochronometric data from the Eastern Cordillera of the Colombian Andes reveal diachronous exhumation associated with Cenozoic contractional deformation in this sector of the northern Andes. We present a comprehensive account of exhumation patterns along a 150-km-long, across-strike transect between similar to 4 degrees and 6 degrees N by integrating 29 new apatite fission track (AFT) ages and 17 new zircon fission track (ZFT) ages with sparse published thermochronological data from this area. Our data reveal episodic eastward migration of the orogenic front at an average rate of 2.5-2.7 mm/a during the Late Cretaceous-Cenozoic. We identify three major stages of orogen propagation: (1) slow propagation (0.5-3.1 mm/a) until early Eocene; (2) rapid orogenic advance (4.0-18.0 mm/a) during middle-late Eocene, which accounts for similar to 86\% of the orogen's present width; and (3) slow orogen propagation (1.2-2.1 mm/a) from Oligocene to Holocene times. Our data demonstrate that in the course of changes in plate kinematics, the presence of inherited crustal anisotropies, such as the former rift-bounding faults of the Eastern Cordillera, favor a nonsystematic progression of foreland basin deformation through time by preferentially concentrating accommodation of slip and thrust loading along these zones of weakness.}, language = {en} } @article{GeorgievaGallagherSobczyketal.2019, author = {Georgieva, Viktoria and Gallagher, Kerry and Sobczyk, Artur and Sobel, Edward and Schildgen, Taylor F. and Ehlers, Todd and Strecker, Manfred}, title = {Effects of slab-window, alkaline volcanism, and glaciation on thermochronometer cooling histories, Patagonian Andes}, series = {Earth \& planetary science letters}, volume = {511}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2019.01.030}, pages = {164 -- 176}, year = {2019}, abstract = {Southern Patagonia is a prime example of ongoing oceanic ridge collision and slab-window formation sustained over several million years. The impact of these phenomena on the thermal structure and exhumation of the crust have been mainly assessed with low-temperature thermochronology of bedrock samples. Here, we infer thermal histories from new and existing thermochronological data from the region of most recent ridge collision. In particular, we evaluate the potential far-reaching thermal effects of the evolving slab window, which have previously been considered responsible for patterns of late Miocene reheating associated with back-arc alkaline volcanism. Our model results define protracted cooling since similar to 15 Ma and stepwise exhumation since the late Miocene. The pattern of stepwise exhumation closely matches the onset of Patagonian glaciation at 7 Ma and the successive pulse of glacial incision coeval with neotectonic activity since 3-4 Ma that are also documented by independent geological and geomorphological evidence in the region. Importantly, our findings challenge the recently suggested lack of glacial erosion and incision since 5 Ma in this region. Furthermore, in contrast to previous modelling studies, we find that the available data do not evidence a previously proposed northward-propagating heating event associated with alkaline volcanism. We hypothesize that the anomalous alkaline volcanism in the Patagonian back-arc might be related to trench-orthogonal tears aligned with transform faults in the subducting plate. The substantial differences from the previous modelling procedure on some of the same samples is demonstrated to result from an important lack of convergence in model runs. (C) 2019 Elsevier B.V. All rights reserved.}, language = {en} } @article{ThiedeArrowsmithBookhagenetal.2006, author = {Thiede, Rasmus Christoph and Arrowsmith, J. Ram{\´o}n and Bookhagen, Bodo and McWilliams, Michael O. and Sobel, Edward and Strecker, Manfred}, title = {Dome formation and extension in the Tethyan Himalaya, Leo Pargil, northwest India}, doi = {10.1130/B25872.1}, year = {2006}, abstract = {Metamorphic dome complexes occur within the internal structures of the northern Himalaya and southern Tibet. Their origin, deformation, and fault displacement patterns are poorly constrained. We report new field mapping, structural data, and cooling ages from the western flank of the Leo Pargil dome in the northwestern Himalaya in an attempt to characterize its post-middle Miocene structural development. The western flank of the dome is characterized by shallow, west-dipping pervasive foliation and WNW-ESE mineral lineation. Shear-sense indicators demonstrate that it is affected by east-west normal faulting that facilitated exhumation of high-grade metamorphic rocks in a contractional setting. Sustained top-to-northwest normal faulting during exhumation is observed in a progressive transition from ductile to brittle deformation. Garnet and kyanite indicate that the Leo Pargil dome was exhumed from the mid-crust. Ar- 40/Ar-39 mica and apatite fission track (AFT) ages constrain cooling and exhumation pathways front 350 to 60 degrees C and suggest that the dome cooled in three stages since the middle Miocene. Ar-40/Ar-39 white mica ages of 16-14 Ma suggest a first phase of rapid cooling and provide minimum estimates for the onset of dome exhumation. AFT ages between 10 and 8 Ma suggest that ductile fault displacement had ceased by then, and AFT track-length data from high-elevation samples indicate that the rate of cooling had decreased significantly. We interpret this to indicate decreased fault displacement along the Leo Pargil shear zone and possibly a transition to the Kaurik-Chango normal fault system between 10 and 6 Ma. AFT ages from lower elevations indicate accelerated cooling since the Pliocene that cannot be related to pure fault displacement, and therefore may reflect more pronounced regionally distributed and erosion-driven exhumation}, language = {en} } @article{StreckerAlonsoBookhagenetal.2009, author = {Strecker, Manfred and Alonso, Ricardo N. and Bookhagen, Bodo and Carrapa, Barbara and Coutand, Isabelle and Hain, Mathis P. and Hilley, George E. and Mortimer, Estelle and Schoenbohm, Lindsay M. and Sobel, Edward}, title = {Does the topographic distribution of the central Andean Puna Plateau result from climatic or geodynamic processes?}, issn = {0091-7613}, doi = {10.1130/G25545a.1}, year = {2009}, abstract = {Orogenic plateaus are extensive, high-elevation areas with low internal relief that have been attributed to deep-seated and/or climate-driven surface processes. In the latter case, models predict that lateral plateau growth results from increasing aridity along the margins as range uplift shields the orogen interior from precipitation. We analyze the spatiotemporal progression of basin isolation and filling at the eastern margin of the Puna Plateau of the Argentine Andes to determine if the topography predicted by such models is observed. We find that the timing of basin filling and reexcavation is variable, suggesting nonsystematic plateau growth. Instead, the Airy isostatically compensated component of topography constitutes the majority of the mean elevation gain between the foreland and the plateau. This indicates that deep-seated phenomena, such as changes in crustal thickness and/or lateral density, are required to produce high plateau elevations. In contrast, the frequency of the uncompensated topography within the plateau and in the adjacent foreland that is interrupted by ranges appears similar, although the amplitude of this topographic component increases east of the plateau. Combined with sedimentologic observations, we infer that the low internal relief of the plateau likely results from increased aridity and sediment storage within the plateau and along its eastern margin.}, language = {en} } @article{DeekenSobelCoutandetal.2006, author = {Deeken, Anke and Sobel, Edward and Coutand, Isabelle and Haschke, Michael and Riller, Ulrich and Strecker, Manfred}, title = {Development of the southern Eastern Cordillera, NW Argentina, constrained by apatite fission track thermochronology: From early Cretaceous extension to middle Miocene shortening}, series = {Tectonics}, volume = {25}, journal = {Tectonics}, number = {6}, publisher = {Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1029/2005TC001894}, pages = {21}, year = {2006}, abstract = {[ 1] For the Puna Plateau and Eastern Cordillera of NW Argentina, the temporal and spatial pattern of deformation and surface uplift remain poorly constrained. Analysis of completely and partially reset apatite fission track samples collected from vertical profiles along an ESE trending transect extending from the plateau interior across the southern Eastern Cordillera at similar to 25 degrees S reveals important constraints on the deformation and exhumation history of this part of the Andes. The data constrain the Neogene Andean development of the Eastern Cordillera as well as rift-related exhumation for some of the sampled locations in the Late Jurassic/Early Cretaceous. An intervening Eocene-Oligocene exhumation episode in the southern Eastern Cordillera was probably related to crustal shortening. Subsequent reburial of the area by Andean foreland basin strata commenced between 30 and 25 Myr. Magnitude and duration of sedimentation, revealed by thermal modeling, differ between the sample locations, pointing to an eastward propagating basin system. In the southern Eastern Cordillera, Andean deformation commenced at 22.5 - 21 Myr, predating both the inferred formation of significant topography by 5 - 7.5 Myr and preservation of sediments in the adjacent Cenozoic basins by 6.5 - 8 Myr. Comparing the calculated structural depth of partially reset samples suggests that newly formed west dipping reverse faults along the former Salta Rift margin accommodated most of the Neogene tectonic movement. Late Cenozoic deformation at the southern Eastern Cordillera began earlier in the west and subsequently propagated eastward. The lateral growth of the orogen is coupled with a foreland basin system developing in front of the range and then becomes subsequently compartmentalized by later emergent topography.}, language = {en} } @article{SobelArnaud2000, author = {Sobel, Edward and Arnaud, Nicolas}, title = {Cretaceous - Paleogene basaltic rocks of the tuyon basin, NW China and the Kyrgyz Tian Shan : the trace of a smal plume}, year = {2000}, language = {en} } @article{ChenChenSobeletal.2019, author = {Chen, Xinwei and Chen, Hanlin and Sobel, Edward and Lin, Xiubin and Cheng, Xiaogan and Yan, Jiakai and Yang, Shaomei}, title = {Convergence of the Pamir and the South Tian Shan in the late Cenozoic}, series = {Lithosphere}, volume = {11}, journal = {Lithosphere}, number = {4}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {1941-8264}, doi = {10.1130/L1028.1}, pages = {507 -- 523}, year = {2019}, abstract = {In response to collision and convergence between India and Asia during the Cenozoic, convergence took place between the Pamir and South Tian Shan. Here we present new detrital zircon U-Pb ages coupled with conglomerate clast counting and sedimentary data from the late Cenozoic Wuheshalu section in the convergence zone, to shed light on the convergence process of the Pamir and South Tian Shan. Large Triassic zircon U-Pb age populations in all seven samples suggest that Triassic igneous rocks from the North Pamir were the major source area for the late Cenozoic Wuheshalu section. In the Miocene, large populations of the North Pamir component supports rapid exhumation in the North Pamir and suggest that topography already existed there since the early Miocene. Exhumation of the South Tian Shan was relatively less important in the Miocene and its detritus could only reach a limited area in the foreland area. Gradually increasing sediment loading and convergence of the Pamir and South Tian Shan caused rapid subsidence in the convergence area. Since ca. 6-5.3 Ma, the combination of a major North Pamir component and a minor South Tian Shan component at the Wuheshalu section is consistent with active deformation of the South Tian Shan and the North Pamir. During deposition of the upper Atushi Formation, a larger proportion of North Pamir-derived sediments was deposited in the Wuheshalu section, maybe because faulting and northward propagation of the North Pamir caused northward displacement of the depocenter to north of the Wuheshalu section.}, language = {en} } @article{ThiedeBookhagenArrowsmithetal.2004, author = {Thiede, Rasmus Christoph and Bookhagen, Bodo and Arrowsmith, J. Ram{\´o}n and Sobel, Edward and Strecker, Manfred}, title = {Climatic control on rapid exhumation along the Southern Himalayan Front}, issn = {0012-821X}, year = {2004}, abstract = {Along the Southern Himalayan Front (SHF), areas with concentrated precipitation coincide with rapid exhumation, as indicated by young mineral cooling ages. Twenty new, young ( < 1-5 Ma) apatite fission track (AFT) ages have been obtained from the Himalayan Crystalline Core along the Sutlej Valley, NW India. The AFT ages correlate with elevation, but show no spatial relationship to tectonic structures, such as the Main Central Thrust or the Southern Tibetan Fault System. Monsoonal precipitation in this region exerts a strong influence on erosional surface processes. Fluvial erosional unloading along the SHF is focused on high mountainous areas, where the orographic barrier forces out > 80\% of the annual precipitation. AFT cooling ages reveal a coincidence between rapid erosion and exhumation that is focused in a similar to 50-70-km-wide sector of the Himalaya, rather than encompassing the entire orogen. Assuming simplified constant exhumation rates, the rocks of two age vs. elevation transects were exhumed at similar to 1.4 +/- 0.2 and similar to 1.1 +/- 0.4 mm/a with an average cooling rate of similar to 40-50degreesC/Ma during Pliocene-Quarternary time. Following other recently published hypotheses regarding the relation between tectonics and climate in the Himalaya, we suggest that this concentrated loss of material was accommodated by motion along a back-stepping thrust to the south and a normal fault zone to the north as part of an extruding wedge. Climatically controlled erosional processes focus on this wedge and suggest that climatically controlled surface processes determine tectonic deformation in the internal part of the Himalaya. (C) 2004 Elsevier B.V. All rights reserved}, language = {en} } @article{CarrapaStreckerSobel2006, author = {Carrapa, Barbara and Strecker, Manfred and Sobel, Edward}, title = {Cenozoic orogenic growth in the Central Andes : evidence from sedimentary rock provenance and apatite fission track thermochronology in the Fiambala Basin, southernmost Puna Plateau margin (NW Argentina)}, issn = {0012-821X}, doi = {10.1016/j.epsl.2006.04.010}, year = {2006}, abstract = {Intramontane sedimentary basins along the margin of continental plateaus often preserve strata that contain fundamental information regarding the pattern of orogenic growth. The sedimentary record of the elastic Miocene-Pliocene sequence deposited in the Fiambala Basin, at the southern margin of the Puna Plateau (NW Argentina), documents the late Miocene paleodrainage evolution from headwaters to the west, towards headwaters in the ranges that constitute the border of the Puna Plateau to the north. Apatite Fission track (AFT) thermochronology of sedimentary and basement rocks show that the southern Puna Plateau was the source for the youngest, middle Miocene, detrital population detected in late Miocene rocks; and that the margin of the Puna Plateau expressed a high relief, possibly similar to or higher than at present, by late Miocene time. Cooling ages obtained from basement rocks at the southern Puna margin suggest that exhumation started in the Oligocene and continued until the middle Miocene. We interpret the basin reorganization and the creation of a high relief plateau margin to be the direct response of the source-basin system to a wholesale surface uplift event that may have occurred during the late Cenozoic in the Puna-Altiplano region. At this time coeval paleodrainage reorganization is observed not only in the Fiambala Basin, but also in different basins along the southern and eastern Puna margin, suggesting a genetic link between the last stage of plateau formation and basin response. However, this event did not cause sufficient exhumation of basin bounding ranges to be recorded by AFT thermochronology. Our new data thus document a decoupling between late Cenozoic surface uplift and exhumation in the southern Puna Plateau. High relief achieved at the Puna margin by late Miocene time is linked to Oligocene-Miocene exhumation; no significant erosion (< 3 km) has occurred since in this and highland.}, language = {en} } @article{WackGilderMacaulayetal.2014, author = {Wack, Michael R. and Gilder, Stuart A. and Macaulay, Euan A. and Sobel, Edward and Charreau, Julien and Mikolaichuk, Alexander}, title = {Cenozoic magnetostratigraphy and magnetic properties of the southern Issyk-Kul basin, Kyrgyzstan}, series = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, volume = {629}, journal = {Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0040-1951}, doi = {10.1016/j.tecto.2014.03.030}, pages = {14 -- 26}, year = {2014}, abstract = {We present paleomagnetic data from the northern flank of the Tianshan range, southeast of Lake Issyk-Kul (Kyrgyzstan). 613 cores were collected in two parallel sections with a total thickness of 960 m (Chon Kyzylsuu, CK) and 990 m Jeti Oguz, JO), as well as 48 cores at six sites in a nearby anticline. Rock magnetic analyses identify both magnetite and hematite in the fluvial-lacustrine sediments. The concentration of both minerals, the magnetite:hematite ratio, and the average magnetite grain size increase upward in both sections. Anisotropy of anhysteretic remanent magnetization defines a tectonic fabric with sub-horizontal maximum axes that parallel the strike direction together with intermediate and minimum axes that streak out about a great circle orthogonal to the maximum axes suggestive of a tectonic fabric emplaced during folding. Stepwise thermal demagnetization isolates interpretable magnetization components in 284 samples that define 26 polarity chrons in CK and 19 in JO. A positive fold test, dual polarities and systematic changes in rock-magnetic parameters with depth suggest that the high temperature magnetization component was acquired coevally with deposition. An age model based on a visual magnetostratigraphic correlation of both sections with the geomagnetic polarity time scale defines absolute ages from 26.0 to 13.3 Ma, with a fairly constant sedimentation rate of 9-10 cm/ka. A correlation based on a numerical algorithm arrives at a slightly different conclusion, with deposition ages from 25.2 to 11.0 Ma and sedimentation rates from 5 to 8 cm/ka. In comparison with sedimentation rates found at other magnetostratigraphic sections in the Tianshan realm, we infer that the sedimentary record in this part of the Issyk-Kul Basin precedes the more rapid phase of uplift of the Kyrgyz Tianshan. The onset of deposition and concomitant erosion of the adjacent Terskey Range is in good agreement with independent assessments of the exhumation history of this mountain range, with erosion increasing at 25-20 Ma and accelerating after 11-13 Ma. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @misc{MacaulaySobelMikolaichuketal.2014, author = {Macaulay, Euan A. and Sobel, Edward and Mikolaichuk, Alexander and Kohn, Barry and Stuart, Finlay M.}, title = {Cenozoic deformation and exhumation history of the Central Kyrgyz Tien Shan}, series = {Tectonics}, volume = {33}, journal = {Tectonics}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0278-7407}, doi = {10.1002/2013TC003376}, pages = {135 -- 165}, year = {2014}, abstract = {New low-temperature thermochronological data from 80 samples in eastern Kyrgyzstan are combined with previously published data from 61 samples to constrain exhumation in a number of mountain ranges in the Central Kyrgyz Tien Shan. All sampled ranges are found to have a broadly consistent Cenozoic exhumation history, characterized by initially low cooling rates (<1 degrees C/Myr) followed by a series of increases in exhumation that occurred diachronously across the region in the late Cenozoic that are interpreted to record the onset of deformation in different mountain ranges. Combined with geological estimates for the onset of proximal deformation, our data suggest that the Central Kyrgyz Tien Shan started deforming in the late Oligocene-early Miocene, leading to the development of several, widely spaced mountain ranges separated by large intermontane basins. Subsequently, more ranges have been constructed in response to significant shortening increases across the Central Kyrgyz Tien Shan, notably in the late Miocene. The order of range construction is interpreted to reflect variations in the susceptibility of inherited structures to reactivation. Reactivated structures are also shown to have significance along strike variations in fault vergence and displacement, which have influenced the development and growth of individual mountain ranges. Moreover, the timing of deformation allows the former extent of many intermontane basins that have since been partitioned to be inferred; this can be linked to the highly time-transgressive onset of late Cenozoic coarse clastic sedimentation.}, language = {en} } @misc{TerbishalievaTimmermanMikolaichuketal.2021, author = {Terbishalieva, Baiansuluu and Timmerman, Martin Jan and Mikolaichuk, Alexander and Altenberger, Uwe and Slama, Jiri and Schleicher, Anja Maria and Sudo, Masafumi and Sobel, Edward and Cichy, Sarah Bettina}, title = {Calc-alkaline volcanic rocks and zircon ages of the late Tonian}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1437-3254}, doi = {10.25932/publishup-56958}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-569585}, pages = {25}, year = {2021}, abstract = {The Big Naryn Complex (BNC) in the East Djetim-Too Range of the Kyrgyz Middle Tianshan block is a tectonized, at least 2 km thick sequence of predominantly felsic to intermediate volcanic rocks intruded by porphyric rhyolite sills. It overlies a basement of metamorphic rocks and is overlain by late Neoproterozoic Djetim-Too Formation sediments; these also occur as tectonic intercalations in the BNC. The up to ca. 1100 m thick Lower Member is composed of predominantly rhyolites-to-dacites and minor basalts, while the at least 900 m thick pyroclastic Upper Member is dominated by rhyolitic-to-dacitic ignimbrites. Porphyric rhyolite sills are concentrated at the top of the Lower Member. A Lower Member rhyolite and a sill sample have LA-ICP-MS U-Pb zircon crystallization ages of 726.1 +/- 2.2 Ma and 720.3 +/- 6.5 Ma, respectively, showing that most of the magmatism occurred within a short time span in the late Tonian-early Cryogenian. Inherited zircons in the sill sample have Neoarchean (2.63, 2.64 Ga), Paleo- (2.33-1.81 Ga), Meso- (1.55 Ga), and Neoproterozoic (ca. 815 Ma) ages, and were derived from a heterogeneous Kuilyu Complex basement. A 1751 +/- 7 Ma Ar-40/Ar-39 age for amphibole from metagabbro is the age of cooling subsequent to Paleoproterozoic metamorphism of the Kuilyu Complex. The large amount of pyroclastic rocks, and their major and trace element compositions, the presence of Neoarchean to Neoproterozoic inherited zircons and a depositional basement of metamorphic rocks point to formation of the BNC in a continental magmatic arc setting.}, language = {en} } @article{TerbishalievaTimmermanMikolaichuketal.2021, author = {Terbishalieva, Baiansuluu and Timmerman, Martin Jan and Mikolaichuk, Alexander and Altenberger, Uwe and Slama, Jiri and Schleicher, Anja Maria and Sudo, Masafumi and Sobel, Edward and Cichy, Sarah Bettina}, title = {Calc-alkaline volcanic rocks and zircon ages of the late Tonian}, series = {International journal of earth sciences}, volume = {110}, journal = {International journal of earth sciences}, number = {1}, publisher = {Springer}, address = {New York}, issn = {1437-3254}, doi = {10.1007/s00531-020-01956-z}, pages = {353 -- 375}, year = {2021}, abstract = {The Big Naryn Complex (BNC) in the East Djetim-Too Range of the Kyrgyz Middle Tianshan block is a tectonized, at least 2 km thick sequence of predominantly felsic to intermediate volcanic rocks intruded by porphyric rhyolite sills. It overlies a basement of metamorphic rocks and is overlain by late Neoproterozoic Djetim-Too Formation sediments; these also occur as tectonic intercalations in the BNC. The up to ca. 1100 m thick Lower Member is composed of predominantly rhyolites-to-dacites and minor basalts, while the at least 900 m thick pyroclastic Upper Member is dominated by rhyolitic-to-dacitic ignimbrites. Porphyric rhyolite sills are concentrated at the top of the Lower Member. A Lower Member rhyolite and a sill sample have LA-ICP-MS U-Pb zircon crystallization ages of 726.1 +/- 2.2 Ma and 720.3 +/- 6.5 Ma, respectively, showing that most of the magmatism occurred within a short time span in the late Tonian-early Cryogenian. Inherited zircons in the sill sample have Neoarchean (2.63, 2.64 Ga), Paleo- (2.33-1.81 Ga), Meso- (1.55 Ga), and Neoproterozoic (ca. 815 Ma) ages, and were derived from a heterogeneous Kuilyu Complex basement. A 1751 +/- 7 Ma Ar-40/Ar-39 age for amphibole from metagabbro is the age of cooling subsequent to Paleoproterozoic metamorphism of the Kuilyu Complex. The large amount of pyroclastic rocks, and their major and trace element compositions, the presence of Neoarchean to Neoproterozoic inherited zircons and a depositional basement of metamorphic rocks point to formation of the BNC in a continental magmatic arc setting.}, language = {en} } @article{Sobel1999, author = {Sobel, Edward}, title = {Basin analysis of the Jurassic : Lower Cretaceous southwest Tarim basin, NW China}, year = {1999}, language = {en} } @article{HuelscherSobelKallniketal.2022, author = {H{\"u}lscher, Julian and Sobel, Edward and Kallnik, Niklas and Hoffmann, J. Elis and Millar, Ian L. and Hartmann, Kai and Bernhardt, Anne}, title = {Apatites record sedimentary provenance change 4-5 myrs before clay in the Oligocene/Miocene Alpine molasse}, series = {Frontiers in Earth Science}, volume = {10}, journal = {Frontiers in Earth Science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-6463}, doi = {10.3389/feart.2022.914409}, pages = {16}, year = {2022}, abstract = {Extracting information about past tectonic or climatic environmental changes from sedimentary records is a key objective of provenance research. Interpreting the imprint of such changes remains challenging as signals might be altered in the sediment-routing system. We investigate the sedimentary provenance of the Oligocene/Miocene Upper Austrian Northern Alpine Foreland Basin and its response to the tectonically driven exhumation of the Tauern Window metamorphic dome (28 +/- 1 Ma) in the Eastern European Alps by using the unprecedented combination of Nd isotopic composition of bulk-rock clay-sized samples and partly previously published multi-proxy (Nd isotopic composition, trace-element geochemistry, U-Pb dating) sand-sized apatite single-grain analysis. The basin offers an excellent opportunity to investigate environmental signal propagation into the sedimentary record because comprehensive stratigraphic and seismic datasets can be combined with present research results. The bulk-rock clay-sized fraction epsilon Nd values of well-cutting samples from one well on the northern basin slope remained stable at similar to-9.7 from 27 to 19 Ma but increased after 19 Ma to similar to-9.1. In contrast, apatite single-grain distributions, which were extracted from 22 drill-core samples, changed significantly around 23.3 Ma from apatites dominantly from low-grade (