@article{HoegelePavlyukevich2014, author = {Hoegele, Michael and Pavlyukevich, Ilya}, title = {The exit problem from a neighborhood of the global attractor for dynamical systems perturbed by heavy-tailed levy processes}, series = {Stochastic analysis and applications}, volume = {32}, journal = {Stochastic analysis and applications}, number = {1}, publisher = {Taylor \& Francis Group}, address = {Philadelphia}, issn = {0736-2994}, doi = {10.1080/07362994.2014.858554}, pages = {163 -- 190}, year = {2014}, abstract = {We consider a finite-dimensional deterministic dynamical system with the global attractor ? which supports a unique ergodic probability measure P. The measure P can be considered as the uniform long-term mean of the trajectories staying in a bounded domain D containing ?. We perturb the dynamical system by a multiplicative heavy tailed Levy noise of small intensity E>0 and solve the asymptotic first exit time and location problem from D in the limit of E?0. In contrast to the case of Gaussian perturbations, the exit time has an algebraic exit rate as a function of E, just as in the case when ? is a stable fixed point studied earlier in [9, 14, 19, 26]. As an example, we study the first exit problem from a neighborhood of the stable limit cycle for the Van der Pol oscillator perturbed by multiplicative -stable Levy noise.}, language = {en} } @unpublished{HoegelePavlyukevich2014, author = {H{\"o}gele, Michael and Pavlyukevich, Ilya}, title = {Metastability of Morse-Smale dynamical systems perturbed by heavy-tailed L{\´e}vy type noise}, volume = {3}, number = {5}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {2193-6943}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70639}, pages = {27}, year = {2014}, abstract = {We consider a general class of finite dimensional deterministic dynamical systems with finitely many local attractors each of which supports a unique ergodic probability measure, which includes in particular the class of Morse-Smale systems in any finite dimension. The dynamical system is perturbed by a multiplicative non-Gaussian heavytailed L{\´e}vy type noise of small intensity ε > 0. Specifically we consider perturbations leading to a It{\^o}, Stratonovich and canonical (Marcus) stochastic differential equation. The respective asymptotic first exit time and location problem from each of the domains of attractions in case of inward pointing vector fields in the limit of ε-> 0 has been investigated by the authors. We extend these results to domains with characteristic boundaries and show that the perturbed system exhibits a metastable behavior in the sense that there exits a unique ε-dependent time scale on which the random system converges to a continuous time Markov chain switching between the invariant measures. As examples we consider α-stable perturbations of the Duffing equation and a chemical system exhibiting a birhythmic behavior.}, language = {en} } @article{HoegelePavlyukevich2015, author = {H{\"o}gele, Michael and Pavlyukevich, Ilya}, title = {Metastability in a class of hyperbolic dynamical systems perturbed by heavy-tailed Levy type noise}, series = {Stochastics and dynamic}, volume = {15}, journal = {Stochastics and dynamic}, number = {3}, publisher = {World Scientific}, address = {Singapore}, issn = {0219-4937}, doi = {10.1142/S0219493715500197}, pages = {26}, year = {2015}, abstract = {We consider a finite dimensional deterministic dynamical system with finitely many local attractors K-iota, each of which supports a unique ergodic probability measure P-iota, perturbed by a multiplicative non-Gaussian heavy-tailed Levy noise of small intensity epsilon > 0. We show that the random system exhibits a metastable behavior: there exists a unique epsilon-dependent time scale on which the system reminds of a continuous time Markov chain on the set of the invariant measures P-iota. In particular our approach covers the case of dynamical systems of Morse-Smale type, whose attractors consist of points and limit cycles, perturbed by multiplicative alpha-stable Levy noise in the Ito, Stratonovich and Marcus sense. As examples we consider alpha-stable Levy perturbations of the Duffing equation and Pareto perturbations of a biochemical birhythmic system with two nested limit cycles.}, language = {en} } @article{PadashChechkinDybiecetal.2019, author = {Padash, Amin and Chechkin, Aleksei V. and Dybiec, Bartlomiej and Pavlyukevich, Ilya and Shokri, Babak and Metzler, Ralf}, title = {First-passage properties of asymmetric Levy flights}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {52}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {45}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/ab493e}, pages = {48}, year = {2019}, abstract = {L{\´e}vy flights are paradigmatic generalised random walk processes, in which the independent stationary increments—the 'jump lengths'—are drawn from an -stable jump length distribution with long-tailed, power-law asymptote. As a result, the variance of L{\´e}vy flights diverges and the trajectory is characterised by occasional extremely long jumps. Such long jumps significantly decrease the probability to revisit previous points of visitation, rendering L{\´e}vy flights efficient search processes in one and two dimensions. To further quantify their precise property as random search strategies we here study the first-passage time properties of L{\´e}vy flights in one-dimensional semi-infinite and bounded domains for symmetric and asymmetric jump length distributions. To obtain the full probability density function of first-passage times for these cases we employ two complementary methods. One approach is based on the space-fractional diffusion equation for the probability density function, from which the survival probability is obtained for different values of the stable index and the skewness (asymmetry) parameter . The other approach is based on the stochastic Langevin equation with -stable driving noise. Both methods have their advantages and disadvantages for explicit calculations and numerical evaluation, and the complementary approach involving both methods will be profitable for concrete applications. We also make use of the Skorokhod theorem for processes with independent increments and demonstrate that the numerical results are in good agreement with the analytical expressions for the probability density function of the first-passage times.}, language = {en} } @article{PavlyukevichLiXuetal.2015, author = {Pavlyukevich, Ilya and Li, Yongge and Xu, Yong and Chechkin, Aleksei V.}, title = {Directed transport induced by spatially modulated Levy flights}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {48}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {49}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8113/48/49/495004}, pages = {21}, year = {2015}, abstract = {In this paper we study the dynamics of a particle in a ratchet potential subject to multiplicative alpha-stable Levy noise, alpha is an element of(0, 2), in the limit of a noise amplitude epsilon -> 0. We compare the dynamics for Ito and Marcus multiplicative noises and obtain the explicit asymptotics of the escape time in the wells and transition probabilities between the wells. A detailed analysis of the noise-induced current is performed for the Seebeck ratchet with a weak multiplicative noise for alpha is an element of(0, 2].}, language = {en} }