@article{WangRychkovNguyenetal.2020, author = {Wang, Jingwen and Rychkov, Dmitry and Nguyen, Quyet Doan and Gerhard, Reimund}, title = {Unexpected bipolar space-charge polarization across transcrystalline interfaces in polypropylene electret films}, series = {Journal of applied physics}, volume = {128}, journal = {Journal of applied physics}, number = {13}, publisher = {American Institute of Physics, AIP}, address = {Melville, NY}, issn = {0021-8979}, doi = {10.1063/5.0022071}, pages = {7}, year = {2020}, abstract = {A double-layer transcrystalline polypropylene (PP) film with a flat central interface layer between its two transcrystalline layers is obtained by recrystallization from the melt between two polytetrafluoroethylene (PTFE) surfaces on both sides of the PP film. Its electret properties are studied and compared with those of a single-layer transcrystalline PP film re-crystallized in contact with only one PTFE surface. Within experimental uncertainty, the two types of transcrystalline films exhibit the same thermal properties and crystallinities. After thermal poling, however, two hetero-charge layers of opposite polarity are found on the internal interfaces of the double-layer transcrystalline films and may together be considered as micrometer-sized dipoles. The unexpected phenomenon does not occur in single-layer transcrystalline samples without a central interface layer, suggesting that the interfaces between the transcrystalline layers and the micrometer-thick central interface layer may be the origin of deeper traps rather than the crystalline structures in the transcrystallites or the spherulites. The origin of the interfacial charges was also studied by means of an injection-blocking charging method, which revealed that intrinsic charge carriers introduced during recrystallization are most likely responsible for the interfacial charges. It is fascinating that a material as familiar as PP can exhibit such intriguing properties with a special bipolar space-charge polarization across the central interface layer after quasi-epitaxial surface moulding into a double-layer transcrystalline form. In addition to applications in electret (micro-)devices for electro-mechanical transduction, the highly ordered structures may also be employed as a new paradigm for studying charge storage and transport in polymer electrets and in dielectrics for DC electrical insulation.}, language = {en} } @article{WangRychkovNguyenetal.2020, author = {Wang, Jingwen and Rychkov, Dmitry and Nguyen, Quyet Doan and Gerhard, Reimund}, title = {The influence of orthophosphoric-acid surface modification on charge-storage enhancement in polypropylene electrets}, series = {Journal of applied physics}, volume = {128}, journal = {Journal of applied physics}, number = {3}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-8979}, doi = {10.1063/5.0013805}, pages = {6}, year = {2020}, abstract = {Bipolar electrets from polypropylene (PP) are essential, e.g., in electret air filters and in cellular-foam ferroelectrets. Therefore, the mechanism of surface-charge stability enhancement on PP electrets via orthophosphoric-acid surface treatment is investigated in detail. It is shown that the significant charge-stability enhancement can be mainly attributed to deeper surface traps originating from deposited chemicals and topographic features on the modified surfaces. Thermally stimulated discharge of chemically treated and non-treated PP films with different surface-charge densities is used to test the limits of the newly formed deep traps in terms of the capacity for hosting surface charges. When the initial surface-charge density is very high, more charges are forced into shallower original traps on the surface or in the bulk of the treated PP samples, reducing the effect of the deeper surface traps brought by the surface modification. The well-known crossover phenomenon (of the surface-charge decay curves) has been observed between modified PP electrets charged to +/- 2kV and to +/- 3kV. Acoustically probed charge distributions in the thickness direction of PP electrets at different stages of thermal discharging indicate that the deep surface trapping sites may have preference for negative charges, resulting in the observed asymmetric charge stability of the modified PP films.}, language = {en} } @misc{NguyenGerhard2018, author = {Nguyen, Quyet Doan and Gerhard, Reimund}, title = {LDPE/MgO Nanocomposite Dielectrics for Electrical-Insulation and Ferroelectret-Transducer Applications}, series = {2018 IEEE 2nd International Conference on Dielectrics (ICD)}, journal = {2018 IEEE 2nd International Conference on Dielectrics (ICD)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5386-6389-9}, pages = {4}, year = {2018}, abstract = {Published results on LDPE/MgO nanocomposites (3wt\%) show that they promise to be good electrical-insulation materials. In this work, the nanocomposites are examined as a potential (ferro-)electret material as well. Isothermal surface-potential decay measurements show that charged LDPE/MgO films still exhibit significant surface potentials after heating for 4 hours at 80 degrees C, which suggests good capabilities of LDPE/MgO nanocomposites to hold electric charges of both polarities. Open-tubular-channel ferroelectrets prepared from LDPE/MgO nanocomposite films show significant piezoelectricity with d(33) coefficients of about 20 pC/N after charging and are stable up to temperatures of at least 80 degrees C. Thus LDPE/MgO nanocomposites may become available as a new ferroelectret material. To increase their d(33) coefficients, it is desirable to optimize the charging conditions and the ferroelectret structure.}, language = {en} } @phdthesis{Nguyen2019, author = {Nguyen, Quyet Doan}, title = {Electro-acoustical probing of space-charge and dipole-polarization profiles in polymer dielectrics for electret and electrical-insulation applications}, doi = {10.25932/publishup-44562}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-445629}, school = {Universit{\"a}t Potsdam}, pages = {105}, year = {2019}, abstract = {Electrets are dielectrics with quasi-permanent electric charge and/or dipoles, sometimes can be regarded as an electric analogy to a magnet. Since the discovery of the excellent charge retention capacity of poly(tetrafluoro ethylene) and the invention of the electret microphone, electrets have grown out of a scientific curiosity to an important application both in science and technology. The history of electret research goes hand in hand with the quest for new materials with better capacity at charge and/or dipole retention. To be useful, electrets normally have to be charged/poled to render them electro-active. This process involves electric-charge deposition and/or electric dipole orientation within the dielectrics ` surfaces and bulk. Knowledge of the spatial distribution of electric charge and/or dipole polarization after their deposition and subsequent decay is crucial in the task to improve their stability in the dielectrics. Likewise, for dielectrics used in electrical insulation applications, there are also needs for accumulated space-charge and polarization spatial profiling. Traditionally, space-charge accumulation and large dipole polarization within insulating dielectrics is considered undesirable and harmful to the insulating dielectrics as they might cause dielectric loss and could lead to internal electric field distortion and local field enhancement. High local electric field could trigger several aging processes and reduce the insulating dielectrics' lifetime. However, with the advent of high-voltage DC transmission and high-voltage capacitor for energy storage, these are no longer the case. There are some overlapped between the two fields of electrets and electric insulation. While quasi-permanently trapped electric-charge and/or large remanent dipole polarization are the requisites for electret operation, stably trapped electric charge in electric insulation helps reduce electric charge transport and overall reduced electric conductivity. Controlled charge trapping can help in preventing further charge injection and accumulation as well as serving as field grading purpose in insulating dielectrics whereas large dipole polarization can be utilized in energy storage applications. In this thesis, the Piezoelectrically-generated Pressure Steps (PPSs) were employed as a nondestructive method to probe the electric-charge and dipole polarization distribution in a range of thin film (several hundred micron) polymer-based materials, namely polypropylene (PP), low-density polyethylene/magnesium oxide (LDPE/MgO) nanocomposites and poly(vinylidene fluoride-co- trifluoro ethylene) (P(VDF-TrFE)) copolymer. PP film surface-treated with phosphoric acid to introduce surfacial isolated nanostructures serves as example of 2-dimensional nano-composites whereas LDPE/MgO serves as the case of 3-dimensional nano-composites with MgO nano-particles dispersed in LDPE polymer matrix. It is evidenced that the nanoparticles on the surface of acid-treated PP and in the bulk of LDPE/MgO nanocomposites improve charge trapping capacity of the respective material and prevent further charge injection and transport and that the enhanced charge trapping capacity makes PP and LDPE/MgO nanocomposites potential materials for both electret and electrical insulation applications. As for PVDF and VDF-based copolymers, the remanent spatial polarization distribution depends critically on poling method as well as specific parameters used in the respective poling method. In this work, homogeneous polarization poling of P(VDF-TrFE) copolymers with different VDF-contents have been attempted with hysteresis cyclical poling. The behaviour of remanent polarization growth and spatial polarization distribution are reported and discussed. The Piezoelectrically-generated Pressure Steps (PPSs) method has proven as a powerful method for the charge storage and transport characterization of a wide range of polymer material from nonpolar, to polar, to polymer nanocomposites category.}, language = {en} } @misc{NguyenWangRychkovetal.2019, author = {Nguyen, Quyet Doan and Wang, Jingwen and Rychkov, Dmitry and Gerhard, Reimund}, title = {Depth Profile and Transport of Positive and Negative Charge in Surface (2-D) and Bulk (3-D) Nanocomposite Films}, series = {2nd International Conference on Electrical Materials and Power Equipment (ICEMPE 2019)}, journal = {2nd International Conference on Electrical Materials and Power Equipment (ICEMPE 2019)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5386-8434-4}, doi = {10.1109/ICEMPE.2019.8727256}, pages = {298 -- 300}, year = {2019}, abstract = {In the present study, the charge distribution and the charge transport across the thickness of 2- and 3-dimensional polymer nanodielectrics was investigated. Chemically surface-treated polypropylene (PP) films and low-density polyethylene nanocomposite films with 3 wt \% of magnesium oxide (LDPE/MgO) served as examples of 2-D and 3-D nanodielectrics, respectively. Surface charges were deposited onto the non-metallized surfaces of the one-side metallized polymer films and found to broaden and to thus enter the bulk of the films upon thermal stimulation at suitable elevated temperatures. The resulting space-charge profiles in the thickness direction were probed by means of Piezoelectrically-generated Pressure Steps (PPSs). It was observed that the chemical surface treatment of PP which led to the formation of nano-structures or the use of bulk nanoparticles from LDPE/MgO nanocomposites enhance charge trapping on or in the respective polymer films and also reduce charge transport inside the respective samples.}, language = {en} }