@article{Jeltsch2003, author = {Jeltsch, Florian}, title = {{\"O}kologische Forschungen an der Unteren Havel}, series = {Brandenburgische Umwelt-Berichte : BUB ; Schriftenreihe der Mathematisch-Naturwissenschaftlichen Fakult{\"a}t der Universit{\"a}t Potsdam}, volume = {13}, journal = {Brandenburgische Umwelt-Berichte : BUB ; Schriftenreihe der Mathematisch-Naturwissenschaftlichen Fakult{\"a}t der Universit{\"a}t Potsdam}, issn = {1434-2375}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-4100}, pages = {138 -- 139}, year = {2003}, language = {de} } @article{Jeltsch2002, author = {Jeltsch, Florian}, title = {Wechselbeziehungen zwischen Artendiversit{\"a}t und struktureller Diversit{\"a}t : modellgest{\"u}tzte Untersuchungen am Beispiel einer semiariden Savanne}, year = {2002}, language = {de} } @article{WichmannJeltschDeanetal.2002, author = {Wichmann, Matthias and Jeltsch, Florian and Dean, Richard and Moloney, Kirk A. and Wissel, Christian}, title = {Weather does matter : simulating population dynamics of tawny eagle (Aquila rapax) under various rainfall scenarios}, year = {2002}, language = {en} } @article{JeltschWiegandHanskietal.2003, author = {Jeltsch, Florian and Wiegand, T. and Hanski, I. and Grimm, Volker}, title = {Using pattern-oriented modeling for revealing hidden information : a key for reconciling ecological theory and application}, year = {2003}, language = {en} } @article{EccardDeanWichmannetal.2006, author = {Eccard, Jana and Dean, W. Richard J. and Wichmann, Matthias and Huttunen, S. M and Eskelinen, Eeva-Liisa and Moloney, Kirk A. and Jeltsch, Florian}, title = {Use of large Acacia trees by the cavity dwelling Black-tailed Tree Rat in the southern Kalahari}, issn = {0140-1963}, doi = {10.1016/j.jaridenv.2005.06.019}, year = {2006}, abstract = {Recent extensive harvesting of large, often dead Acacia trees in and savanna of southern Africa is cause for concern about the conservation status of the arid savanna and its animal community. We mapped vegetation and nests of the Black-tailed Tree Rat Thallomy's nigricauda to assess the extent to which the rats depend on particular tree species and on the existence of dead, standing trees. The study was conducted in continuous Acacia woodland on the southern and eastern edge of the Kalahari, South Africa. Trees in which there were tree rat nests were compared with trees of similar size and vigour to identify the characteristics of nest sites. Spatial analysis of tree rat distribution was conducted using Ripley's-L function. We found that T nigricauda was able to utilize all available tree species, as long as trees were large and old enough so that cavities were existing inside the stem. The spatial distribution of nest trees did not show clumping at the investigated scale, and we therefore reject the notion of the rats forming colonies when inhabiting continuous woodlands. The selection of a particular tree as a nest site was furthermore depending on the close proximity of the major food plant, Acacia mellifera. This may limit the choice of suitable nest sites. since A. mellifera was less likely to grow within a vegetation patch containing a large trees than in patches without large trees.}, language = {en} } @incollection{LueckBalderjahnKammetal.2000, author = {L{\"u}ck, Erika and Balderjahn, Ingo and Kamm, Birgit and Greil, Holle and Wallschl{\"a}ger, Hans-Dieter and Jessel, Beate and B{\"o}ckmann, Christine and Oberh{\"a}nsli, Roland and Soyez, Konrad and Schmeer, Ernst and Blumenstein, Oswald and Berndt, Klaus-Peter and Edeling, Thomas and Friedrich, Sabine and Kaden, Klaus and Scheller, Frieder W. and Petersen, Hans-Georg and Asche, Hartmut and Bronstert, Axel and Giest, Hartmut and Gaedke, Ursula and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Jeltsch, Florian and J{\"a}nkel, Ralph and Gzik, Axel and Bork, Hans-Rudolf and Bork, Hans-Rudolf}, title = {Umweltforschung f{\"u}r das Land Brandenburg : Arbeitsgruppen und Professuren}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-3797}, publisher = {Universit{\"a}t Potsdam}, year = {2000}, language = {de} } @article{TittelBorkRoepkeetal.2000, author = {Tittel, J{\"o}rg and Bork, Rudolf and R{\"o}pke, Bj{\"o}rn and Geldmacher, Karl and Schnur, Tilo and Faust, Berno and Schaphoff, Sibyll and Dalchow, Claus and Woithe, Franka and Bronstert, Axel and Jeltsch, Florian and Jessel, Beate and Zschalich, Andrea and R{\"o}ßling, Holger and Spindler, Joris and Gaedke, Ursula and Tielb{\"o}rger, Katja and Kadmon, R. and M{\"u}ller, J. and Bissinger, Vera and Weithoff, Guntram and Wallschl{\"a}ger, Hans-Dieter and Wiegleb, Gerhard}, title = {Umweltforschung f{\"u}r das Land Brandenburg}, series = {Brandenburgische Umwelt-Berichte : BUB ; Schriftenreihe der Mathematisch-Naturwissenschaftlichen Fakult{\"a}t der Universit{\"a}t Potsdam}, volume = {8}, journal = {Brandenburgische Umwelt-Berichte : BUB ; Schriftenreihe der Mathematisch-Naturwissenschaftlichen Fakult{\"a}t der Universit{\"a}t Potsdam}, issn = {1434-2375}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-3828}, pages = {80 -- 134}, year = {2000}, abstract = {BISSINGER, V.; TITTEL, J.: Process rates and growth limiting factors of planktonic algae (Chlamydomonas sp.) from extremely acidic (pH 2,5 - 3) mining lakes in Germany ; BORK, H.-R. et al.: Erodierte Autos und Brunnen in Oregon, USA ; BRONSTERT, A. et al.: Bewirtschaftunsm{\"o}glichkeiten im Einzugsgebiet der Havel ; JELTSCH, F. et al.: Beweidung als Degradationsfaktor in ariden und semiariden Weidesystemen ; JELTSCH, F. et al.: Entstehung und Bedeutung r{\"a}umlicher Vegetationsstrukturen in Trockensavannen: Baum-Graskoexistenz und Artenvielfalt ; JESSEL, B. et al.: Bodenbewertung f{\"u}r Planungs- und Zulassungsverfahren in Brandenburg ; JESSEL, B.; ZSCHALICH, A.: Erarbeitung von Ausgleichs- und Ersatzmaßnahmen f{\"u}r die Wert- und Funktionselemente des Landschaftsbildes ; R{\"O}ßLING, H. et al.: Umsetzung von Ausgleichs- und Ersatzmaßnahmen beim Ausbau der Bundesautobahn A 9 ; SPINDLER, J.; GAEDKE, U.: Estimating production in plankton food webs from biomass size spectra and allometric relationships ; TIELB{\"O}RGER, K. et al.: Sukzessionsprozesse in einem Sandd{\"u}nengebiet nach Ausschluß von Beweidung ; TIELB{\"O}RGER, K. et al.: Populationsdynamische Funktionen von Ausbreitung und Dormanz ; TIELB{\"O}RGER, K. et al.: Raum-zeitliche Populationsdynamik von einj{\"a}hrigen W{\"u}stenpflanzen ; TITTEL, J. et al.: Ressourcennutzung und -weitergabe im planktischen Nahrungsnetz eines extrem sauren (pH 2,7) Tagebausees ; WALLSCHL{\"A}GER, D.; WIEGLEB, G.: Offenland-Management auf ehemaligen und in Nutzung befindlichen Truppen{\"u}bungspl{\"a}tzen im pleistoz{\"a}nen Flachland Nordostdeutschlands: Naturschutzfachliche Grundlagen und praktische Anwendungen ; WEITHOFF, G.; GAEDKE, U.: Planktische R{\"a}uber-Beute-Systeme: Experimentelle Untersuchung von {\"o}kologischen Synchronisationen}, language = {de} } @article{BergholzMayRistowetal.2017, author = {Bergholz, Kolja and May, Felix and Ristow, Michael and Giladi, Itamar and Ziv, Yaron and Jeltsch, Florian}, title = {Two Mediterranean annuals feature high within-population trait variability and respond differently to a precipitation gradient}, series = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, volume = {25}, journal = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, publisher = {Elsevier}, address = {Jena}, issn = {1439-1791}, doi = {10.1016/j.baae.2017.11.001}, pages = {48 -- 58}, year = {2017}, abstract = {Intraspecific trait variability plays an important role in species adaptation to climate change. However, it still remains unclear how plants in semi-arid environments respond to increasing aridity. We investigated the intraspecific trait variability of two common Mediterranean annuals (Geropogon hybridus and Crupina crupinastrum) with similar habitat preferences. They were studied along a steep precipitation gradient in Israel similar to the maximum predicted precipitation changes in the eastern Mediterranean basin (i.e. -30\% until 2100). We expected a shift from competitive ability to stress tolerance with decreasing precipitation and tested this expectation by measuring key functional traits (canopy and seed release height, specific leaf area, N-and P-leaf content, seed mass). Further, we evaluated generative bet-hedging strategies by different seed traits. Both species showed different responses along the precipitation gradient. C. crupinastrum exhibited only decreased plant height toward saridity, while G. hybridus showed strong trends of generative adaptation to aridity. Different seed trait indices suggest increased bet-hedging of G. hybridus in arid environments. However, no clear trends along the precipitation gradient were observed in leaf traits (specific leaf area and leaf N-/P-content) in both species. Moreover, variance decomposition revealed that most of the observed trait variation (>> 50\%) is found within populations. The findings of our study suggest that responses to increased aridity are highly species-specific and local environmental factors may have a stronger effect on intraspecific trait variation than shifts in annual precipitation. We therefore argue that trait-based analyses should focus on precipitation gradients that are comparable to predicted precipitation changes and compare precipitation effects to effects of local environmental factors. (C) 2017 Gesellschaft fur Okologie. Published by Elsevier GmbH. All rights reserved.}, language = {en} } @article{KruseWieczorekJeltschetal.2016, author = {Kruse, Stefan and Wieczorek, Mareike and Jeltsch, Florian and Herzschuh, Ulrike}, title = {Treeline dynamics in Siberia under changing climates as inferred from an individual-based model for Larix}, series = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, volume = {338}, journal = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2016.08.003}, pages = {101 -- 121}, year = {2016}, language = {en} } @article{TreydteGrantJeltsch2009, author = {Treydte, Anna C. and Grant, Rina C. C. and Jeltsch, Florian}, title = {Tree size and herbivory determine below-canopy grass quality and species composition in savannahs}, issn = {0960-3115}, doi = {10.1007/s10531-009-9694-3}, year = {2009}, abstract = {Large single-standing trees are rapidly declining in savannahs, ecosystems supporting a high diversity of large herbivorous mammals. Savannah trees are important as they support both a unique flora and fauna. The herbaceous layer in particular responds to the structural and functional properties of a tree. As shrubland expands stem thickening occurs and large trees are replaced by smaller trees. Here we examine whether small trees are as effective in providing advantages for grasses growing beneath their crowns as large trees are. The role of herbivory in this positive tree- grass interaction is also investigated. We assessed soil and grass nutrient content, structural properties, and herbaceous species composition beneath trees of three size classes and under two grazing regimes in a South African savannah. We found that grass leaf content (N and P) beneath the crowns of particularly large (ca. 3.5 m) and very large trees (ca. 9 m) was as much as 40\% greater than the same grass species not growing under a tree canopy, whereas nutrient contents of grasses did not differ beneath small trees (< 2.3 m). Moderate herbivory enhanced these effects slightly. Grass species composition differed beneath and beyond the tree canopy but not between tree size classes. As large trees significantly improve the grass nutrient quality for grazers in contrast to smaller trees, the decline of the former should be halted. The presence of trees further increases grass species diversity and patchiness by favouring shade- tolerant species. Both grazing wildlife and livestock will benefit from the presence of large trees because of their structural and functional importance for savannahs.}, language = {en} } @misc{BergholzKoberJeltschetal.2021, author = {Bergholz, Kolja and Kober, Klarissa and Jeltsch, Florian and Schmidt, Kristina and Weiß, Lina}, title = {Trait means or variance}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-51990}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-519905}, pages = {3357 -- 3365}, year = {2021}, abstract = {One of the few laws in ecology is that communities consist of few common and many rare taxa. Functional traits may help to identify the underlying mechanisms of this community pattern, since they correlate with different niche dimensions. However, comprehensive studies are missing that investigate the effects of species mean traits (niche position) and intraspecific trait variability (ITV, niche width) on species abundance. In this study, we investigated fragmented dry grasslands to reveal trait-occurrence relationships in plants at local and regional scales. We predicted that (a) at the local scale, species occurrence is highest for species with intermediate traits, (b) at the regional scale, habitat specialists have a lower species occurrence than generalists, and thus, traits associated with stress-tolerance have a negative effect on species occurrence, and (c) ITV increases species occurrence irrespective of the scale. We measured three plant functional traits (SLA = specific leaf area, LDMC = leaf dry matter content, plant height) at 21 local dry grassland communities (10 m × 10 m) and analyzed the effect of these traits and their variation on species occurrence. At the local scale, mean LDMC had a positive effect on species occurrence, indicating that stress-tolerant species are the most abundant rather than species with intermediate traits (hypothesis 1). We found limited support for lower specialist occurrence at the regional scale (hypothesis 2). Further, ITV of LDMC and plant height had a positive effect on local occurrence supporting hypothesis 3. In contrast, at the regional scale, plants with a higher ITV of plant height were less frequent. We found no evidence that the consideration of phylogenetic relationships in our analyses influenced our findings. In conclusion, both species mean traits (in particular LDMC) and ITV were differently related to species occurrence with respect to spatial scale. Therefore, our study underlines the strong scale-dependency of trait-abundance relationships.}, language = {en} } @article{BergholzKoberJeltschetal.2021, author = {Bergholz, Kolja and Kober, Klarissa and Jeltsch, Florian and Schmidt, Kristina and Weiß, Lina}, title = {Trait means or variance}, series = {Ecology and evolution}, volume = {11}, journal = {Ecology and evolution}, number = {7}, publisher = {John Wiley \& Sons, Inc.}, issn = {2045-7758}, doi = {10.1002/ece3.7287}, pages = {3357 -- 3365}, year = {2021}, abstract = {One of the few laws in ecology is that communities consist of few common and many rare taxa. Functional traits may help to identify the underlying mechanisms of this community pattern, since they correlate with different niche dimensions. However, comprehensive studies are missing that investigate the effects of species mean traits (niche position) and intraspecific trait variability (ITV, niche width) on species abundance. In this study, we investigated fragmented dry grasslands to reveal trait-occurrence relationships in plants at local and regional scales. We predicted that (a) at the local scale, species occurrence is highest for species with intermediate traits, (b) at the regional scale, habitat specialists have a lower species occurrence than generalists, and thus, traits associated with stress-tolerance have a negative effect on species occurrence, and (c) ITV increases species occurrence irrespective of the scale. We measured three plant functional traits (SLA = specific leaf area, LDMC = leaf dry matter content, plant height) at 21 local dry grassland communities (10 m × 10 m) and analyzed the effect of these traits and their variation on species occurrence. At the local scale, mean LDMC had a positive effect on species occurrence, indicating that stress-tolerant species are the most abundant rather than species with intermediate traits (hypothesis 1). We found limited support for lower specialist occurrence at the regional scale (hypothesis 2). Further, ITV of LDMC and plant height had a positive effect on local occurrence supporting hypothesis 3. In contrast, at the regional scale, plants with a higher ITV of plant height were less frequent. We found no evidence that the consideration of phylogenetic relationships in our analyses influenced our findings. In conclusion, both species mean traits (in particular LDMC) and ITV were differently related to species occurrence with respect to spatial scale. Therefore, our study underlines the strong scale-dependency of trait-abundance relationships.}, language = {en} } @article{ZurellBergerCabraletal.2010, author = {Zurell, Damaris and Berger, Uta and Cabral, Juliano Sarmento and Jeltsch, Florian and Meynard, Christine N. and Muenkemueller, Tamara and Nehrbass, Nana and Pagel, J{\"o}rn and Reineking, Bjoern and Schroeder, Boris and Grimm, Volker}, title = {The virtual ecologist approach : simulating data and observers}, issn = {0030-1299}, doi = {10.1111/j.1600-0706.2009.18284.x}, year = {2010}, abstract = {Ecologists carry a well-stocked toolbox with a great variety of sampling methods, statistical analyses and modelling tools, and new methods are constantly appearing. Evaluation and optimisation of these methods is crucial to guide methodological choices. Simulating error-free data or taking high-quality data to qualify methods is common practice. Here, we emphasise the methodology of the 'virtual ecologist' (VE) approach where simulated data and observer models are used to mimic real species and how they are 'virtually' observed. This virtual data is then subjected to statistical analyses and modelling, and the results are evaluated against the 'true' simulated data. The VE approach is an intuitive and powerful evaluation framework that allows a quality assessment of sampling protocols, analyses and modelling tools. It works under controlled conditions as well as under consideration of confounding factors such as animal movement and biased observer behaviour. In this review, we promote the approach as a rigorous research tool, and demonstrate its capabilities and practical relevance. We explore past uses of VE in different ecological research fields, where it mainly has been used to test and improve sampling regimes as well as for testing and comparing models, for example species distribution models. We discuss its benefits as well as potential limitations, and provide some practical considerations for designing VE studies. Finally, research fields are identified for which the approach could be useful in the future. We conclude that VE could foster the integration of theoretical and empirical work and stimulate work that goes far beyond sampling methods, leading to new questions, theories, and better mechanistic understanding of ecological systems.}, language = {en} } @article{JeltschMoloneySchurretal.2008, author = {Jeltsch, Florian and Moloney, Kirk A. and Schurr, Frank Martin and K{\"o}chy, Martin and Schwager, Monika}, title = {The state of plant population modelling in light of environmental change}, issn = {1433-8319}, doi = {10.1016/j.ppees.2007.11.004}, year = {2008}, abstract = {Plant population modelling has been around since the 1970s, providing a valuable approach to understanding plant ecology from a mechanistic standpoint. It is surprising then that this area of research has not grown in prominence with respect to other approaches employed in modelling plant systems. In this review, we provide an analysis of the development and role of modelling in the field of plant population biology through an exploration of where it has been, where it is now and, in our opinion, where it should be headed. We focus, in particular, on the role plant population modelling could play in ecological forecasting, an urgent need given current rates of regional and global environmental change. We suggest that a critical element limiting the current application of plant population modelling in environmental research is the trade-off between the necessary resolution and detail required to accurately characterize ecological dynamics pitted against the goal of generality, particularly at broad spatial scales. In addition to suggestions how to overcome the current shortcoming of data on the process-level we discuss two emerging strategies that may offer a way to overcome the described limitation: (1) application of a modern approach to spatial scaling from local processes to broader levels of interaction and (2) plant functional-type modelling. Finally we outline what we believe to be needed in developing these approaches towards a 'science of forecasting'.}, language = {en} } @article{ThulkeTischendorfStaubachetal.2000, author = {Thulke, Hans-Hermann and Tischendorf, L. and Staubach, C. and Selhorst, T. and Jeltsch, Florian and M{\"u}ller, T. and Schl{\"u}ter, H. and Wissel, Christian}, title = {The spatio-temporal dynamics of a post-vaccination recovery of rabies in foxes and emergency vaccination planning}, year = {2000}, language = {en} } @article{BielcikAguilarTriguerosLakovicetal.2019, author = {Bielcik, Milos and Aguilar-Trigueros, Carlos A. and Lakovic, Milica and Jeltsch, Florian and Rillig, Matthias C.}, title = {The role of active movement in fungal ecology and community assembly}, series = {Movement Ecology}, volume = {7}, journal = {Movement Ecology}, number = {1}, publisher = {BMC}, address = {London}, issn = {2051-3933}, doi = {10.1186/s40462-019-0180-6}, pages = {12}, year = {2019}, abstract = {Movement ecology aims to provide common terminology and an integrative framework of movement research across all groups of organisms. Yet such work has focused on unitary organisms so far, and thus the important group of filamentous fungi has not been considered in this context. With the exception of spore dispersal, movement in filamentous fungi has not been integrated into the movement ecology field. At the same time, the field of fungal ecology has been advancing research on topics like informed growth, mycelial translocations, or fungal highways using its own terminology and frameworks, overlooking the theoretical developments within movement ecology. We provide a conceptual and terminological framework for interdisciplinary collaboration between these two disciplines, and show how both can benefit from closer links: We show how placing the knowledge from fungal biology and ecology into the framework of movement ecology can inspire both theoretical and empirical developments, eventually leading towards a better understanding of fungal ecology and community assembly. Conversely, by a greater focus on movement specificities of filamentous fungi, movement ecology stands to benefit from the challenge to evolve its concepts and terminology towards even greater universality. We show how our concept can be applied for other modular organisms (such as clonal plants and slime molds), and how this can lead towards comparative studies with the relationship between organismal movement and ecosystems in the focus.}, language = {en} } @article{TeckentrupKramerSchadtJeltsch2019, author = {Teckentrup, Lisa and Kramer-Schadt, Stephanie and Jeltsch, Florian}, title = {The risk of ignoring fear: underestimating the effects of habitat loss and fragmentation on biodiversity}, series = {Landscape ecology}, volume = {34}, journal = {Landscape ecology}, number = {12}, publisher = {Springer}, address = {Dordrecht}, issn = {0921-2973}, doi = {10.1007/s10980-019-00922-8}, pages = {2851 -- 2868}, year = {2019}, language = {en} } @article{WeissJeltsch2015, author = {Weiß, Lina and Jeltsch, Florian}, title = {The response of simulated grassland communities to the cessation of grazing}, series = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, volume = {303}, journal = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2015.02.002}, pages = {1 -- 11}, year = {2015}, abstract = {Changes in land-use are supposed to be among the severest prospective threats to plant diversity worldwide. In semi-natural temperate grasslands, the cessation of traditional land use like livestock grazing is considered to be one of the most important drivers of the diversity loss witnessed within the last decades. Despite of the enormous number of studies on successional pathways following grazing abandonment there is no general pattern of how grassland communities are affected in terms of diversity, trait composition and pace of succession. To gain a comprehensive picture is difficult given the heterogeneity of environments and the time and effort needed for long-term investigations. We here use a proven individual- and trait-based grassland community model to analyze short- and long-term consequences of grazing abandonment under different assumptions of resource availability, pre-abandonment grazing intensity and regional isolation of communities. Grazing abandonment led to a decrease of plant functional type (PFT) diversity in all but two scenarios in the long-term. In short-term we also found an increase or no change in Shannon diversity for several scenarios. With grazing abandonment we overall found an increase in maximum plant mass, clonal integration and longer lateral spread, a decrease in rosette plant types and in stress tolerant plants, as well as an increase in grazing tolerant and a decrease in grazing avoiding plant types. Observed changes were highly dependent on the regional configuration of communities, prevalent resource conditions and land use intensity before abandonment. While long-term changes took around 10-20 years in resource rich conditions, new equilibria established in resource poor conditions only after 30-40 years. Our results confirm the potential threats caused by recent land-use changes and the assumption that oligotrophic communities are more resistant than mesotrophic communities also for long-term abandonment. Moreover, results revealed that species-rich systems are not per se more resistant than species-poor grasslands. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{FerTietjenJeltschetal.2017, author = {Fer, Istem and Tietjen, Britta and Jeltsch, Florian and Wolff, Christian Michael}, title = {The influence of El Nino-Southern Oscillation regimes on eastern African vegetation and its future implications under the RCP8.5 warming scenario}, series = {Biogeosciences}, volume = {14}, journal = {Biogeosciences}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-14-4355-2017}, pages = {4355 -- 4374}, year = {2017}, abstract = {The El Nino-Southern Oscillation (ENSO) is the main driver of the interannual variability in eastern African rainfall, with a significant impact on vegetation and agriculture and dire consequences for food and social security. In this study, we identify and quantify the ENSO contribution to the eastern African rainfall variability to forecast future eastern African vegetation response to rainfall variability related to a predicted intensified ENSO. To differentiate the vegetation variability due to ENSO, we removed the ENSO signal from the climate data using empirical orthogonal teleconnection (EOT) analysis. Then, we simulated the ecosystem carbon and water fluxes under the historical climate without components related to ENSO teleconnections. We found ENSO-driven patterns in vegetation response and confirmed that EOT analysis can successfully produce coupled tropical Pacific sea surface temperature-eastern African rainfall teleconnection from observed datasets. We further simulated eastern African vegetation response under future climate change as it is projected by climate models and under future climate change combined with a predicted increased ENSO intensity. Our EOT analysis highlights that climate simulations are still not good at capturing rainfall variability due to ENSO, and as we show here the future vegetation would be different from what is simulated under these climate model outputs lacking accurate ENSO contribution. We simulated considerable differences in eastern African vegetation growth under the influence of an intensified ENSO regime which will bring further environmental stress to a region with a reduced capacity to adapt effects of global climate change and food security.}, language = {en} } @article{FerTietjenJeltschetal.2017, author = {Fer, Istem and Tietjen, Britta and Jeltsch, Florian and Wolff, Christian Michael}, title = {The influence of El Nino-Southern Oscillation regimes on eastern African vegetation and its future implications under the RCP8.5 warming scenario}, series = {Biogeosciences}, volume = {14}, journal = {Biogeosciences}, number = {18}, publisher = {Copernicus}, address = {Katlenburg-Lindau}, issn = {1726-4170}, doi = {10.5194/bg-14-4355-2017}, pages = {4355 -- 4374}, year = {2017}, abstract = {The El Nino-Southern Oscillation (ENSO) is the main driver of the interannual variability in eastern African rainfall, with a significant impact on vegetation and agriculture and dire consequences for food and social security. In this study, we identify and quantify the ENSO contribution to the eastern African rainfall variability to forecast future eastern African vegetation response to rainfall variability related to a predicted intensified ENSO. To differentiate the vegetation variability due to ENSO, we removed the ENSO signal from the climate data using empirical orthogonal teleconnection (EOT) analysis. Then, we simulated the ecosystem carbon and water fluxes under the historical climate without components related to ENSO teleconnections. We found ENSO-driven patterns in vegetation response and confirmed that EOT analysis can successfully produce coupled tropical Pacific sea surface temperature-eastern African rainfall teleconnection from observed datasets. We further simulated eastern African vegetation response under future climate change as it is projected by climate models and under future climate change combined with a predicted increased ENSO intensity. Our EOT analysis highlights that climate simulations are still not good at capturing rainfall variability due to ENSO, and as we show here the future vegetation would be different from what is simulated under these climate model outputs lacking accurate ENSO contribution. We simulated considerable differences in eastern African vegetation growth under the influence of an intensified ENSO regime which will bring further environmental stress to a region with a reduced capacity to adapt effects of global climate change and food security.}, language = {en} } @misc{FerTietjenJeltschetal.2017, author = {Fer, Istem and Tietjen, Britta and Jeltsch, Florian and Wolff, Christian Michael}, title = {The influence of El Nino-Southern Oscillation regimes on eastern African vegetation and its future implications under the RCP8.5 warming scenario}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-403853}, pages = {20}, year = {2017}, abstract = {The El Nino-Southern Oscillation (ENSO) is the main driver of the interannual variability in eastern African rainfall, with a significant impact on vegetation and agriculture and dire consequences for food and social security. In this study, we identify and quantify the ENSO contribution to the eastern African rainfall variability to forecast future eastern African vegetation response to rainfall variability related to a predicted intensified ENSO. To differentiate the vegetation variability due to ENSO, we removed the ENSO signal from the climate data using empirical orthogonal teleconnection (EOT) analysis. Then, we simulated the ecosystem carbon and water fluxes under the historical climate without components related to ENSO teleconnections. We found ENSO-driven patterns in vegetation response and confirmed that EOT analysis can successfully produce coupled tropical Pacific sea surface temperature-eastern African rainfall teleconnection from observed datasets. We further simulated eastern African vegetation response under future climate change as it is projected by climate models and under future climate change combined with a predicted increased ENSO intensity. Our EOT analysis highlights that climate simulations are still not good at capturing rainfall variability due to ENSO, and as we show here the future vegetation would be different from what is simulated under these climate model outputs lacking accurate ENSO contribution. We simulated considerable differences in eastern African vegetation growth under the influence of an intensified ENSO regime which will bring further environmental stress to a region with a reduced capacity to adapt effects of global climate change and food security.}, language = {en} } @article{SynodinosTietjenLohmannetal.2018, author = {Synodinos, Alexis D. and Tietjen, Britta and Lohmann, Dirk and Jeltsch, Florian}, title = {The impact of inter-annual rainfall variability on African savannas changes with mean rainfall}, series = {Journal of theoretical biology}, volume = {437}, journal = {Journal of theoretical biology}, publisher = {Elsevier Ltd.}, address = {London}, issn = {0022-5193}, doi = {10.1016/j.jtbi.2017.10.019}, pages = {92 -- 100}, year = {2018}, abstract = {Savannas are mixed tree-grass ecosystems whose dynamics are predominantly regulated by resource competition and the temporal variability in climatic and environmental factors such as rainfall and fire. Hence, increasing inter-annual rainfall variability due to climate change could have a significant impact on savannas. To investigate this, we used an ecohydrological model of stochastic differential equations and simulated African savanna dynamics along a gradient of mean annual rainfall (520-780 mm/year) for a range of inter-annual rainfall variabilities. Our simulations produced alternative states of grassland and savanna across the mean rainfall gradient. Increasing inter-annual variability had a negative effect on the savanna state under dry conditions (520 mm/year), and a positive effect under moister conditions (580-780 mm/year). The former resulted from the net negative effect of dry and wet extremes on trees. In semi-arid conditions (520 mm/year), dry extremes caused a loss of tree cover, which could not be recovered during wet extremes because of strong resource competition and the increased frequency of fires. At high mean rainfall (780 mm/year), increased variability enhanced savanna resilience. Here, resources were no longer limiting and the slow tree dynamics buffered against variability by maintaining a stable population during 'dry' extremes, providing the basis for growth during wet extremes. Simultaneously, high rainfall years had a weak marginal benefit on grass cover due to density-regulation and grazing. Our results suggest that the effects of the slow tree and fast grass dynamics on tree-grass interactions will become a major determinant of the savanna vegetation composition with increasing rainfall variability.}, language = {en} } @article{RoticsKaatzResheffetal.2016, author = {Rotics, Shay and Kaatz, Michael and Resheff, Yehezkel S. and Turjeman, Sondra Feldman and Zurell, Damaris and Sapir, Nir and Eggers, Ute and Flack, Andrea and Fiedler, Wolfgang and Jeltsch, Florian and Wikelski, Martin and Nathan, Ran}, title = {The challenges of the first migration: movement and behaviour of juvenile vs. adult white storks with insights regarding juvenile mortality}, series = {Journal of animal ecology : a journal of the British Ecological Society}, volume = {85}, journal = {Journal of animal ecology : a journal of the British Ecological Society}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0021-8790}, doi = {10.1111/1365-2656.12525}, pages = {938 -- 947}, year = {2016}, abstract = {1. Migration conveys an immense challenge, especially for juvenile birds coping with enduring and risky journeys shortly after fledging. Accordingly, juveniles exhibit considerably lower survival rates compared to adults, particularly during migration. Juvenile white storks (Ciconia ciconia), which are known to rely on adults during their first fall migration presumably for navigational purposes, also display much lower annual survival than adults. 2. Using detailed GPS and body acceleration data, we examined the patterns and potential causes of age-related differences in fall migration properties of white storks by comparing first-year juveniles and adults. We compared juvenile and adult parameters of movement, behaviour and energy expenditure (estimated from overall dynamic body acceleration) and placed this in the context of the juveniles' lower survival rate. 3. Juveniles used flapping flight vs. soaring flight 23\% more than adults and were estimated to expend 14\% more energy during flight. Juveniles did not compensate for their higher flight costs by increased refuelling or resting during migration. When juveniles and adults migrated together in the same flock, the juvenile flew mostly behind the adult and was left behind when they separated. Juveniles showed greater improvement in flight efficiency throughout migration compared to adults which appears crucial because juveniles exhibiting higher flight costs suffered increased mortality. 4. Our findings demonstrate the conflict between the juveniles' inferior flight skills and their urge to keep up with mixed adult-juvenile flocks. We suggest that increased flight costs are an important proximate cause of juvenile mortality in white storks and likely in other soaring migrants and that natural selection is operating on juvenile variation in flight efficiency.}, language = {en} } @article{TewsBlaumJeltsch2004, author = {Tews, J{\"o}rg and Blaum, Niels and Jeltsch, Florian}, title = {Structural and animal species diversity in arid and semi-arid savannas of the southern Kalahari}, year = {2004}, language = {en} } @article{ZurellJeltschDormannetal.2009, author = {Zurell, Damaris and Jeltsch, Florian and Dormann, Carsten F. and Schr{\"o}der-Esselbach, Boris}, title = {Static species distribution models in dynamically changing systems : how good can predictions really be?}, issn = {0906-7590}, doi = {10.1111/j.1600-0587.2009.05810.x}, year = {2009}, abstract = {SDM performance varied for different range dynamics. Prediction accuracies decreased when abrupt range shifts occurred as species were outpaced by the rate of climate change, and increased again when a new equilibrium situation was realised. When ranges contracted, prediction accuracies increased as the absences were predicted well. Far- dispersing species were faster in tracking climate change, and were predicted more accurately by SDMs than short- dispersing species. BRTs mostly outperformed GLMs. The presence of a predator, and the inclusion of its incidence as an environmental predictor, made BRTs and GLMs perform similarly. Results are discussed in light of other studies dealing with effects of ecological traits and processes on SDM performance. Perspectives are given on further advancements of SDMs and for possible interfaces with more mechanistic approaches in order to improve predictions under environmental change.}, language = {en} } @article{MetzFreundtJeltsch2018, author = {Metz, Johannes and Freundt, Hanna and Jeltsch, Florian}, title = {Stable germination behavior but partly changing seed-seed interactions along a steep rainfall gradient}, series = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, volume = {28}, journal = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, publisher = {Elsevier}, address = {Jena}, issn = {1439-1791}, doi = {10.1016/j.baae.2018.01.004}, pages = {5 -- 16}, year = {2018}, abstract = {Germination marks a critical transition in plant life that is prone to high mortality. Strong selection pressure is therefore expected to finely tune it to environmental conditions. Our study on the common Mediterranean grass Brachypodium hybridum assessed whether germination behavior changes systematically along a steep natural rainfall gradient ranging from harsh desert to rather mild mesic-Mediterranean conditions, We specifically tested hypotheses that germination behavior confers greater risk-spreading in populations from drier, unpredictable environments, and that seeds from wetter populations are better competitors. In 14 populations (spanning 114-954 mm annual rainfall) we assessed three alternative key parameters of germination in a greenhouse experiment: between-year dormancy, days to emergence within a season, and temporal spread. Addition of neighbor seeds accounted for competition as another crucial environmental factor. In six of the 14 populations, we also compared seeds originating from corresponding north (more mesic) and south (more arid) exposed hill slopes to test whether germination patterns along the large-scale rainfall gradient are paralleled at this smaller scale. B. hybridum exhibited generally high germination fractions and rapid emergence with very little temporal spread, indicating overall little risk-spreading germination. Surprisingly, none of the three parameters changed systematically with increasing aridity, neither at large scale along the rainfall gradient nor at small scale between north and south exposures. Neighbor seeds, however, mildly suppressed germination. Germination of neighbor seeds, in turn, was more strongly suppressed by B. hybridum seeds from drier populations, and this effect was stronger for forb than for grass neighbor species. Our results provide strong evidence that increased risk-spreading germination is not a universal, essential strategy to persist in increasingly dry, unpredictable environments. They also highlight that competition with neighbors occurs even at the earliest plant life stage. Since neighbor effects were species-specific, competition among seeds can affect community composition at later plant stages.}, language = {en} } @article{JeltschMoloney2001, author = {Jeltsch, Florian and Moloney, Kirk A.}, title = {Spatially-explicit vegetation models : what have we learned ?}, year = {2001}, language = {en} } @article{WasiolkaJeltschHenscheletal.2010, author = {Wasiolka, Bernd and Jeltsch, Florian and Henschel, Joh and Blaum, Niels}, title = {Space use of the spotted sand lizard (Pedioplanis l. lineoocellata) under different degradation states}, issn = {0141-6707}, doi = {10.1111/j.1365-2028.2009.01085.x}, year = {2010}, abstract = {Although the effects of grazing-induced savannah degradation on animal diversity are well documented, knowledge of how they affect space use or responding behaviour remains poor. In this study, we analysed space use of the spotted sand lizard (Pedioplanis l. lineoocellata) in degraded versus nondegraded habitats of southern Kalahari savannah habitats. Lizards were radio tracked, daily movement distances recorded and home range sizes calculated. In degraded Kalahari savannah habitats where plant diversity and perennial grass cover are low but shrub cover high, P. lineoocellata moves larger distances (40.88 +/- 6.42 m versus 27.43 +/- 5.08 m) and occupies larger home ranges (646.64 +/- 244.84 m(2) versus 209.15 +/- 109.84 m(2)) than in nondegraded habitats (high plant diversity, high perennial grass cover and low shrub cover). We assume that this increase in daily movement distances and home range sizes is a behavioural plasticity to limited food resources in degraded savannah habitats. Although P. lineoocellata is able to adjust to resource-poor savannah habitats, the increase in the lizard's movement activities is likely to result in a higher predation risk. This is supported by the lower availability of protective vegetation i.e. perennial grass cover. Hence, we conclude that despite behavioural plasticity of P. lineoocellata, overgrazing has a severe negative impact on the space use of P. lineoocellata.}, language = {en} } @article{MoloneyJeltsch2008, author = {Moloney, Kirk A. and Jeltsch, Florian}, title = {Space matters : novel developments in plant ecology through spatial modelling}, issn = {1433-8319}, doi = {10.1016/j.ppees.2007.12.002}, year = {2008}, language = {en} } @article{SchaeferMenzJeltschetal.2017, author = {Sch{\"a}fer, Merlin and Menz, Stephan and Jeltsch, Florian and Zurell, Damaris}, title = {sOAR: a tool for modelling optimal animal life-history strategies in cyclic environments}, series = {Ecography : pattern and diversity in ecology ; research papers forum}, volume = {41}, journal = {Ecography : pattern and diversity in ecology ; research papers forum}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {0906-7590}, doi = {10.1111/ecog.03328}, pages = {551 -- 557}, year = {2017}, abstract = {Periodic environments determine the life cycle of many animals across the globe and the timing of important life history events, such as reproduction and migration. These adaptive behavioural strategies are complex and can only be fully understood (and predicted) within the framework of natural selection in which species adopt evolutionary stable strategies. We present sOAR, a powerful and user-friendly implementation of the well-established framework of optimal annual routine modelling. It allows determining optimal animal life history strategies under cyclic environmental conditions using stochastic dynamic programming. It further includes the simulation of population dynamics under the optimal strategy. sOAR provides an important tool for theoretical studies on the behavioural and evolutionary ecology of animals. It is especially suited for studying bird migration. In particular, we integrated options to differentiate between costs of active and passive flight into the optimal annual routine modelling framework, as well as options to consider periodic wind conditions affecting flight energetics. We provide an illustrative example of sOAR where food supply in the wintering habitat of migratory birds significantly alters the optimal timing of migration. sOAR helps improving our understanding of how complex behaviours evolve and how behavioural decisions are constrained by internal and external factors experienced by the animal. Such knowledge is crucial for anticipating potential species' response to global environmental change.}, language = {en} } @article{JeltschHansenThulke2003, author = {Jeltsch, Florian and Hansen, Frank and Thulke, Hans-Hermann}, title = {Simulationsmodelle zur Planung von Strategien in der Bek{\"a}mpfung von Wildtiererkrankungen}, year = {2003}, language = {de} } @misc{ReegHeineMihanetal.2019, author = {Reeg, Jette and Heine, Simon and Mihan, Christine and McGee, Sean and Preuss, Thomas G. and Jeltsch, Florian}, title = {Simulation of herbicide impacts on a plant community}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {528}, issn = {1866-8372}, doi = {10.25932/publishup-42303}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423039}, pages = {16}, year = {2019}, abstract = {Background Semi-natural plant communities such as field boundaries play an important ecological role in agricultural landscapes, e.g., provision of refuge for plant and other species, food web support or habitat connectivity. To prevent undesired effects of herbicide applications on these communities and their structure, the registration and application are regulated by risk assessment schemes in many industrialized countries. Standardized individual-level greenhouse experiments are conducted on a selection of crop and wild plant species to characterize the effects of herbicide loads potentially reaching off-field areas on non-target plants. Uncertainties regarding the protectiveness of such approaches to risk assessment might be addressed by assessment factors that are often under discussion. As an alternative approach, plant community models can be used to predict potential effects on plant communities of interest based on extrapolation of the individual-level effects measured in the standardized greenhouse experiments. In this study, we analyzed the reliability and adequacy of the plant community model IBC-grass (individual-based plant community model for grasslands) by comparing model predictions with empirically measured effects at the plant community level. Results We showed that the effects predicted by the model IBC-grass were in accordance with the empirical data. Based on the species-specific dose responses (calculated from empirical effects in monocultures measured 4 weeks after application), the model was able to realistically predict short-term herbicide impacts on communities when compared to empirical data. Conclusion The results presented in this study demonstrate an approach how the current standard greenhouse experiments—measuring herbicide impacts on individual-level—can be coupled with the model IBC-grass to estimate effects on plant community level. In this way, it can be used as a tool in ecological risk assessment.}, language = {en} } @article{ReegHeineMihanetal.2018, author = {Reeg, Jette and Heine, Simon and Mihan, Christine and McGee, Sean and Preuss, Thomas G. and Jeltsch, Florian}, title = {Simulation of herbicide impacts on a plant community}, series = {Environmental Sciences Europe}, volume = {30}, journal = {Environmental Sciences Europe}, number = {44}, publisher = {Springer}, address = {Berlin und Heidelberg}, issn = {2190-4715}, doi = {10.1186/s12302-018-0174-9}, pages = {16}, year = {2018}, abstract = {Background Semi-natural plant communities such as field boundaries play an important ecological role in agricultural landscapes, e.g., provision of refuge for plant and other species, food web support or habitat connectivity. To prevent undesired effects of herbicide applications on these communities and their structure, the registration and application are regulated by risk assessment schemes in many industrialized countries. Standardized individual-level greenhouse experiments are conducted on a selection of crop and wild plant species to characterize the effects of herbicide loads potentially reaching off-field areas on non-target plants. Uncertainties regarding the protectiveness of such approaches to risk assessment might be addressed by assessment factors that are often under discussion. As an alternative approach, plant community models can be used to predict potential effects on plant communities of interest based on extrapolation of the individual-level effects measured in the standardized greenhouse experiments. In this study, we analyzed the reliability and adequacy of the plant community model IBC-grass (individual-based plant community model for grasslands) by comparing model predictions with empirically measured effects at the plant community level. Results We showed that the effects predicted by the model IBC-grass were in accordance with the empirical data. Based on the species-specific dose responses (calculated from empirical effects in monocultures measured 4 weeks after application), the model was able to realistically predict short-term herbicide impacts on communities when compared to empirical data. Conclusion The results presented in this study demonstrate an approach how the current standard greenhouse experiments—measuring herbicide impacts on individual-level—can be coupled with the model IBC-grass to estimate effects on plant community level. In this way, it can be used as a tool in ecological risk assessment.}, language = {en} } @article{TietjenZeheJeltsch2009, author = {Tietjen, Britta and Zehe, Erwin and Jeltsch, Florian}, title = {Simulating plant water availability in dry lands under climate change : a generic model of two soil layers}, issn = {0043-1397}, doi = {10.1029/2007WR006589}, year = {2009}, abstract = {Dry lands are exposed to a highly variable environment and face a high risk of degradation. The effects of climate change are likely to increase this risk; thus a profound knowledge of the system dynamics is crucial for evaluating management options. This applies particularly for the interactions between water and vegetation, which exhibit strong feedbacks. To evaluate these feedbacks and the effects of climate change on soil moisture dynamics, we developed a generic, process-based, spatially explicit soil moisture model of two soil layers, which can be coupled with vegetation models. A time scale relevant for ecological processes can be simulated without difficulty, and the model avoids complex parameterization with data that are unavailable for most regions of the world. We applied the model to four sites in Israel along a precipitation and soil type gradient and assessed the effects of climate change by comparing possible climatic changes with present climate conditions. The results show that in addition to temperature, the total amount of precipitation and its intra-annual variability are an important driver of soil moisture patterns. This indicates that particularly with regard to climate change, the approach of many ecological models that simulate water dynamics on an annual base is far too simple to make reliable predictions. Thus, the introduced model can serve as a valuable tool to improve present ecological models of dry lands because of its focus on the applicability and transferability.}, language = {en} } @article{JeltschWeberMoloney2000, author = {Jeltsch, Florian and Weber, G. E. and Moloney, Kirk A.}, title = {Simulated long-term vegetation response to alternative stocking strategies in savanna rangelands}, year = {2000}, language = {en} } @article{LohmannTietjenBlaumetal.2012, author = {Lohmann, Dirk and Tietjen, Britta and Blaum, Niels and Joubert, David F. and Jeltsch, Florian}, title = {Shifting thresholds and changing degradation patterns: climate change effects on the simulated long-term response of a semi-arid savanna to grazing}, series = {Journal of applied ecology : an official journal of the British Ecological Society}, volume = {49}, journal = {Journal of applied ecology : an official journal of the British Ecological Society}, number = {4}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0021-8901}, doi = {10.1111/j.1365-2664.2012.02157.x}, pages = {814 -- 823}, year = {2012}, abstract = {1. The complex, nonlinear response of dryland systems to grazing and climatic variations is a challenge to management of these lands. Predicted climatic changes will impact the desertification of drylands under domestic livestock production. Consequently, there is an urgent need to understand the response of drylands to grazing under climate change. 2. We enhanced and parameterized an ecohydrological savanna model to assess the impacts of a range of climate change scenarios on the response of a semi-arid African savanna to grazing. We focused on the effects of temperature and CO2 level increase in combination with changes in inter- and intra-annual precipitation patterns on the long-term dynamics of three major plant functional types. 3. We found that the capacity of the savanna to sustain livestock grazing was strongly influenced by climate change. Increased mean annual precipitation and changes in intra-annual precipitation pattern have the potential to slightly increase carrying capacities of the system. In contrast, decreased precipitation, higher interannual variation and temperature increase are leading to a severe decline of carrying capacities owing to losses of the perennial grass biomass. 4. Semi-arid rangelands will be at lower risk of shrub encroachment and encroachment will be less intense under future climatic conditions. This finding holds in spite of elevated levels of atmospheric CO2 and irrespective of changes in precipitation pattern, because of the drought sensitivity of germination and establishment of encroaching species. 5. Synthesis and applications. Changes in livestock carrying capacities, both positive and negative, mainly depend on the highly uncertain future rainfall conditions. However, independent of the specific changes, shrub encroachment becomes less likely and in many cases less severe. Thus, managers of semi-arid rangelands should shift their focus from woody vegetation towards perennial grass species as indicators for rangeland degradation. Furthermore, the resulting reduced competition from woody vegetation has the potential to facilitate ecosystem restoration measures such as re-introduction of desirable plant species that are only little promising or infeasible under current climatic conditions. On a global scale, the reductions in standing biomass resulting from altered degradation dynamics of semi-arid rangelands can have negative impacts on carbon sequestration.}, language = {en} } @article{RossmanithBlaumHoentschetal.2009, author = {Rossmanith, Eva and Blaum, Niels and H{\"o}ntsch, Kerstin and Jeltsch, Florian}, title = {Sex-related parental care strategies in the lesser spotted woodpecker "Picoides minor" : of flexible mothers and dependable fathers}, issn = {0908-8857}, doi = {10.1111/j.1600-048X.2008.04353.x}, year = {2009}, abstract = {We investigated sex-specific parental care behaviour of lesser spotted woodpeckers Picoides minor in the low mountain range Taunus, Germany. Observed parental care included incubation, nest sanitation as well as brooding and feeding of nestlings. Contributions of the two sexes to parental care changed in progress of the breeding period. During incubation and the first half of the nestling period, parental care was divided equally between partners. However, in the late nestling stage, we found males to feed their nestlings irrespective of brood size while females considerably decreased feeding rate with the number of nestlings. This behaviour culminated in desertion of small broods by females shortly before fledging. The fact that even deserted nests were successful indicates that males were able to compensate for the females' absence. Interestingly, the mating of one female with two males with separate nests could be found in the population, which confirms earlier findings of polyandry in the lesser spotted woodpecker. We conclude that biparental care is not essential in the later stage and one partner can reduce effort and thus costs of parental care, at least in small broods where the mate is able to compensate for that behaviour. Reduced care and desertion appears only in females, which might be caused by a combination of two traits: First, females might suffer higher costs of investment in terms of mortality and secondly, male-biased sex ratio in the population generally leads to higher mating probabilities for females in the following breeding season. The occurrence of polyandry seems to be a result of these conditions.}, language = {en} } @article{EstherGroeneveldEnrightetal.2010, author = {Esther, Alexandra and Groeneveld, Juergen and Enright, Neal J. and Miller, Ben P. and Lamont, Byron B. and Perry, George L. W. and Blank, F. Benjamin and Jeltsch, Florian}, title = {Sensitivity of plant functional types to climate change : classification tree analysis of a simulation model}, issn = {1100-9233}, doi = {10.1111/j.1654-1103.2009.01155.x}, year = {2010}, abstract = {Question: The majority of studies investigating the impact of climate change on local plant communities ignores changes in regional processes, such as immigration from the regional seed pool. Here we explore: (i) the potential impact of climate change on composition of the regional seed pool, (ii) the influence of changes in climate and in the regional seed pool on local community structure, and (iii) the combinations of life history traits, i.e. plant functional types (PFTs), that are most affected by environmental changes. Location: Fire-prone, Mediterranean-type shrublands in southwestern Australia. Methods: Spatially explicit simulation experiments were conducted at the population level under different rainfall and fire regime scenarios to determine the effect of environmental change on the regional seed pool for 38 PFTs. The effects of environmental and seed immigration changes on local community dynamics were then derived from community-level experiments. Classification tree analyses were used to investigate PFT- specific vulnerabilities to climate change. Results: The classification tree analyses revealed that responses of PFTs to climate change are determined by specific trait characteristics. PFT-specific seed production and community patterns responded in a complex manner to climate change. For example, an increase in annual rainfall caused an increase in numbers of dispersed seeds for some PFTs, but decreased PFT diversity in the community. Conversely, a simulated decrease in rainfall reduced the number of dispersed seeds and diversity of PFTs. Conclusions: PFT interactions and regional processes must be considered when assessing how local community structure will be affected by environmental change.}, language = {en} } @article{JeltschGroeneveldWisseletal.2005, author = {Jeltsch, Florian and Groeneveld, J{\"u}rgen and Wissel, Christian and Wucherer, W. and Dimeyeva, L.}, title = {Seed dispersal by cattle may cause shrub encroachment of Grewia flava on southern Kalahari rangelands}, isbn = {3-86537-386-0}, year = {2005}, language = {en} } @article{JeltschWiegandWard2004, author = {Jeltsch, Florian and Wiegand, K. and Ward, D.}, title = {Seed dispersal by cattle may cause shrub encroachment of Grewia flava on southern Kalahari rangelands}, year = {2004}, language = {en} } @article{JeltschTewsSchurr2004, author = {Jeltsch, Florian and Tews, J{\"o}rg and Schurr, Frank Martin}, title = {Seed dispersal by cattle may cause shrub encroachment of Grewia flava on southern Kalahari rangelands}, year = {2004}, abstract = {Shrub encroachment, i.e. the increase in woody plant cover, is a major concern for livestock farming in southern Kalahari savannas. We developed a grid-based computer model simulating the population dynamics of Grewia flava, a common, fleshy-fruited encroaching shrub. In the absence of large herbivores, seeds of Grewia are largely deposited in the sub-canopy of Acacia erioloba. Cattle negate this dispersal limitation by browsing on the foliage of Grewia and dispersing seeds into the grassland matrix. In this study we first show that model predictions of Grewia cover dynamics are realistic by comparing model output with shrub cover estimates obtained from a time series of aerial photographs. Subsequently, we apply a realistic range of intensity of cattle-induced seed dispersal combined with potential precipitation and fire scenarios. Based on the simulation results we suggest that cattle may facilitate shrub encroachment of Grewia. The results show that the severity of shrub encroachment is governed by the intensity of seed dispersal. For a high seed dispersal intensity without fire (equivalent to a high stocking rate) the model predicts 56\% shrub cover and 85\% cell cover after 100 yr. With fire both recruitment and shrub cover are reduced, which may, under moderate intensities, prevent shrub encroachment. Climate change scenarios with two-fold higher frequencies of drought and wet years intensified shrub encroachment rates, although long-term mean of precipitation remained constant. As a management recommendation we suggest that shrub encroachment on rangelands may be counteracted by frequent fires and controlling cattle movements to areas with a high proportion of fruiting Grewia shrubs}, language = {en} } @inproceedings{RossmanithBlaumKeiletal.2006, author = {Rossmanith, Eva and Blaum, Niels and Keil, Manfred and Langerwisch, F. and Meyer, Jork and Popp, Alexander and Schmidt, Michael and Schultz, Christoph and Schwager, Monika and Vogel, Melanie and Wasiolka, Bernd and Jeltsch, Florian}, title = {Scaling up local population dynamics to regional scales}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7320}, year = {2006}, abstract = {In semi-arid savannas, unsustainable land use can lead to degradation of entire landscapes, e.g. in the form of shrub encroachment. This leads to habitat loss and is assumed to reduce species diversity. In BIOTA phase 1, we investigated the effects of land use on population dynamics on farm scale. In phase 2 we scale up to consider the whole regional landscape consisting of a diverse mosaic of farms with different historic and present land use intensities. This mosaic creates a heterogeneous, dynamic pattern of structural diversity at a large spatial scale. Understanding how the region-wide dynamic land use pattern affects the abundance of animal and plant species requires the integration of processes on large as well as on small spatial scales. In our multidisciplinary approach, we integrate information from remote sensing, genetic and ecological field studies as well as small scale process models in a dynamic region-wide simulation tool.
Interdisziplin{\"a}res Zentrum f{\"u}r Musterdynamik und Angewandte Fernerkundung Workshop vom 9. - 10. Februar 2006.}, language = {en} } @article{PoppVogelBlaumetal.2009, author = {Popp, Alexander and Vogel, Melanie and Blaum, Niels and Jeltsch, Florian}, title = {Scaling up ecohydrological processes : role of surface water flow in water-limited landscapes}, issn = {0148-0227}, doi = {10.1029/2008jg000910}, year = {2009}, abstract = {In this study, we present a stochastic landscape modeling approach that has the power to transfer and integrate existing information on vegetation dynamics and hydrological processes from the small scale to the landscape scale. To include microscale processes like ecohydrological feedback mechanisms and spatial exchange like surface water flow, we derive transition probabilities from a fine-scale simulation model. We applied two versions of the landscape model, one that includes and one that disregards spatial exchange of water to the situation of a sustainably used research farm and communally used and degraded rangeland in semiarid Namibia. Our simulation experiments show that including spatial exchange of overland flow among vegetation patches into our model is a precondition to reproduce vegetation dynamics, composition, and productivity, as well as hydrological processes at the landscape scale. In the model version that includes spatial exchange of water, biomass production at light grazing intensities increases 2.24-fold compared to the model without overland flow. In contrast, overgrazing destabilizes positive feedbacks through vegetation and hydrology and decreases the number of hydrological sinks in the model with overland flow. The buffer capacity of these hydrological sinks disappears and runoff increases. Here, both models predicted runoff losses from the system and artificial droughts occurring even in years with good precipitation. Overall, our study reveals that a thorough understanding of overland flow is an important precondition for improving the management of semiarid and arid rangelands with distinct topography.}, language = {en} } @misc{GiladiMayRistowetal.2014, author = {Giladi, Itamar and May, Felix and Ristow, Michael and Jeltsch, Florian and Ziv, Yaron}, title = {Scale-dependent species-area and species-isolation relationships: a review and a test study from a fragmented semi-arid agro-ecosystem}, series = {Journal of biogeography}, volume = {41}, journal = {Journal of biogeography}, number = {6}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0305-0270}, doi = {10.1111/jbi.12299}, pages = {1055 -- 1069}, year = {2014}, abstract = {Aim Patterns that relate species richness with fragment area (the species-area relationship, SAR) and with isolation (the species-isolation relationship, SIR) are well documented. However, those that relate species density - the number of species within a standardized area - with fragment area (D-SAR) or isolation (D-SIR) have not been sufficiently explored, despite the potential for such an analysis to disentangle the underlying mechanisms of SARs and SIRs. Previous spatial theory predicts that a significant D-SAR or D-SIR is unlikely to emerge in taxa with high dispersal limitation, such as plants. Furthermore, a recent model predicts that the detection and the significance of D-SARs or D-SIRs may decrease with grain size. We combined a literature review with grain size-dependent sampling in a fragmented landscape to evaluate the prevalence and grain size-dependent nature of D-SARs and D-SIRs in plants. Location Worldwide (review) and a semi-arid agro-ecosystem in Israel (case study). Methods We combined an extensive literature review of 31 D-SAR studies of plants in fragmented landscapes with an empirical study in which we analysed grain size-dependent D-SARs and D-SIRs using a grain size-dependent hierarchical sampling of species density and species richness in a fragmented, semi-arid agro-ecosystem. Results We found that significantly increasing D-SARs are rare in plant studies. Furthermore, we found that the detection of a significant D-SAR is often possible only after the data have been stratified by species, habitat or landscape characteristics. The results from our case study indicated that the significance and the slopes of both D-SARs and D-SIRs increase as grain size decreases. Main conclusions These results call for a careful consideration of scale while analysing and interpreting the responses of species richness and species density to fragmentation. Our results suggest that grain size-dependent analyses of D-SARs and D-SIRs may help to disentangle the mechanisms that generate SARs and SIRs and may enable early detection of the effects of fragmentation on plant biodiversity.}, language = {en} } @article{GiladiZivMayetal.2011, author = {Giladi, Itamar and Ziv, Yaron and May, Felix and Jeltsch, Florian}, title = {Scale-dependent determinants of plant species richness in a semi-arid fragmented agro-ecosystem}, series = {Journal of vegetation science}, volume = {22}, journal = {Journal of vegetation science}, number = {6}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1100-9233}, doi = {10.1111/j.1654-1103.2011.01309.x}, pages = {983 -- 996}, year = {2011}, abstract = {Aims: (1) Understanding how the relationship between species richness and its determinants depends on the interaction between scales at which the response and explanatory variables are measured. (2) Quantifying the relative contributions of local, intermediate and large-scale determinants of species richness in a fragmented agro-ecosystem. (3) Testing the hypothesis that the relative contribution of these determinants varies with the grain size at which species richness is measured. Location: A fragmented agro-ecosystem in the Southern Judea Lowland, Israel, within a desert-Mediterranean transition zone. Methods: Plant species richness was estimated using hierarchical nested sampling in 81 plots, positioned in 38 natural vegetation patches within an agricultural matrix (mainly wheat fields) among three land units along a sharp precipitation gradient. Explanatory variables included position along that gradient, patch area, patch isolation, habitat heterogeneity and overall plant density. We used general linear models and hierarchical partitioning of variance to test and quantify the effect of each explanatory variable on species richness at four grain sizes (0.0625, 1, 25 and 225m(2)). Results: Species richness was mainly affected by position along a precipitation gradient and overall plant density, and to a lesser extent by habitat heterogeneity. It was also significantly affected by patch area and patch isolation, but only for small grain sizes. The contribution of each explanatory variable to explained variance in species richness varied with grain size, i.e. scale-dependent. The influence of geographic position and habitat heterogeneity on species richness increased with grain size, while the influence of plant density decreased with grain size. Main conclusions: Species richness is determined by the combined effect of several scale-dependent determinants. Ability to detect an effect and effect size of each determinant varies with the scale (grain size) at which it is measured. The combination of a multi-factorial approach and multi-scale sampling reveals that conclusions drawn from studies that ignore these dimensions are restricted and potentially misleading.}, language = {en} } @article{SchiffersTielboergerTietjenetal.2011, author = {Schiffers, Katja and Tielboerger, Katja and Tietjen, Britta and Jeltsch, Florian}, title = {Root plasticity buffers competition among plants theory meets experimental data}, series = {Ecology : a publication of the Ecological Society of America}, volume = {92}, journal = {Ecology : a publication of the Ecological Society of America}, number = {3}, publisher = {Wiley}, address = {Washington}, issn = {0012-9658}, pages = {610 -- 620}, year = {2011}, abstract = {Morphological plasticity is a striking characteristic of plants in natural communities. In the context of foraging behavior particularly, root plasticity has been documented for numerous species. Root plasticity is known to mitigate competitive interactions by reducing the overlap of the individuals' rhizospheres. But despite its obvious effect on resource acquisition, plasticity has been generally neglected in previous empirical and theoretical studies estimating interaction intensity among plants. In this study, we developed a semi-mechanistic model that addresses this shortcoming by introducing the idea of compensatory growth into the classical-zone-of influence (ZOI) and field-of-neighborhood (FON) approaches. The model parameters describing the belowground plastic sphere of influence (PSI) were parameterized using data from an accompanying field experiment. Measurements of the uptake of a stable nutrient analogue at distinct distances to the neighboring plants showed that the study species responded plastically to belowground competition by avoiding overlap of individuals' rhizospheres. An unexpected finding was that the sphere of influence of the study species Bromus hordeaceus could be best described by a unimodal function of distance to the plant's center and not with a continuously decreasing function as commonly assumed. We employed the parameterized model to investigate the interplay between plasticity and two other important factors determining the intensity of competitive interactions: overall plant density and the distribution of individuals in space. The simulation results confirm that the reduction of competition intensity due to morphological plasticity strongly depends on the spatial structure of the competitive environment. We advocate the use of semi-mechanistic simulations that explicitly consider morphological plasticity to improve our mechanistic understanding of plant interactions.}, language = {en} } @article{MayGrimmJeltsch2009, author = {May, Felix and Grimm, Volker and Jeltsch, Florian}, title = {Reversed effects of grazing on plant diversity : the role of below-ground competition and size symmetry}, issn = {0030-1299}, doi = {10.1111/j.1600-0706.2009.17724.x}, year = {2009}, abstract = {Grazing is known as one of the key factors for diversity and community composition in grassland ecosystems, but the response of plant communities towards grazing varies remarkably between sites with different environmental conditions. It is generally accepted that grazing increases plant diversity in productive environments, while it tends to reduce diversity in unproductive habitats (grazing reversal hypothesis). Despite empirical evidence for this pattern the mechanistic link between modes of plant-plant competition and grazing response at the community level still remains poorly understood. Root-competition in particular has rarely been included in theoretical studies, although it has been hypothesized that variations in productivity and grazing regime can alter the relative importance of shoot- and root-competition. We therefore developed an individual-based model based on plant functional traits to investigate the response of a grassland community towards grazing. Models of different complexity, either incorporating only shoot competition or with distinct shoot- and root-competition, were used to study the interactive effects of grazing, resource availability, and the mode of competition (size-symmetric or asymmetric). The pattern predicted by the grazing reversal hypothesis (GRH) can only be explained by our model if shoot- and root-competition are explicitly considered and if size asymmetry of above- and symmetry of below-ground competition is assumed. For this scenario, the model additionally reproduced empirically observed plant trait responses: erect and large plant functional types (PFTs) dominated without grazing, while frequent grazing favoured small PFTs with a rosette growth form. We conclude that interactions between shoot- and root-competition and size symmetry/asymmetry of plant-plant interactions are crucial in order to understand grazing response under different habitat productivities. Our results suggest that future empirical trait surveys in grassland communities should include root traits, which have been largely ignored in previous studies, in order to improve predictions of plants" responses to grazing.}, language = {en} } @article{MoloneyHolzapfelTielboergeretal.2009, author = {Moloney, Kirk A. and Holzapfel, Claus and Tielb{\"o}rger, Katja and Jeltsch, Florian and Schurr, Frank Martin}, title = {Rethinking the common garden in invasion research}, issn = {1433-8319}, doi = {10.1016/j.ppees.2009.05.002}, year = {2009}, abstract = {In common garden experiments, a number of genotypes are raised in a common environment in order to quantify the genetic component of phenotypic variation. Common gardens are thus ideally suited for disentangling how genetic and environmental factors contribute to the success of invasive species in their new non-native range. Although common garden experiments are increasingly employed in the study of invasive species, there has been little discussion about how these experiments should be designed for greatest utility. We argue that this has delayed progress in developing a general theory of invasion biology. We suggest a minimum optimal design (MOD) for common garden studies that target the ecological and evolutionary processes leading to phenotypic differentiation between native and invasive ranges. This involves four elements: (A) multiple, strategically sited garden locations, involving at the very least four gardens (2 in the native range and 2 in the invaded range); (B) careful consideration of the genetic design of the experiment; (C) standardization of experimental protocols across all gardens; and (D) care to ensure the biosafety of the experiment. Our understanding of the evolutionary ecology of biological invasions will be greatly enhanced by common garden studies, if and only if they are designed in a more systematic fashion, incorporating at the very least the MOD suggested here.}, language = {en} } @misc{WeiseAugeBaessleretal.2020, author = {Weise, Hanna and Auge, Harald and Baessler, Cornelia and B{\"a}rlund, Ilona and Bennett, Elena M. and Berger, Uta and Bohn, Friedrich and Bonn, Aletta and Borchardt, Dietrich and Brand, Fridolin and Jeltsch, Florian and Joshi, Jasmin Radha and Grimm, Volker}, title = {Resilience trinity}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {4}, issn = {1866-8372}, doi = {10.25932/publishup-51528}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-515284}, pages = {14}, year = {2020}, abstract = {Ensuring ecosystem resilience is an intuitive approach to safeguard the functioning of ecosystems and hence the future provisioning of ecosystem services (ES). However, resilience is a multi-faceted concept that is difficult to operationalize. Focusing on resilience mechanisms, such as diversity, network architectures or adaptive capacity, has recently been suggested as means to operationalize resilience. Still, the focus on mechanisms is not specific enough. We suggest a conceptual framework, resilience trinity, to facilitate management based on resilience mechanisms in three distinctive decision contexts and time-horizons: 1) reactive, when there is an imminent threat to ES resilience and a high pressure to act, 2) adjustive, when the threat is known in general but there is still time to adapt management and 3) provident, when time horizons are very long and the nature of the threats is uncertain, leading to a low willingness to act. Resilience has different interpretations and implications at these different time horizons, which also prevail in different disciplines. Social ecology, ecology and engineering are often implicitly focussing on provident, adjustive or reactive resilience, respectively, but these different notions of resilience and their corresponding social, ecological and economic tradeoffs need to be reconciled. Otherwise, we keep risking unintended consequences of reactive actions, or shying away from provident action because of uncertainties that cannot be reduced. The suggested trinity of time horizons and their decision contexts could help ensuring that longer-term management actions are not missed while urgent threats to ES are given priority.}, language = {en} } @article{WeiseAugeBaessleretal.2020, author = {Weise, Hanna and Auge, Harald and Baessler, Cornelia and B{\"a}rlund, Ilona and Bennett, Elena M. and Berger, Uta and Bohn, Friedrich and Bonn, Aletta and Borchardt, Dietrich and Brand, Fridolin and Jeltsch, Florian and Joshi, Jasmin Radha and Grimm, Volker}, title = {Resilience trinity}, series = {Oikos}, volume = {129}, journal = {Oikos}, number = {4}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {0030-1299}, doi = {10.1111/oik.07213}, pages = {445 -- 456}, year = {2020}, abstract = {Ensuring ecosystem resilience is an intuitive approach to safeguard the functioning of ecosystems and hence the future provisioning of ecosystem services (ES). However, resilience is a multi-faceted concept that is difficult to operationalize. Focusing on resilience mechanisms, such as diversity, network architectures or adaptive capacity, has recently been suggested as means to operationalize resilience. Still, the focus on mechanisms is not specific enough. We suggest a conceptual framework, resilience trinity, to facilitate management based on resilience mechanisms in three distinctive decision contexts and time-horizons: 1) reactive, when there is an imminent threat to ES resilience and a high pressure to act, 2) adjustive, when the threat is known in general but there is still time to adapt management and 3) provident, when time horizons are very long and the nature of the threats is uncertain, leading to a low willingness to act. Resilience has different interpretations and implications at these different time horizons, which also prevail in different disciplines. Social ecology, ecology and engineering are often implicitly focussing on provident, adjustive or reactive resilience, respectively, but these different notions of resilience and their corresponding social, ecological and economic tradeoffs need to be reconciled. Otherwise, we keep risking unintended consequences of reactive actions, or shying away from provident action because of uncertainties that cannot be reduced. The suggested trinity of time horizons and their decision contexts could help ensuring that longer-term management actions are not missed while urgent threats to ES are given priority.}, language = {en} } @article{KoechyMathajJeltschetal.2008, author = {K{\"o}chy, Martin and Mathaj, Martin and Jeltsch, Florian and Malkinson, Dan}, title = {Resilience of stocking capacity to changing climate in arid to Mediterranean landscapes}, doi = {10.1007/s10113-008-0048-6}, year = {2008}, abstract = {Small livestock is an important resource for rural human populations in dry climates. How strongly will climate change affect the capacity of the rangeland? We used hierarchical modelling to scale quantitatively the growth of shrubs and annual plants, the main food of sheep and goats, to the landscape extent in the eastern Mediterranean region. Without grazing, productivity increased in a sigmoid way with mean annual precipitation. Grazing reduced productivity more strongly the drier the landscape. At a point just under the stocking capacity of the vegetation, productivity declined precipitously with more intense grazing due to a lack of seed production of annuals. We repeated simulations with precipitation patterns projected by two contrasting IPCC scenarios. Compared to results based on historic patterns, productivity and stocking capacity did not differ in most cases. Thus, grazing intensity remains the stronger impact on landscape productivity in this dry region even in the future.}, language = {en} } @misc{KoechyMathajJeltschetal.2008, author = {K{\"o}chy, Martin and Mathaj, Martin and Jeltsch, Florian and Malkinson, Dan}, title = {Resilience of stocking capacity to changing climate in arid to Mediterranean landscapes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18720}, year = {2008}, abstract = {Small livestock is an important resource for rural human populations in dry climates. How strongly will climate change affect the capacity of the rangeland? We used hierarchical modelling to scale quantitatively the growth of shrubs and annual plants, the main food of sheep and goats, to the landscape extent in the eastern Mediterranean region. Without grazing, productivity increased in a sigmoid way with mean annual precipitation. Grazing reduced productivity more strongly the drier the landscape. At a point just under the stocking capacity of the vegetation, productivity declined precipitously with more intense grazing due to a lack of seed production of annuals. We repeated simulations with precipitation patterns projected by two contrasting IPCC scenarios. Compared to results based on historic patterns, productivity and stocking capacity did not differ in most cases. Thus, grazing intensity remains the stronger impact on landscape productivity in this dry region even in the future.}, language = {en} } @misc{SynodinosEldridgeGeissleretal.2018, author = {Synodinos, Alexios D. and Eldridge, David and Geißler, Katja and Jeltsch, Florian and Lohmann, Dirk and Midgley, Guy and Blaum, Niels}, title = {Remotely sensed canopy height reveals three pantropical ecosystem states}, series = {Ecology : a publication of the Ecological Society of America}, volume = {99}, journal = {Ecology : a publication of the Ecological Society of America}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0012-9658}, doi = {10.1002/ecy.1997}, pages = {231 -- 234}, year = {2018}, language = {en} } @article{BurkartAlslebenLachmuthetal.2010, author = {Burkart, Michael and Alsleben, Katja and Lachmuth, Susanne and Schumacher, Juliane and Hofmann, Ralf and Jeltsch, Florian and Schurr, Frank Martin}, title = {Recruitment requirements of the rare and threatened Juncus atratus}, issn = {0367-2530}, doi = {10.1016/j.flora.2009.08.003}, year = {2010}, abstract = {The long-term persistence of populations and species depends on the successful recruitment of individuals. The generative recruitment of plants may be limited by a lack of suitable germination and establishment conditions. Establishment limitation may especially be caused by the competitive effect of surrounding dense vegetation, which is believed to restrict the recruitment success of many plant species to small open patches ('safe sites'). We conducted experiments to clarify the roles of germination and seedling establishment as limiting processes in the recruitment of Juncus atratus Krock., a rare and threatened herbaceous perennial river corridor plant in Central Europe. Light intensity had a positive effect on germination. However, some seedlings emerged even in total darkness and the germination rate at 1\% light intensity was more than half of that at 60\% light intensity. Seedling establishment in the field after 10 weeks was 30\% on bare ground, but it was close to zero in grassland. Establishment in the growth chamber after 8 weeks was close to 75\% for seedlings that germinated underwater, but only about 35\% for seedlings that germinated afloat. Furthermore, establishment decreased with flooding duration on bare ground, but increased with flooding duration in grassland. These data indicate that establishment, rather than germination, is a critical life stage in Central European populations off. atratus. They furthermore indicate that the competition of surrounding vegetation for water limits seedling establishment under field conditions without flooding, largely restricting establishment success to bare ground habitats. In contrast, grassland is more suitable for the recruitment off. atratus than bare ground under prolonged flooding. Grassland may facilitate the establishment off. atratus seedlings during long- lasting floods by supplying oxygen to the soil through aerenchyma. The shift from competition to facilitation in grassland occurred after 30 days of flooding, i.e. within the ontogeny of individual plants. The specific recruitment requirements off. arrows may be a main cause of its rarity in modern Central Europe. In order to prevent regional extinction off. atratus, we suggest maintaining or re-establishing natural hydrodynamics in the species' habitats.}, language = {en} } @article{TielboergerKadmonMuelleretal.2000, author = {Tielb{\"o}rger, Katja and Kadmon, Ronen and M{\"u}ller, Monika and Jeltsch, Florian}, title = {Raum-zeitliche Populationsdynamik von einj{\"a}hrigen W{\"u}stenpflanzen}, year = {2000}, language = {de} } @article{PagelAndersonCrameretal.2014, author = {Pagel, J{\"o}rn and Anderson, Barbara J. and Cramer, Wolfgang and Fox, Richard and Jeltsch, Florian and Roy, David B. and Thomas, Chris D. and Schurr, Frank Martin}, title = {Quantifying range-wide variation in population trends from local abundance surveys and widespread opportunistic occurrence records}, series = {Methods in ecology and evolution : an official journal of the British Ecological Society}, volume = {5}, journal = {Methods in ecology and evolution : an official journal of the British Ecological Society}, number = {8}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {2041-210X}, doi = {10.1111/2041-210X.12221}, pages = {751 -- 760}, year = {2014}, abstract = {2. We present a hierarchical model that integrates observations from multiple sources to estimate spatio-temporal abundance trends. The model links annual population densities on a spatial grid to both long-term count data and to opportunistic occurrence records from a citizen science programme. Specific observation models for both data types explicitly account for differences in data structure and quality. 3. We test this novel method in a virtual study with simulated data and apply it to the estimation of abundance dynamics across the range of a butterfly species (Pyronia tithonus) in Great Britain between 1985 and 2004. The application to simulated and real data demonstrates how the hierarchical model structure accommodates various sources of uncertainty which occur at different stages of the link between observational data and the modelled abundance, thereby it accounts for these uncertainties in the inference of abundance variations. 4. We show that by using hierarchical observation models that integrate different types of commonly available data sources, we can improve the estimates of variation in species abundances across space and time. This will improve our ability to detect regional trends and can also enhance the empirical basis for understanding range dynamics.}, language = {en} } @article{JeltschHansenTackmannetal.2004, author = {Jeltsch, Florian and Hansen, Frank and Tackmann, K. and Staubach, C. and Thulke, Hans-Hermann}, title = {Processes leading to a spatial aggregation of Echinococcus multilocularis in its natural intermediate host Microtus arvalis}, year = {2004}, abstract = {The small fox tapeworm (Echinococcus multilocularis) shows a heterogeneous spatial distribution in the intermediate host (Microtus arvalis). To identify the ecological processes responsible for this heterogeneity, we developed a spatially explicit simulation model. The model combines individual-based (foxes, Vulpes vulpes) and grid- based (voles) techniques to simulate the infections in both intermediate and definite host. If host populations are homogeneously mixed, the model reproduces field data for parasite prevalence only for a limited number of parameter combinations. As ecological parameters inevitably vary to a certain degree, we discarded the homogeneous mixing model as insufficient to gain insight into the ecology of the fox tapeworm cycle. We analysed five different model scenarios, each focussing on an ecological process that might be responsible for the heterogeneous spatial distribution of E multilocularis in the intermediate host. Field studies revealed that the prevalence ratio between intermediate and definite host remains stable over a wide range of ecological conditions. Thus, by varying the parameters in simulation experiments, we used the robustness of the agreement between field data and model output as quality criterion for the five scenarios. Only one of the five scenarios was found to reproduce the prevalence ratio over a sufficient range of parameter combinations. In the accentuated scenario most tapeworm eggs die due to bad environmental conditions before they cause infections in the intermediate host. This scenario is supported by the known sensitivity of tapeworm eggs to high temperatures and dry conditions. The identified process is likely to lead to a heterogeneous availability of infective eggs and thus to a clumped distribution of infected intermediate hosts. In conclusion, areas with humid conditions and low temperatures must be pointed out as high risk areas for human exposure to E. multilocularis eggs as well. (C) 2004 on behalf of Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved}, language = {en} } @article{LohmannTietjenBlaumetal.2014, author = {Lohmann, Dirk and Tietjen, Britta and Blaum, Niels and Joubert, David Francois and Jeltsch, Florian}, title = {Prescribed fire as a tool for managing shrub encroachment in semi-arid savanna rangelands}, series = {Journal of arid environments}, volume = {107}, journal = {Journal of arid environments}, publisher = {Elsevier}, address = {London}, issn = {0140-1963}, doi = {10.1016/j.jaridenv.2014.04.003}, pages = {49 -- 56}, year = {2014}, abstract = {Savanna rangelands worldwide are threatened by shrub encroachment, i.e. the increase of woody plant species at the cost of perennial grasses, causing a strong decline in the productivity of domestic livestock production. Although recent studies indicate that fire might be of great importance for semi-arid and arid savanna dynamics, it is largely not applied in the management of semi-arid rangelands especially with regard to woody plant control. We used the eco-hydrological savanna model EcoHyD to simulate the effects of different fire management strategies on semi-arid savanna vegetation and to assess their longterm suitability for semi-arid rangeland management. Simulation results show that prescribed fires, timed to kill tree seedlings prevented shrub encroachment for a broad range of livestock densities while the possible maximum long-term cattle densities on the simulated semi-arid rangeland in Namibia increased by more than 30\%. However, when grazing intensity was too high, fire management failed in preventing shrub encroachment. Our findings indicate that with regard to fire management a clear distinction between mesic and more arid savannas is necessary: While the frequency of fires is of relevance for mesic savannas, we recommend a fire management focussing on the timing of fire for semi-arid and arid savannas. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} } @article{WichmannDeanJeltsch2006, author = {Wichmann, Matthias and Dean, W. R. J. and Jeltsch, Florian}, title = {Predicting the breeding success of large raptors in arid southern Africa : a first assessment}, year = {2006}, abstract = {Raptors are often priorities for conservation efforts and breeding success is a target measure for assessing their conservation status. The breeding success of large raptors in and southern Africa is thought to be higher in years of high rainfall. While this correlation has been found in several studies, it has not yet been shown for data from a wider geographical area. In conservation research, it is important to explore the differences between spatially- separated populations to estimate and to compare their conservation status, and to deduce specific management strategies. Using a theoretical approach, we develop a simplistic model to explain the breeding success-rainfall relationship in large African raptors at larger spatial scales. Secondly, we validate this model and we show that the inclusion of field data leads to consistent predictions. In particular, we recommend that the average size of the 'effective territory' should be included in the relationship between annual rainfall and breeding success of raptors in and southern Africa. Accordingly, we suggest that breeding success is a function of precipitation and inter- nest distance. We present a new measure of territory quality depending on rainfall and territory size. We suggest that our model provides a useful first approach to assess breeding success in large raptors of and southern Africa. However, we strongly emphasise the need to gather more data to further verify our model. A general problem in conservation research is to compare the status of populations assessed in different study areas under changing environmental conditions. Our simplistic approach indicates that this problem can be overcome by using a weighted evaluation of a target measure (i.e. breeding success), taking regional differences into account}, language = {en} } @article{ReegHeineMihanetal.2018, author = {Reeg, Jette and Heine, Simon and Mihan, Christine and Preuss, Thomas G. and McGee, Sean and Jeltsch, Florian}, title = {Potential impact of effects on reproductive attributes induced by herbicides on a plant community}, series = {Environmental Toxicology and Chemistry}, volume = {37}, journal = {Environmental Toxicology and Chemistry}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {0730-7268}, doi = {10.1002/etc.4122}, pages = {1707 -- 1722}, year = {2018}, abstract = {Current herbicide risk assessment guidelines for nontarget terrestrial plants require testing effects on young, vulnerable life stages (i.e., seedling emergence [and subsequent growth] and vegetative vigor [growth and dry wt]) but not directly on the reproduction of plants. However, the European Food Safety Authority (EFSA) has proposed that effects on reproduction might be considered when evaluating the potential effects on plants. We adapted the plant community model for grassland (IBC-grass) to give insight into the current debate on the sensitivity of reproductive versus vegetative endpoints in ecological risk assessment. In an extensive sensitivity analysis of this model, we compared plant attributes potentially affected by herbicides and the consequences for long-term plant population dynamics and plant diversity. This evaluation was implemented by reducing reproductive as well as vegetative endpoints by certain percentages (e.g., 10-90\%) as a theoretical assumption. Plant mortality and seed sterility (i.e., inability of seeds to germinate) were the most sensitive attributes. Our results indicated that effects on seed production at off-field exposure rates must be very strong to have an impact on the risk assessment. Otherwise, effects on seed production are compensated for by the soil seed bank. The present study highlights the usefulness of community level modeling studies to support regulators in their decisions on the appropriate risk assessment endpoints and provides confidence in their assessments. Environ Toxicol Chem 2018;37:1707-1722. (c) 2018 SETAC}, language = {en} } @article{GuentherSchueleZurelletal.2023, author = {G{\"u}nther, Oliver and Sch{\"u}le, Manja and Zurell, Damaris and Jeltsch, Florian and Roeleke, Manuel and Kampe, Heike and Zimmermann, Matthias and Scholz, Jana and Engbert, Ralf and Elsner, Birgit and Schlangen, David and Agrofylax, Luisa and Georgi, Doreen and Weymar, Mathias and Wagener, Thorsten and Bookhagen, Bodo and Eibl, Eva P. S. and Korup, Oliver and Oswald, Sascha and Thieken, Annegret and van der Beek, Peter}, title = {Portal Wissen = Exzellenz}, series = {Portal Wissen: Das Forschungsmagazin der Universit{\"a}t Potsdam}, journal = {Portal Wissen: Das Forschungsmagazin der Universit{\"a}t Potsdam}, number = {02/2023}, issn = {2194-4245}, doi = {10.25932/publishup-61144}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-611440}, pages = {98}, year = {2023}, abstract = {Was nicht nur gut oder sehr gut ist, nennen wir gern exzellent. Aber was meint das eigentlich? Vom lateinischen „excellere" kommend, beschreibt es Dinge, Personen oder Handlungen, die „hervor-" oder „herausragen" aus der Menge, sich „auszeichnen" gegen{\"u}ber anderen. Mehr geht nicht. Exzellenz ist das Mittel der Wahl, wenn es darum geht, der Erste oder Beste zu sein. Und das macht auch vor der Forschung nicht halt. Wer auf die Universit{\"a}t Potsdam schaut, findet zahlreiche ausgezeichnete Forschende, hervorragende Projekte und immer wieder auch aufsehenerregende Erkenntnisse, Ver{\"o}ffentlichungen und Ergebnisse. Aber ist die UP auch exzellent? Eine Frage, die 2023 ganz sicher andere Wellen schl{\"a}gt als vielleicht vor 20 Jahren. Denn seit dem Start der Exzellenzinitiative 2005 gelten als - w{\"o}rtlich - exzellent jene Hochschulen, denen es gelingt, in dem umfangreichsten F{\"o}rderprogramm f{\"u}r Wissenschaft in Deutschland einen Zuschlag zu erhalten. Egal ob in Form von Graduiertenschulen, Forschungsclustern oder - seit Fortsetzung des Programms ab 2019 unter dem Titel „Exzellenzstrategie" - ganzen Exzellenzuniversit{\"a}ten: Wer im Kreis der Forschungsuniversit{\"a}ten zu den Besten geh{\"o}ren will, braucht das Siegel der Exzellenz. In der gerade eingel{\"a}uteten neuen Wettbewerbsrunde der „Exzellenzstrategie des Bundes und der L{\"a}nder" bewirbt sich die Universit{\"a}t Potsdam mit drei Clusterskizzen um F{\"o}rderung. Ein Antrag kommt aus der {\"O}kologie- und Biodiversit{\"a}tsforschung. Ziel ist es, ein komplexes Bild {\"o}kologischer Prozesse zu zeichnen - und dabei die Rolle von einzelnen Individuen ebenso zu betrachten wie das Zusammenwirken vieler Arten in einem {\"O}kosystem, um die Funktion der Artenvielfalt genauer zu bestimmen. Eine zweite Skizze haben die Kognitionswissenschaften eingereicht. Hier soll das komplexe Nebeneinander von Sprache und Kognition, Entwicklung und Lernen sowie Motivation und Verhalten als dynamisches Miteinander erforscht werden - wobei auch mit den Erziehungswissenschaften kooperiert wird, um verkn{\"u}pfte Lernund Bildungsprozesse stets mitzudenken. Der dritte Antrag aus den Geo- und Umweltwissenschaften nimmt extreme und besonders folgenschwere Naturgefahren und -prozesse wie {\"U}berschwemmungen und D{\"u}rren in den Blick. Die Forschenden untersuchen die Extremereignisse mit besonderem Fokus auf deren Wechselwirkung mit der Gesellschaft, um mit ihnen einhergehende Risiken und Sch{\"a}den besser einsch{\"a}tzen sowie k{\"u}nftig rechtzeitig Maßnahmen einleiten zu k{\"o}nnen. „Alle drei Antr{\"a}ge zeichnen ein hervorragendes Bild unserer Leistungsf{\"a}higkeit", betont der Pr{\"a}sident der Universit{\"a}t, Prof. Oliver G{\"u}nther, Ph.D. „Die Skizzen dokumentieren eindrucksvoll unser Engagement, vorhandene Forschungsexzellenz sowie die Potenziale der Universit{\"a}t Potsdam insgesamt. Allein die Tatsache, dass sich drei schlagkr{\"a}ftige Konsortien in ganz unterschiedlichen Themenbereichen zusammengefunden haben, zeigt, dass wir auf unserem Weg in die Spitzengruppe der deutschen Universit{\"a}ten einen guten Schritt vorangekommen sind." In diesem Heft schauen wir, was sich in und hinter diesen Antr{\"a}gen verbirgt: Wir haben mit den Wissenschaftlerinnen und Wissenschaftlern gesprochen, die sie geschrieben haben, und sie gefragt, was sie sich vornehmen, sollten sie den Zuschlag erhalten und ein Cluster an die Universit{\"a}t holen. Wir haben aber auch auf die Forschung geschaut, die zu den Antr{\"a}gen gef{\"u}hrt hat und die schon l{\"a}nger das Profil der Universit{\"a}t pr{\"a}gt und ihr national wie international Anerkennung eingebracht hat. Wir stellen eine kleine Auswahl an Projekten, Methoden und Forschenden vor, um zu zeigen, warum in diesen Antr{\"a}gen tats{\"a}chlich exzellente Forschung steckt! {\"U}brigens: Auch „Exzellenz" ist nicht das Ende der Fahnenstange. Immerhin l{\"a}sst sich das Adjektiv exzellent sogar steigern. In diesem Sinne w{\"u}nschen wir exzellentestes Vergn{\"u}gen beim Lesen!}, language = {de} } @article{GuentherSchueleZurelletal.2023, author = {G{\"u}nther, Oliver and Sch{\"u}le, Manja and Zurell, Damaris and Jeltsch, Florian and Roeleke, Manuel and Kampe, Heike and Zimmermann, Matthias and Scholz, Jana and Mikulla, Stefanie and Engbert, Ralf and Elsner, Birgit and Schlangen, David and Agrofylax, Luisa and Georgi, Doreen and Weymar, Mathias and Wagener, Thorsten and Bookhagen, Bodo and Eibl, Eva P. S. and Korup, Oliver and Oswald, Sascha and Thieken, Annegret and van der Beek, Peter}, title = {Portal Wissen = Excellence}, series = {Portal Wissen: The research magazine of the University of Potsdam}, journal = {Portal Wissen: The research magazine of the University of Potsdam}, number = {02/2023}, issn = {2198-9974}, doi = {10.25932/publishup-61145}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-611456}, pages = {58}, year = {2023}, abstract = {When something is not just good or very good, we often call it excellent. But what does that really mean? Coming from the Latin word "excellere," it describes things, persons, or actions that are outstanding or superior and distinguish themselves from others. It cannot get any better. Excellence is the top choice for being the first or the best. Research is no exception. At the university, you will find numerous exceptional researchers, outstanding projects, and, time and again, sensational findings, publications, and results. But is the University of Potsdam also excellent? A question that will certainly create a different stir in 2023 than it did perhaps 20 years ago. Since the launch of the Excellence Initiative in 2005, universities that succeed in winning the most comprehensive funding program for research in Germany have been considered - literally - excellent. Whether in the form of graduate schools, research clusters, or - since the program was continued in 2019 under the title "Excellence Strategy" - entire universities of excellence: Anyone who wants to be among the best research universities needs the seal of excellence. The University of Potsdam is applying for funding with three cluster proposals in the recently launched new round of the "Excellence Strategy of the German Federal and State Governments." One proposal comes from ecology and biodiversity research. The aim is to paint a comprehensive picture of ecological processes by examining the role of single individuals as well as the interactions among many species in an ecosystem to precisely determine the function of biodiversity. A second proposal has been submitted by the cognitive sciences. Here, the complex coexistence of language and cognition, development and learning, as well as motivation and behavior will be researched as a dynamic interrelation. The projects will include cooperation with the educational sciences to constantly consider linked learning and educational processes. The third proposal from the geo and environmental sciences concentrates on extreme and particularly devastating natural hazards and processes such as floods and droughts. The researchers examine these extreme events, focusing on their interaction with society, to be able to better assess the risks and damages they might involve and to initiate timely measures in the future. "All three proposals highlight the excellence of our performance," emphasizes University President Prof. Oliver G{\"u}nther, Ph.D. "The outlines impressively document our commitment, existing research excellence, and the potential of the University of Potsdam as a whole. The fact that three powerful consortia have come together in different subject areas shows that we have taken a good step forward on our way to becoming one of the top German universities." In this issue, we are looking at what is in and behind these proposals: We talked to the researchers who wrote them. We asked them about their plans in case their proposals are successful and they bring a cluster of excellence to the university. But we also looked at the research that has led to the proposals, has long shaped the university's profile, and earned it national and international recognition. We present a small selection of projects, methods, and researchers to illustrate why there really is excellent research in these proposals! By the way, "excellence" is also not the end of the flagpole. After all, the adjective "excellent" even has a comparative and a superlative. With this in mind, I wish you the most excellent pleasure reading this issue!}, language = {en} } @article{TielboergerKadmonMuelleretal.2000, author = {Tielb{\"o}rger, Katja and Kadmon, Ronen and M{\"u}ller, Monika and Jeltsch, Florian}, title = {Populationsdynamische Funktionen von Ausbreitung und Dormanz}, year = {2000}, language = {de} } @article{BergholzSittelRistowetal.2022, author = {Bergholz, Kolja and Sittel, Lara-Pauline and Ristow, Michael and Jeltsch, Florian and Weiss, Lina}, title = {Pollinator guilds respond contrastingly at different scales to landscape parameters of land-use intensity}, series = {Ecology and evolution}, volume = {12}, journal = {Ecology and evolution}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.8708}, pages = {11}, year = {2022}, abstract = {Land-use intensification is the main factor for the catastrophic decline of insect pollinators. However, land-use intensification includes multiple processes that act across various scales and should affect pollinator guilds differently depending on their ecology. We aimed to reveal how two main pollinator guilds, wild bees and hoverflies, respond to different land-use intensification measures, that is, arable field cover (AFC), landscape heterogeneity (LH), and functional flower composition of local plant communities as a measure of habitat quality. We sampled wild bees and hoverflies on 22 dry grassland sites within a highly intensified landscape (NE Germany) within three campaigns using pan traps. We estimated AFC and LH on consecutive radii (60-3000 m) around the dry grassland sites and estimated the local functional flower composition. Wild bee species richness and abundance was positively affected by LH and negatively by AFC at small scales (140-400 m). In contrast, hoverflies were positively affected by AFC and negatively by LH at larger scales (500-3000 m), where both landscape parameters were negatively correlated to each other. At small spatial scales, though, LH had a positive effect on hoverfly abundance. Functional flower diversity had no positive effect on pollinators, but conspicuous flowers seem to attract abundance of hoverflies. In conclusion, landscape parameters contrarily affect two pollinator guilds at different scales. The correlation of landscape parameters may influence the observed relationships between landscape parameters and pollinators. Hence, effects of land-use intensification seem to be highly landscape-specific.}, language = {en} } @article{BergholzSittelRistowetal.2022, author = {Bergholz, Kolja and Sittel, Lara-Pauline and Ristow, Michael and Jeltsch, Florian and Weiß, Lina}, title = {Pollinator guilds respond contrastingly at different scales to landscape parameters of land-use intensity}, series = {Ecology and Evolution}, volume = {12}, journal = {Ecology and Evolution}, number = {3}, publisher = {John Wiley \& Sons, Inc.}, address = {Hoboken (New Jersey)}, issn = {2045-7758}, doi = {10.1002/ece3.8708}, pages = {11}, year = {2022}, abstract = {Land-use intensification is the main factor for the catastrophic decline of insect pollinators. However, land-use intensification includes multiple processes that act across various scales and should affect pollinator guilds differently depending on their ecology. We aimed to reveal how two main pollinator guilds, wild bees and hoverflies, respond to different land-use intensification measures, that is, arable field cover (AFC), landscape heterogeneity (LH), and functional flower composition of local plant communities as a measure of habitat quality. We sampled wild bees and hoverflies on 22 dry grassland sites within a highly intensified landscape (NE Germany) within three campaigns using pan traps. We estimated AFC and LH on consecutive radii (60-3000 m) around the dry grassland sites and estimated the local functional flower composition. Wild bee species richness and abundance was positively affected by LH and negatively by AFC at small scales (140-400 m). In contrast, hoverflies were positively affected by AFC and negatively by LH at larger scales (500-3000 m), where both landscape parameters were negatively correlated to each other. At small spatial scales, though, LH had a positive effect on hoverfly abundance. Functional flower diversity had no positive effect on pollinators, but conspicuous flowers seem to attract abundance of hoverflies. In conclusion, landscape parameters contrarily affect two pollinator guilds at different scales. The correlation of landscape parameters may influence the observed relationships between landscape parameters and pollinators. Hence, effects of land-use intensification seem to be highly landscape-specific.}, language = {en} } @misc{BergholzSittelRistowetal.2022, author = {Bergholz, Kolja and Sittel, Lara-Pauline and Ristow, Michael and Jeltsch, Florian and Weiß, Lina}, title = {Pollinator guilds respond contrastingly at different scales to landscape parameters of land-use intensity}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1298}, issn = {1866-8372}, doi = {10.25932/publishup-57730}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-577307}, pages = {11}, year = {2022}, abstract = {Land-use intensification is the main factor for the catastrophic decline of insect pollinators. However, land-use intensification includes multiple processes that act across various scales and should affect pollinator guilds differently depending on their ecology. We aimed to reveal how two main pollinator guilds, wild bees and hoverflies, respond to different land-use intensification measures, that is, arable field cover (AFC), landscape heterogeneity (LH), and functional flower composition of local plant communities as a measure of habitat quality. We sampled wild bees and hoverflies on 22 dry grassland sites within a highly intensified landscape (NE Germany) within three campaigns using pan traps. We estimated AFC and LH on consecutive radii (60-3000 m) around the dry grassland sites and estimated the local functional flower composition. Wild bee species richness and abundance was positively affected by LH and negatively by AFC at small scales (140-400 m). In contrast, hoverflies were positively affected by AFC and negatively by LH at larger scales (500-3000 m), where both landscape parameters were negatively correlated to each other. At small spatial scales, though, LH had a positive effect on hoverfly abundance. Functional flower diversity had no positive effect on pollinators, but conspicuous flowers seem to attract abundance of hoverflies. In conclusion, landscape parameters contrarily affect two pollinator guilds at different scales. The correlation of landscape parameters may influence the observed relationships between landscape parameters and pollinators. Hence, effects of land-use intensification seem to be highly landscape-specific.}, language = {en} } @article{MayGiladiRistowetal.2013, author = {May, Felix and Giladi, Itamar and Ristow, Michael and Ziv, Yaron and Jeltsch, Florian}, title = {Plant functional traits and community assembly along interacting gradients of productivity and fragmentation}, series = {Perspectives in plant ecology, evolution and systematics}, volume = {15}, journal = {Perspectives in plant ecology, evolution and systematics}, number = {6}, publisher = {Elsevier}, address = {Jena}, issn = {1433-8319}, doi = {10.1016/j.ppees.2013.08.002}, pages = {304 -- 318}, year = {2013}, abstract = {Quantifying the association of plant functional traits to environmental gradients is a promising approach for understanding and projecting community responses to land use and climatic changes. Although habitat fragmentation and climate are expected to affect plant communities interactively, there is a lack of empirical studies addressing trait associations to fragmentation in different climatic regimes. In this study, we analyse data on the key functional traits: specific leaf area (SLA), plant height, seed mass and seed number. First, we assess the evidence for the community assembly mechanisms habitat filtering and competition at different spatial scales, using several null-models and a comprehensive set of community-level trait convergence and divergence indices. Second, we analyse the association of community-mean traits with patch area and connectivity along a south-north productivity gradient. We found clear evidence for trait convergence due to habitat filtering. In contrast, the evidence for trait divergence due to competition fundamentally depended on the null-model used. When the null-model controlled for habitat filtering, there was only evidence for trait divergence at the smallest sampling scale (0.25 m x 0.25 m). All traits varied significantly along the S-N productivity gradient. While plant height and SLA were consistently associated with fragmentation, the association of seed mass and seed number with fragmentation changed along the S-N gradient. Our findings indicate trait convergence due to drought stress in the arid sites and due to higher productivity in the mesic sites. The association of plant traits to fragmentation is likely driven by increased colonization ability in small and/or isolated patches (plant height, seed number) or increased persistence ability in isolated patches (seed mass). Our study provides the first empirical test of trait associations with fragmentation along a productivity gradient. We conclude that it is crucial to study the interactive effects of different ecological drivers on plant functional traits.}, language = {en} } @article{HennenbergFischerKouadioetal.2006, author = {Hennenberg, K. J. and Fischer, Franka and Kouadio, K and Goetze, D and Orthmann, B and Linsenmair, KE and Jeltsch, Florian and Porembski, Stefan}, title = {Phytornass and fire occurrence along forest-savanna transects in the Comoe National Park, Ivory Coast}, issn = {0266-4674}, doi = {10.1017/S026646705003007}, year = {2006}, abstract = {In tropical West Africa, distribution patterns of forest islands in savannas are influenced by fires which occur regularly in the grass stratum. Along continuous forest-savanna transects in the Comoe National Park, the change in the amount and composition of non-woody phytomass was investigated from savanna to forest interior. This was correlated with the cover of vegetation strata above, soil depth, and the occurrence of seasonal surface fires. Phytomass mainly consisted of leaf litter in the forests (about 400 g m(-2) at the end of the rainy season, and about 600 g m(-2) at the end of the dry season) and of grasses in the savanna (about 900 g m(-2)). Low grass biomass appeared to be primarily the result of suppression by competing woody species and not of shallow soil. The occurrence of early dry-season fires seemed to be determined mainly by the amount of grass biomass as fuel because fires occurred in almost all savanna plots while forest sites remained unaffected. However, late dry-season fires will encounter higher amounts of leaf litter raising fire probability in forests. Due to the importance of the amount of combustible phytomass, fire probability and intensity might increase with annual precipitation in both savanna and forest}, language = {en} } @article{PfeiferSchatzPicoetal.2009, author = {Pfeifer, Marion and Schatz, Bertrand and Pic{\´o}, F. Xavier and Passalacqua, Nicodemo G. and Fay, Michael F. and Carey, Pete D. and Jeltsch, Florian}, title = {Phylogeography and genetic structure of the orchid "Himantoglossum hircinum" (L.) Spreng. across its European central-marginal gradient}, issn = {0305-0270}, doi = {10.1111/j.1365-2699.2009.02168.x}, year = {2009}, abstract = {Aim This study aims to link demographic traits and post-glacial recolonization processes with genetic traits in Himantoglossum hircinum (L.) Spreng (Orchidaceae), and to test the implications of the central-marginal concept (CMC) in Europe. Location Twenty sites covering the entire European distribution range of this species. Methods We employed amplified fragment length polymorphism (AFLP) markers and performed a plastid microsatellite survey to assess genetic variation in 20 populations of H. hircinum located along central-marginal gradients. We measured demographic traits to assess population fitness along geographical gradients and to test for correlations between demographic traits and genetic diversity. We used genetic diversity indices and analyses of molecular variance (AMOVA) to test hypotheses of reduced genetic diversity and increased genetic differentiation and isolation from central to peripheral sites. We used Bayesian simulations to analyse genetic relationships among populations. Results Genetic diversity decreased significantly with increasing latitudinal and longitudinal distance from the distribution centre when excluding outlying populations. The AMOVA revealed significant genetic differentiation among populations (F-ST = 0.146) and an increase in genetic differentiation from the centre of the geographical range to the margins (except for the Atlantic group). Population fitness, expressed as the ratio N-R/N, decreased significantly with increasing latitudinal distance from the distribution centre. Flower production was lower in most eastern peripheral sites. The geographical distribution of microsatellite haplotypes suggests post-glacial range expansion along three major migratory pathways, as also supported by individual membership fractions in six ancestral genetic clusters (C1-C6). No correlations between genetic diversity (e.g. diversity indices, haplotype frequency) and population demographic traits were detected. Main conclusions Reduced genetic diversity and haplotype frequency in H. hircinum at marginal sites reflect historical range expansions. Spatial variation in demographic traits could not explain genetic diversity patterns. For those sites that did not fit into the CMC, the genetic pattern is probably masked by other factors directly affecting either demography or population genetic structure. These include post-glacial recolonization patterns and changes in habitat suitability due to climate change at the northern periphery. Our findings emphasize the importance of distinguishing historical effects from those caused by geographical variation in population demography of species when studying evolutionary and ecological processes at the range margins under global change.}, language = {en} } @article{GrimmRevillaBergeretal.2005, author = {Grimm, Volker and Revilla, Eloy and Berger, Uta and Jeltsch, Florian and Mooij, Wolf M. and Railsback, Steven Floyd and Thulke, Hans-Hermann and Weiner, Jacob and Wiegand, Thorsten and DeAngelis, Donald L.}, title = {Pattern-oriented modeling of agend-based complex systems : lessons from ecology}, year = {2005}, abstract = {Agent-based complex systems are dynamic networks of many interacting agents; examples include ecosystems, financial markets, and cities. The search for general principles underlying the internal organization of such systems often uses bottom-up simulation models such as cellular automata and agent-based models. No general framework for designing, testing, and analyzing bottom-up models has yet been established, but recent advances in ecological modeling have come together in a general strategy we call pattern-oriented modeling. This strategy provides a unifying framework for decoding the internal organization of agent-based complex systems and may lead toward unifying algorithmic theories of the relation between adaptive behavior and system complexity}, language = {en} } @article{SchibalskiKoernerMaieretal.2018, author = {Schibalski, Anett and K{\"o}rner, Katrin and Maier, Martin and Jeltsch, Florian and Schr{\"o}der, Boris}, title = {Novel model coupling approach for resilience analysis of coastal plant communities}, series = {Ecological applications : a publication of the Ecological Society of America}, volume = {28}, journal = {Ecological applications : a publication of the Ecological Society of America}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {1051-0761}, doi = {10.1002/eap.1758}, pages = {1640 -- 1654}, year = {2018}, abstract = {Resilience is a major research focus covering a wide range of topics from biodiversity conservation to ecosystem (service) management. Model simulations can assess the resilience of, for example, plant species, measured as the return time to conditions prior to a disturbance. This requires process-based models (PBM) that implement relevant processes such as regeneration and reproduction and thus successfully reproduce transient dynamics after disturbances. Such models are often complex and thus limited to either short-term or small-scale applications, whereas many research questions require species predictions across larger spatial and temporal scales. We suggest a framework to couple a PBM and a statistical species distribution model (SDM), which transfers the results of a resilience analysis by the PBM to SDM predictions. The resulting hybrid model combines the advantages of both approaches: the convenient applicability of SDMs and the relevant process detail of PBMs in abrupt environmental change situations. First, we simulate dynamic responses of species communities to a disturbance event with a PBM. We aggregate the response behavior in two resilience metrics: return time and amplitude of the response peak. These metrics are then used to complement long-term SDM projections with dynamic short-term responses to disturbance. To illustrate our framework, we investigate the effect of abrupt short-term groundwater level and salinity changes on coastal vegetation at the German Baltic Sea. We found two example species to be largely resilient, and, consequently, modifications of SDM predictions consisted mostly of smoothing out peaks in the occurrence probability that were not confirmed by the PBM. Discrepancies between SDM- and PBM-predicted species responses were caused by community dynamics simulated in the PBM and absent from the SDM. Although demonstrated with boosted regression trees (SDM) and an existing individual-based model, IBC-grass (PBM), our flexible framework can easily be applied to other PBM and SDM types, as well as other definitions of short-term disturbances or long-term trends of environmental change. Thus, our framework allows accounting for biological feedbacks in the response to short- and long-term environmental changes as a major advancement in predictive vegetation modeling.}, language = {en} } @inproceedings{SapirRoticsKaatzetal.2013, author = {Sapir, N. and Rotics, S. and Kaatz, M. and Davidson, S. and Zurell, Damaris and Eggers, U. and Jeltsch, Florian and Nathan, R. and Wikelski, M.}, title = {Multi-year tracking of white storks (Ciconia ciconia) how the environment shapes the movement and behavior of a soaring-gliding inter-continental migrant}, series = {Integrative and comparative biology}, volume = {53}, booktitle = {Integrative and comparative biology}, number = {3}, publisher = {Oxford Univ. Press}, address = {Cary}, issn = {1540-7063}, pages = {E189 -- E189}, year = {2013}, language = {en} } @article{TuckerBoehningGaeseFaganetal.2018, author = {Tucker, Marlee A. and Boehning-Gaese, Katrin and Fagan, William F. and Fryxell, John M. and Van Moorter, Bram and Alberts, Susan C. and Ali, Abdullahi H. and Allen, Andrew M. and Attias, Nina and Avgar, Tal and Bartlam-Brooks, Hattie and Bayarbaatar, Buuveibaatar and Belant, Jerrold L. and Bertassoni, Alessandra and Beyer, Dean and Bidner, Laura and van Beest, Floris M. and Blake, Stephen and Blaum, Niels and Bracis, Chloe and Brown, Danielle and de Bruyn, P. J. Nico and Cagnacci, Francesca and Calabrese, Justin M. and Camilo-Alves, Constanca and Chamaille-Jammes, Simon and Chiaradia, Andre and Davidson, Sarah C. and Dennis, Todd and DeStefano, Stephen and Diefenbach, Duane and Douglas-Hamilton, Iain and Fennessy, Julian and Fichtel, Claudia and Fiedler, Wolfgang and Fischer, Christina and Fischhoff, Ilya and Fleming, Christen H. and Ford, Adam T. and Fritz, Susanne A. and Gehr, Benedikt and Goheen, Jacob R. and Gurarie, Eliezer and Hebblewhite, Mark and Heurich, Marco and Hewison, A. J. Mark and Hof, Christian and Hurme, Edward and Isbell, Lynne A. and Janssen, Rene and Jeltsch, Florian and Kaczensky, Petra and Kane, Adam and Kappeler, Peter M. and Kauffman, Matthew and Kays, Roland and Kimuyu, Duncan and Koch, Flavia and Kranstauber, Bart and LaPoint, Scott and Leimgruber, Peter and Linnell, John D. C. and Lopez-Lopez, Pascual and Markham, A. Catherine and Mattisson, Jenny and Medici, Emilia Patricia and Mellone, Ugo and Merrill, Evelyn and Mourao, Guilherme de Miranda and Morato, Ronaldo G. and Morellet, Nicolas and Morrison, Thomas A. and Diaz-Munoz, Samuel L. and Mysterud, Atle and Nandintsetseg, Dejid and Nathan, Ran and Niamir, Aidin and Odden, John and Oliveira-Santos, Luiz Gustavo R. and Olson, Kirk A. and Patterson, Bruce D. and de Paula, Rogerio Cunha and Pedrotti, Luca and Reineking, Bjorn and Rimmler, Martin and Rogers, Tracey L. and Rolandsen, Christer Moe and Rosenberry, Christopher S. and Rubenstein, Daniel I. and Safi, Kamran and Said, Sonia and Sapir, Nir and Sawyer, Hall and Schmidt, Niels Martin and Selva, Nuria and Sergiel, Agnieszka and Shiilegdamba, Enkhtuvshin and Silva, Joao Paulo and Singh, Navinder and Solberg, Erling J. and Spiegel, Orr and Strand, Olav and Sundaresan, Siva and Ullmann, Wiebke and Voigt, Ulrich and Wall, Jake and Wattles, David and Wikelski, Martin and Wilmers, Christopher C. and Wilson, John W. and Wittemyer, George and Zieba, Filip and Zwijacz-Kozica, Tomasz and Mueller, Thomas}, title = {Moving in the Anthropocene}, series = {Science}, volume = {359}, journal = {Science}, number = {6374}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aam9712}, pages = {466 -- 469}, year = {2018}, abstract = {Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission.}, language = {en} } @article{BuchmannSchurrNathanetal.2012, author = {Buchmann, Carsten M. and Schurr, Frank Martin and Nathan, Ran and Jeltsch, Florian}, title = {Movement upscaled - the importance of individual foraging movement for community response to habitat loss}, series = {Ecography : pattern and diversity in ecology ; research papers forum}, volume = {35}, journal = {Ecography : pattern and diversity in ecology ; research papers forum}, number = {5}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0906-7590}, doi = {10.1111/j.1600-0587.2011.06924.x}, pages = {436 -- 445}, year = {2012}, abstract = {Habitat loss poses a severe threat to biodiversity. While many studies yield valuable information on how specific species cope with such environmental modification, the mechanistic understanding of how interacting species or whole communities are affected by habitat loss is still poor. Individual movement plays a crucial role for the space use characteristics of species, since it determines how individuals perceive and use their heterogeneous environment. At the community level, it is therefore essential to include individual movement and how it is influenced by resource sharing into the investigation of consequences of habitat loss. To elucidate the effects of foraging movement on communities in face of habitat loss, we here apply a recently published spatially-explicit and individual-based model of home range formation. This approach allows predicting the individual size distribution (ISD) of mammal communities in simulation landscapes that vary in the amount of suitable habitat. We apply three fundamentally different foraging movement approaches (central place forager (CPF), patrolling forager (PF) and body mass dependent nomadic forager (BNF)). Results show that the efficiency of the different foraging strategies depends on body mass, which again affects community structure in face of habitat loss. CPF is only efficient for small animals, and therefore yields steep ISD exponents on which habitat loss has little effect (due to a movement limitation of body mass). PF and particularly BNF are more efficient for larger animals, resulting in less steep ISDs with higher mass maxima, both showing a threshold behaviour with regard to loss of suitable habitat. These findings represent a new way of explaining observed extinction thresholds, and therefore indicate the importance of individual space use characterized by physiology and behaviour, i.e. foraging movement, for communities and their response to habitat loss. Findings also indicate the necessity to incorporate the crucial role of movement into future conservation efforts of terrestrial communities.}, language = {en} } @article{FerTietjenJeltschetal.2017, author = {Fer, Istem and Tietjen, Britta and Jeltsch, Florian and Trauth, Martin H.}, title = {Modelling vegetation change during Late Cenozoic uplift of the East African plateaus}, series = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, volume = {467}, journal = {Palaeogeography, palaeoclimatology, palaeoecology : an international journal for the geo-sciences}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2016.04.007}, pages = {120 -- 130}, year = {2017}, abstract = {The present-day vegetation in the tropics is mainly characterized by forests worldwide except in tropical East Africa, where forests only occur as patches at the coast and in the uplands. These forest patches result from the peculiar aridity that is linked to the uplift of the region during the Late Cenozoic. The Late Cenozoic vegetation history of East Africa is of particular interest as it has set the scene for the contemporary events in mammal and hominin evolution. In this study, we investigate the conditions under which these forest patches could have been connected, and a previous continuous forest belt could have extended and fragmented. We apply a dynamic vegetation model with a set of climatic scenarios in which we systematically alter the present-day environmental conditions such that they would be more favourable for a continuous forest belt in tropical East Africa. We consider varying environmental factors, namely temperature, precipitation and atmospheric CO2 concentrations. Our results show that all of these variables play a significant role in supporting the forest biomes and a continuous forest belt could have occurred under certain combinations of these settings. With our current knowledge of the palaeoenvironmental history of East Africa, it is likely that the region hosted these conditions during the Late Cenozoic. Recent improvements on environmental hypotheses of hominin evolution highlight the role of periods of short and extreme climate variability during the Late Cenozoic specific to East Africa in driving evolution. Our results elucidate how the forest biomes of East Africa can appear and disappear under fluctuating environmental conditions and demonstrate how this climate variability might be recognized on the biosphere level.}, language = {en} } @article{KoernerPfestorfMayetal.2014, author = {Koerner, Katrin and Pfestorf, Hans and May, Felix and Jeltsch, Florian}, title = {Modelling the effect of belowground herbivory on grassland diversity}, series = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, volume = {273}, journal = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2013.10.025}, pages = {79 -- 85}, year = {2014}, abstract = {One challenging question in ecology is to explain species coexistence in highly diverse temperate grassland plant communities. Within this context, a clear understanding of the consequences of belowground herbivory for the composition and the diversity of plant communities continue to elude ecologists. The existing body of empirical evidence reveals partly contradictory responses ranging from negative to neutral or positive effects of belowground herbivory on grassland diversity. To reveal possible mechanistic grounds for these discrepancies, we extended an existing simulation model of grassland communities based on plant functional types to include root herbivory. This enabled us to test the effects of different feeding modes that represent different herbivore guilds. For each belowground feeding mode, we systematically varied the intensity and frequency of herbivory events for three different levels of soil fertility both in the presence and absence of additional aboveground grazing. Our modelling approach successfully reproduced various empirically reported diversity responses, merely on the basis of the different feeding modes. Different levels of plant resource availability affected the strength, but not the direction of the belowground herbivory effects. The only exception was the scenario with low resource levels, which promoted neutral (neither positive nor negative) diversity responses for some of the feeding modes. Interestingly, aboveground biomass production was largely unaffected by diversity changes induced by belowground herbivory except in the case of selective feeding modes that were related to specific functional traits. Our findings provide possible explanations for the broad spectrum of belowground herbivory effects on plant community diversity. Furthermore, the presented theoretical modelling approach provides a suitable conceptual framework to better understand the complex linkage between plant community and belowground herbivory dynamics.}, language = {en} } @article{JeltschTewsMoloney2004, author = {Jeltsch, Florian and Tews, J{\"o}rg and Moloney, Kirk A.}, title = {Modelling seed dispersal in a variable environment : a case study of the fleshy-fruited savanna shrub Grewia flava}, year = {2004}, abstract = {In ecology much attention has been paid towards seed dispersal of fleshy-fruited plants, however, knowledge is lacking about the Iona-term demographic consequences of variation in dispersal distance and fruit removal rate, particularly given the natural variability of the environment the organism lives in. In this study we used a spatially explicit, two-level stochastic computer model to simulate population dynamics of a fleshy-fruited shrub living in the sub-canopy of solitary savanna trees. On the landscape level we implemented three realistic scenarios of savanna landscape dynamics for a period of 500 years with equal inter-annual mean of environmental variables. The first scenario is representative of a relatively constant environment with normal variability in precipitation, constant tree density and random tree recruitment pattern. The second and third scenarios represent positive auto-correlated, cyclic patterns with alternating phases of tree cover increase and decrease corresponding with favorable and unfavorable rain phases. Our simulation experiments show that when fruit removal rate is extremely low, population persistence is enhanced under relatively constant rain conditions, while alternating rain phases of the cyclic scenarios lead to a significant population decrease. This result confirms previous findings that periodically fluctuating environments may increase local extinction risk. However, when dispersal distance is a limiting factor (whilst removal rate was sufficiently high), tree clumps typically forming in wet phases of both cyclic scenarios compensated for the negative effect of low dispersal distances, while the constant scenario with random tree pattern and larger inter-tree distances resulted in a significant population decline. (C) 2003 Elsevier B.V. All rights reserved}, language = {en} } @article{ReegSchadPreussetal.2017, author = {Reeg, Jette and Schad, Thorsten and Preuss, Thomas G. and Solga, Andreas and K{\"o}rner, Katrin and Mihan, Christine and Jeltsch, Florian}, title = {Modelling direct and indirect effects of herbicides on non-target grassland communities}, series = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, volume = {348}, journal = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2017.01.010}, pages = {44 -- 55}, year = {2017}, abstract = {Natural grassland communities are threatened by a variety of factors, such as climate change and increasing land use by mankind. The use of plant protection products (synthetic or organic) is mandatory in agricultural food production. To avoid adverse effects on natural grasslands within agricultural areas, synthetic plant protection products are strictly regulated in Europe. However, effects of herbicides on non-target terrestrial plants are primarily studied on the level of individual plants neglecting interactions between species. In our study, we aim to extrapolate individual-level effects to the population and community level by adapting an existing spatio-temporal, individual-based plant community model (IBC-grass). We analyse the effects of herbicide exposure for three different grassland communities: 1) representative field boundary community, 2) Calthion grassland community, and 3) Arrhenatheretalia grassland community. Our simulations show that herbicide depositions can have effects on non-target plant communities resulting from direct and indirect effects on population level. The effect extent depends not only on the distance to the field, but also on the specific plant community, its disturbance regime (cutting frequency, trampling and grazing intensity) and resource level. Mechanistic modelling approaches such as IBC-grass present a promising novel approach in transferring and extrapolating standardized pot experiments to community level and thereby bridging the gap between ecotoxicological testing (e.g. in the greenhouse) and protection goals referring to real world conditions.}, language = {en} } @article{WichmannGroeneveldJeltschetal.2005, author = {Wichmann, Matthias and Groeneveld, J{\"u}rgen and Jeltsch, Florian and Grimm, Volker}, title = {Mitigation of climate change impacts on raptors by behavioural adaption : ecological buffering mechanism}, year = {2005}, language = {en} } @article{WichmannGroeneveldJeltschetal.2005, author = {Wichmann, Matthias and Groeneveld, J{\"u}rgen and Jeltsch, Florian and Grimm, Volker}, title = {Mitigation of climate change impacts on raptors by behavioural adaptation : ecological buffering mechanisms}, issn = {0921-8181}, year = {2005}, abstract = {The predicted climate change causes deep concerns on the effects of increasing temperatures and changing precipitation patterns on species viability and, in turn, on biodiversity. Models of Population Viability Analysis (PVA) provide a powerful tool to assess the risk of species extinction. However, most PVA models do not take into account the potential effects of behavioural adaptations. Organisms might adapt to new environmental situations and thereby mitigate negative effects of climate change. To demonstrate such mitigation effects, we use an existing PVA model describing a population of the tawny eagle (Aquila rapax) in the southern Kalahari. This model does not include behavioural adaptations. We develop a new model by assuming that the birds enlarge their average territory size to compensate for lower amounts of precipitation. Here, we found the predicted increase in risk of extinction due to climate change to be much lower than in the original model. However, this "buffering" of climate change by behavioural adaptation is not very effective in coping with increasing interannual variances. We refer to further examples of ecological "buffering mechanisms" from the literature and argue that possible buffering mechanisms should be given due consideration when the effects of climate change on biodiversity are to be predicted. (c) 2004 Elsevier B.V. All rights reserved}, language = {en} } @article{WiegandJeltschWard2004, author = {Wiegand, K. and Jeltsch, Florian and Ward, D.}, title = {Minimum recruitment frequency in plants with episodic recruitment}, year = {2004}, abstract = {There is concern about the lack of recruitment of Acacia trees in the Negev desert of Israel. We have developed three models to estimate the frequency of recruitment necessary for long-term population survival (i.e. positive average population growth for 1,000 years and <10\% probability of extinction). Two models assume purely episodic recruitment based on the general notion that recruitment in and environments is highly episodic. They differ in that the deterministic model investigates average dynamics while the stochastic model does not. Studies indicating that recruitment episodes in and environments have been overemphasized motivated the development of the third model. This semi-stochastic model simulates a mixture of continuous and episodic recruitment. Model analysis was done analytically for the deterministic model and via running model simulations for the stochastic and semi-stochastic models. The deterministic and stochastic models predict that, on average, 2.2 and 3.7 recruitment events per century, respectively, are necessary to sustain the population. According to the semi-stochastic model, 1.6 large recruitment events per century and an annual probability of 50\% that a small recruitment event occurs are needed. A consequence of purely episodic recruitment is that all recruitment episodes produce extremely large numbers of recruits (i.e. at odds with field observations), an evaluation that holds even when considering that rare events must be large. Thus, the semi- stochastic model appears to be the most realistic model. Comparing the prediction of the semi-stochastic model to field observations in the Negev desert shows that the absence of observations of extremely large recruitment events is no reason for concern. However, the almost complete absence of small recruitment events is a serious reason for concern. The lack of recruitment may be due to decreased densities of large mammalian herbivores and might be further exacerbated by possible changes in climate, both in terms of average precipitation and the temporal distribution of rain}, language = {en} } @article{MayGiladiRistowetal.2013, author = {May, Felix and Giladi, Itamar and Ristow, Michael and Ziv, Yaron and Jeltsch, Florian}, title = {Metacommunity, mainland-island system or island communities? : assessing the regional dynamics of plant communities in a fragmented landscape}, series = {Ecography : pattern and diversity in ecology ; research papers forum}, volume = {36}, journal = {Ecography : pattern and diversity in ecology ; research papers forum}, number = {7}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0906-7590}, doi = {10.1111/j.1600-0587.2012.07793.x}, pages = {842 -- 853}, year = {2013}, abstract = {Understanding the regional dynamics of plant communities is crucial for predicting the response of plant diversity to habitat fragmentation. However, for fragmented landscapes the importance of regional processes, such as seed dispersal among isolated habitat patches, has been controversially debated. Due to the stochasticity and rarity of among-patch dispersal and colonization events, we still lack a quantitative understanding of the consequences of these processes at the landscape-scale. In this study, we used extensive field data from a fragmented, semi-arid landscape in Israel to parameterize a multi-species incidence-function model. This model simulates species occupancy pattern based on patch areas and habitat configuration and explicitly considers the locations and the shapes of habitat patches for the derivation of patch connectivity. We implemented an approximate Bayesian computation approach for parameter inference and uncertainty assessment. We tested which of the three types of regional dynamics - the metacommunity, the mainland-island, or the island communities type - best represents the community dynamics in the study area and applied the simulation model to estimate the extinction debt in the investigated landscape. We found that the regional dynamics in the patch-matrix study landscape is best represented as a system of highly isolated island' communities with low rates of propagule exchange among habitat patches and consequently low colonization rates in local communities. Accordingly, the extinction rates in the local communities are the main drivers of community dynamics. Our findings indicate that the landscape carries a significant extinction debt and in model projections 33-60\% of all species went extinct within 1000 yr. Our study demonstrates that the combination of dynamic simulation models with field data provides a promising approach for understanding regional community dynamics and for projecting community responses to habitat fragmentation. The approach bears the potential for efficient tests of conservation activities aimed at mitigating future losses of biodiversity.}, language = {en} } @article{SchererJeltschGrimmetal.2016, author = {Scherer, Cedric and Jeltsch, Florian and Grimm, Volker and Blaum, Niels}, title = {Merging trait-based and individual-based modelling: An animal functional type approach to explore the responses of birds to climatic and land use changes in semi-arid African savannas}, series = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, volume = {326}, journal = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2015.07.005}, pages = {75 -- 89}, year = {2016}, abstract = {Climate change and land use management practices are major drivers of biodiversity in terrestrial ecosystems. To understand and predict resulting changes in community structures, individual-based and spatially explicit population models are a useful tool but require detailed data sets for each species. More generic approaches are thus needed. Here we present a trait-based functional type approach to model savanna birds. The aim of our model is to explore the response of different bird functional types to modifications in habitat structure. The functional types are characterized by different traits, in particular body mass, which is related to life-history traits (reproduction and mortality) and spatial scales (home range area and dispersal ability), as well as the use of vegetation structures for foraging and nesting, which is related to habitat quality and suitability. We tested the performance of the functional types in artificial landscapes varying in shrub:grass ratio and clumping intensity of shrub patches. We found that an increase in shrub encroachment and a decrease in habitat quality caused by land use mismanagement and climate change endangered all simulated bird functional types. The strength of this effect was related to the preferred habitat. Furthermore, larger-bodied insectivores and omnivores were more prone to extinction due to shrub encroachment compared to small-bodied species. Insectivorous and omnivorous birds were more sensitive to clumping intensity of shrubs whereas herbivorous and carnivorous birds were most affected by a decreasing amount of grass cover. From an applied point of view, our findings emphasize that policies such as woody plant removal and a reduction in livestock stocking rates to prevent shrub encroachment should prioritize the enlargement of existing grassland patches. Overall, our results show that the combination of an individual-based modelling approach with carefully defined functional types can provide a powerful tool for exploring biodiversity responses to environmental changes. Furthermore, the increasing accumulation of worldwide data sets on species' core and soft traits (surrogates to determine core traits indirectly) on one side and the refinement of conceptual frameworks for animal functional types on the other side will further improve functional type approaches which consider the sensitivities of multiple species to climate change, habitat loss, and fragmentation.}, language = {en} } @article{EstherGroeneveldEnrightetal.2011, author = {Esther, Alexandra and Groeneveld, J{\"u}rgen and Enright, Neal J. and Miller, Ben P. and Lamont, Byron B. and Perry, George L. W. and Tietjen, Britta and Jeltsch, Florian}, title = {Low-dimensional trade-offs fail to explain richness and structure in species-rich plant communities}, series = {Theoretical ecology}, volume = {4}, journal = {Theoretical ecology}, number = {4}, publisher = {Springer}, address = {Heidelberg}, issn = {1874-1738}, doi = {10.1007/s12080-010-0092-y}, pages = {495 -- 511}, year = {2011}, abstract = {Mathematical models and ecological theory suggest that low-dimensional life history trade-offs (i.e. negative correlation between two life history traits such as competition vs. colonisation) may potentially explain the maintenance of species diversity and community structure. In the absence of trade-offs, we would expect communities to be dominated by 'super-types' characterised by mainly positive trait expressions. However, it has proven difficult to find strong empirical evidence for such trade-offs in species-rich communities. We developed a spatially explicit, rule-based and individual-based stochastic model to explore the importance of low-dimensional trade-offs. This model simulates the community dynamics of 288 virtual plant functional types (PFTs), each of which is described by seven life history traits. We consider trait combinations that fit into the trade-off concept, as well as super-types with little or no energy constraints or resource limitations, and weak PFTs, which do not exploit resources efficiently. The model is parameterised using data from a fire-prone, species-rich Mediterranean-type shrubland in southwestern Australia. We performed an exclusion experiment, where we sequentially removed the strongest PFT in the simulation and studied the remaining communities. We analysed the impact of traits on performance of PFTs in the exclusion experiment with standard and boosted regression trees. Regression tree analysis of the simulation results showed that the trade-off concept is necessary for PFT viability in the case of weak trait expression combinations such as low seed production or small seeds. However, species richness and diversity can be high despite the presence of super-types. Furthermore, the exclusion of super-types does not necessarily lead to a large increase in PFT richness and diversity. We conclude that low-dimensional trade-offs do not provide explanations for multi-species co-existence contrary to the prediction of many conceptual models.}, language = {en} } @article{MoustakasGuentherWiegandetal.2006, author = {Moustakas, Aristides and G{\"u}nther, Matthias and Wiegand, Kerstin and M{\"u}ller, Karl-Heinz and Ward, David and Meyer, Katrin M. and Jeltsch, Florian}, title = {Long-term mortality patterns of the deep-rooted Acacia erioloba}, series = {Journal of vegetation science}, volume = {17}, journal = {Journal of vegetation science}, publisher = {Blackwell}, address = {Malden}, issn = {1100-9233}, doi = {10.1111/j.1654-1103.2006.tb02468.x}, pages = {473 -- 480}, year = {2006}, abstract = {Question: Is there a relationship between size and death in the Iona-lived, deep-rooted tree, Acacia erioloba, in a semi-arid savanna? What is the size-class distribution of A. erioloba mortality? Does the mortality distribution differ from total tree size distribution? Does A. erioloba mortality distribution match the mortality distributions recorded thus far in other environments? Location: Dronfield Ranch, near Kimberley, Kalahari, South Africa. Methods: A combination of aerial photographs and a satellite image covering 61 year was used to provide long-term spatial data on mortality. We used aerial photographs of the study area from 1940, 1964, 1984, 1993 and a satellite image from 2001 to follow three plots covering 510 ha. We were able to identify and individually follow ca. 3000 individual trees from 1940 till 2001. Results: The total number of trees increased over time. No relationship between total number of trees and mean tree size was detected. There were no trends over time in total number of deaths per plot or in size distributions of dead trees. Kolmogorov-Smirnov tests showed no differences in size class distributions for living trees through time. The size distribution of dead trees was significantly different from the size distribution of all trees present on the plots. Overall, the number of dead trees was low in small size classes, reached a peak value when canopy area was 20 - 30 m(2), and declined in lamer size-classes. Mortality as a ratio of dead vs. total trees peaked at intermediate canopy sizes too. Conclusion: A. erioloba mortality was size-dependent, peaking at intermediate sizes. The mortality distribution differs from all other tree mortality distributions recorded thus far. We suggest that a possible mechanism for this unusual mortality distribution is intraspecific competition for water in this semi-arid environment.}, language = {en} } @article{WeberJeltsch2000, author = {Weber, Gisela and Jeltsch, Florian}, title = {Long-term impacts of livestock herbivory on herbaceous and woody vegetation in semiarid savannas}, year = {2000}, language = {en} } @article{WiegandJeltsch2000, author = {Wiegand, T. and Jeltsch, Florian}, title = {Long-term dynamics in arid and semi-arid ecosystems : synthesis of a workshop}, year = {2000}, language = {en} } @article{WiegandSchmidtJeltschetal.2000, author = {Wiegand, K. and Schmidt, H. and Jeltsch, Florian and Ward, D.}, title = {Linking a spatially-explicit model of acacias to GIS and remotely-sensed data}, year = {2000}, language = {en} } @article{TewsEstherMiltonetal.2006, author = {Tews, J{\"o}rg and Esther, Alexandra and Milton, Sue J. and Jeltsch, Florian}, title = {Linking a population model with an ecosystem model : assessing the impact of land use and climate change on savanna shrub cover dynamics}, doi = {10.1016/j.ecolmodel.2005.11.025}, year = {2006}, abstract = {In semiarid savannas of Southern Africa current land use practices and climate change may lead to substantial changes of vegetation structure in the near future, however uncertainty remains about the potential consequences and the magnitude of change. In this paper we study the impact of climate change, cattle grazing, and wood cutting on shrub cover dynamics in savannas of the southern Kalahari. We use an established savanna ecosystem model to simulate landscape dynamics in terms of rainfall, fire and distribution of the dominant tree Acacia erioloba. We then incorporate these data into a spatial population model of the common, fleshy-fruited shrub Grewia flava and investigate shrub cover dynamics for a period of 100 years. Depending on the intensity of commercial wood cutting practices tree removal of A. erioloba led to a strong decline of the G. flava population, as shrub recruitment is concentrated in tree sub-canopies due to bird-mediated seed dispersal. Under climate change shrub cover slightly decreased with decreasing precipitation and was unchanged with increase in precipitation variability. Contrarily, grazing by cattle strongly increased shrub cover and facilitated shrub encroachment because of cattle-induced distribution of G. flava seeds into the matrix vegetation. Knowledge of the latter process is particularly important because shrub invasion is a major concern for conservation and savanna rangeland management as a result of its adverse effects on livestock carrying capacity and biodiversity}, language = {en} } @article{SchwagerCovasBlaumetal.2008, author = {Schwager, Monika and Covas, Rita and Blaum, Niels and Jeltsch, Florian}, title = {Limitations of population models in predicting climate change effects : a simulation study of sociable weavers in southern Africa}, issn = {0030-1299}, doi = {10.1111/j.0030-1299.2008.16464.x}, year = {2008}, language = {en} } @article{PetruTielboergerBelkinetal.2006, author = {Petru, Martina and Tielb{\"o}rger, Katja and Belkin, Ruthie and Sternberg, Marcelo and Jeltsch, Florian}, title = {Life history variation in an annual plant under two opposing environmental constraints along an aridity gradient}, doi = {10.1111/j.2005.0906-7590.04310.x}, year = {2006}, abstract = {Environmental gradients represent an ideal framework for studying adaptive variation in the life history of plant species. However, on very steep gradients, largely contrasting conditions at the two gradient ends often limit the distribution of the same species across the whole range of environmental conditions. Here, we study phenotypic variation in a winter annual crucifer Biscutella didyma persisting along a steep gradient of increasing rainfall in Israel. In particular, we explored whether the life history at the arid end of the gradient indicates adaptations to drought and unpredictable conditions, while adaptations to the highly competitive environment prevail at the mesic Mediterranean end. We examined several morphological and reproductive traits in four natural populations and in populations cultivated in standard common environment. Plants from arid environments were faster in phenological development, more branched in architecture and tended to maximize reproduction, while the Mediterranean plants invested mainly in vertical vegetative growth. Differences between cultivation and field in diaspore production were very large for arid populations as opposed to Mediterranean ones, indicating a larger potential to increase reproduction under favorable conditions. Our overall findings indicate two strongly opposing selective forces at the two extremes of the aridity gradient, which result in contrasting strategies within the studied annual plant species}, language = {en} } @article{PoppDomptailBlaumetal.2009, author = {Popp, Alexander and Domptail, Stephanie and Blaum, Niels and Jeltsch, Florian}, title = {Landuse experience does not qualify for adaptation to climate change}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2008.11.015}, year = {2009}, abstract = {The need to implement sustainable resource management regimes for semi-arid and arid rangelands is acute as non- adapted grazing strategies lead to irreversible environmental problems such as desertification and associated loss of economic support to society. In these sensitive ecosystems, traditional sectoral, disciplinary approaches will not work to attain sustainability: achieving a collective vision of how to attain sustainability requires interactive efforts among disciplines in a more integrated approach. Therefore, we developed an integrated ecological-economic approach that consists of an ecological and an economic module and combines relevant processes on either level. Parameters for both modules are adjusted for an arid dwarf shrub savannah in southern Namibia. The economic module is used to analyse decisions of different virtual farmer types on annual stocking rates depending on their knowledge how the ecosystem works and climatic conditions. We used a dynamic linear optimisation model to simulate farm economics and livestock dynamics. The ecological module is used to simulate the impact of the farmers' land-use decision, derived by the economic module, on ecosystem dynamics and resulting carrying capacity of the system for livestock. Vegetation dynamics, based on the concept of State-and-transition models, and forage productivity for both modules is derived by a small- scale and spatially explicit vegetation model. This mechanistic approach guarantees that data collected and processes estimated at smaller scales are included in our application. Simulation results of the ecological module were successfully compared to simulation results of the optimisation model for a time series of 30 years. We revealed that sustainable management of semi-arid and arid rangelands relies strongly on rangeland managers' understanding of ecological processes. Furthermore, our simulation results demonstrate that the projected lower annual rainfall due to climate change adds an additional layer of risk to these ecosystems that are already prone to land degradation.}, language = {en} } @article{JeltschHansenTackmannetal.2003, author = {Jeltsch, Florian and Hansen, Frank and Tackmann, K. and Thulke, Hans-Hermann}, title = {K{\"o}derauslageintervalle und Dauer der Bek{\"a}mpfung des Kleinen Fuchsbandwurms : eine Modellierstudie}, year = {2003}, language = {de} } @article{CrawfordJeltschMayetal.2018, author = {Crawford, Michael and Jeltsch, Florian and May, Felix and Grimm, Volker and Schl{\"a}gel, Ulrike E.}, title = {Intraspecific trait variation increases species diversity in a trait-based grassland model}, series = {Oikos}, volume = {128}, journal = {Oikos}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {0030-1299}, doi = {10.1111/oik.05567}, pages = {441 -- 455}, year = {2018}, abstract = {Intraspecific trait variation (ITV) is thought to play a significant role in community assembly, but the magnitude and direction of its influence are not well understood. Although it may be critical to better explain population persistence, species interactions, and therefore biodiversity patterns, manipulating ITV in experiments is challenging. We therefore incorporated ITV into a trait- and individual-based model of grassland community assembly by adding variation to the plants' functional traits, which then drive life-history tradeoffs. Varying the amount of ITV in the simulation, we examine its influence on pairwise-coexistence and then on the species diversity in communities of different initial sizes. We find that ITV increases the ability of the weakest species to invade most, but that this effect does not scale to the community level, where the primary effect of ITV is to increase the persistence and abundance of the competitively-average species. Diversity of the initial community is also of critical importance in determining ITV's efficacy; above a threshold of interspecific diversity, ITV does not increase diversity further. For communities below this threshold, ITV mainly helps to increase diversity in those communities that would otherwise be low-diversity. These findings suggest that ITV actively maintains diversity by helping the species on the margins of persistence, but mostly in habitats of relatively low alpha and beta diversity.}, language = {en} } @article{JeltschBontePeeretal.2013, author = {Jeltsch, Florian and Bonte, Dries and Peer, Guy and Reineking, Bj{\"o}rn and Leimgruber, Peter and Balkenhol, Niko and Schr{\"o}der-Esselbach, Boris and Buchmann, Carsten M. and M{\"u}ller, Thomas and Blaum, Niels and Zurell, Damaris and B{\"o}hning-Gaese, Katrin and Wiegand, Thorsten and Eccard, Jana and Hofer, Heribert and Reeg, Jette and Eggers, Ute and Bauer, Silke}, title = {Integrating movement ecology with biodiversity research - exploring new avenues to address spatiotemporal biodiversity dynamics}, doi = {10.1186/2051-3933-1-6}, year = {2013}, language = {en} } @misc{JeltschBontePe'eretal.2013, author = {Jeltsch, Florian and Bonte, Dries and Pe'er, Guy and Reineking, Bj{\"o}rn and Leimgruber, Peter and Balkenhol, Niko and Schr{\"o}der-Esselbach, Boris and Buchmann, Carsten M. and M{\"u}ller, Thomas and Blaum, Niels and Zurell, Damaris and B{\"o}hning-Gaese, Katrin and Wiegand, Thorsten and Eccard, Jana and Hofer, Heribert and Reeg, Jette and Eggers, Ute and Bauer, Silke}, title = {Integrating movement ecology with biodiversity research}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401177}, pages = {13}, year = {2013}, abstract = {Movement of organisms is one of the key mechanisms shaping biodiversity, e.g. the distribution of genes, individuals and species in space and time. Recent technological and conceptual advances have improved our ability to assess the causes and consequences of individual movement, and led to the emergence of the new field of 'movement ecology'. Here, we outline how movement ecology can contribute to the broad field of biodiversity research, i.e. the study of processes and patterns of life among and across different scales, from genes to ecosystems, and we propose a conceptual framework linking these hitherto largely separated fields of research. Our framework builds on the concept of movement ecology for individuals, and demonstrates its importance for linking individual organismal movement with biodiversity. First, organismal movements can provide 'mobile links' between habitats or ecosystems, thereby connecting resources, genes, and processes among otherwise separate locations. Understanding these mobile links and their impact on biodiversity will be facilitated by movement ecology, because mobile links can be created by different modes of movement (i.e., foraging, dispersal, migration) that relate to different spatiotemporal scales and have differential effects on biodiversity. Second, organismal movements can also mediate coexistence in communities, through 'equalizing' and 'stabilizing' mechanisms. This novel integrated framework provides a conceptual starting point for a better understanding of biodiversity dynamics in light of individual movement and space-use behavior across spatiotemporal scales. By illustrating this framework with examples, we argue that the integration of movement ecology and biodiversity research will also enhance our ability to conserve diversity at the genetic, species, and ecosystem levels.}, language = {en} } @article{ZurellEggersKaatzetal.2015, author = {Zurell, Damaris and Eggers, Ute and Kaatz, Michael and Rotics, Shay and Sapir, Nir and Wikelski, Martin and Nathan, Ran and Jeltsch, Florian}, title = {Individual-based modelling of resource competition to predict density-dependent population dynamics: a case study with white storks}, series = {Oikos}, volume = {124}, journal = {Oikos}, number = {3}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0030-1299}, doi = {10.1111/oik.01294}, pages = {319 -- 330}, year = {2015}, abstract = {Density regulation influences population dynamics through its effects on demographic rates and consequently constitutes a key mechanism explaining the response of organisms to environmental changes. Yet, it is difficult to establish the exact form of density dependence from empirical data. Here, we developed an individual-based model to explore how resource limitation and behavioural processes determine the spatial structure of white stork Ciconia ciconia populations and regulate reproductive rates. We found that the form of density dependence differed considerably between landscapes with the same overall resource availability and between home range selection strategies, highlighting the importance of fine-scale resource distribution in interaction with behaviour. In accordance with theories of density dependence, breeding output generally decreased with density but this effect was highly variable and strongly affected by optimal foraging strategy, resource detection probability and colonial behaviour. Moreover, our results uncovered an overlooked consequence of density dependence by showing that high early nestling mortality in storks, assumed to be the outcome of harsh weather, may actually result from density dependent effects on food provision. Our findings emphasize that accounting for interactive effects of individual behaviour and local environmental factors is crucial for understanding density-dependent processes within spatially structured populations. Enhanced understanding of the ways animal populations are regulated in general, and how habitat conditions and behaviour may dictate spatial population structure and demographic rates is critically needed for predicting the dynamics of populations, communities and ecosystems under changing environmental conditions.}, language = {en} } @misc{RomeroMujalliJeltschTiedemann2018, author = {Romero-Mujalli, Daniel and Jeltsch, Florian and Tiedemann, Ralph}, title = {Individual-based modeling of eco-evolutionary dynamics}, series = {Regional environmental change}, volume = {19}, journal = {Regional environmental change}, number = {1}, publisher = {Springer}, address = {Heidelberg}, issn = {1436-3798}, doi = {10.1007/s10113-018-1406-7}, pages = {1 -- 12}, year = {2018}, abstract = {A challenge for eco-evolutionary research is to better understand the effect of climate and landscape changes on species and their distribution. Populations of species can respond to changes in their environment through local genetic adaptation or plasticity, dispersal, or local extinction. The individual-based modeling (IBM) approach has been repeatedly applied to assess organismic responses to environmental changes. IBMs simulate emerging adaptive behaviors from the basic entities upon which both ecological and evolutionary mechanisms act. The objective of this review is to summarize the state of the art of eco-evolutionary IBMs and to explore to what degree they already address the key responses of organisms to environmental change. In this, we identify promising approaches and potential knowledge gaps in the implementation of eco-evolutionary mechanisms to motivate future research. Using mainly the ISI Web of Science, we reveal that most of the progress in eco-evolutionary IBMs in the last decades was achieved for genetic adaptation to novel local environmental conditions. There is, however, not a single eco-evolutionary IBM addressing the three potential adaptive responses simultaneously. Additionally, IBMs implementing adaptive phenotypic plasticity are rare. Most commonly, plasticity was implemented as random noise or reaction norms. Our review further identifies a current lack of models where plasticity is an evolving trait. Future eco-evolutionary models should consider dispersal and plasticity as evolving traits with their associated costs and benefits. Such an integrated approach could help to identify conditions promoting population persistence depending on the life history strategy of organisms and the environment they experience.}, language = {en} } @article{ThieleJeltschBlaum2008, author = {Thiele, T. and Jeltsch, Florian and Blaum, Niels}, title = {Importance of woody vegetation for foraging site selection in the Southern Pied Babbler (Turdoides bicolor) under two different land use regimes}, issn = {0140-1963}, year = {2008}, language = {en} } @article{GrimmRevillaGroeneveldetal.2005, author = {Grimm, Volker and Revilla, Eloy and Groeneveld, J{\"u}rgen and Kramer-Schadt, Stephanie and Schwager, Monika and Tews, J{\"o}rg and Wichmann, Matthias and Jeltsch, Florian}, title = {Importance of buffer mechanisms for population viability analysis}, year = {2005}, language = {en} }