@article{SchmidtSaxenhoferDrewesetal.2016, author = {Schmidt, Sabrina and Saxenhofer, Moritz and Drewes, Stephan and Schlegel, Mathias and Wanka, Konrad M. and Frank, Raphael and Klimpel, Sven and von Blanckenhagen, Felix and Maaz, Denny and Herden, Christiane and Freise, Jona and Wolf, Ronny and Stubbe, Michael and Borkenhagen, Peter and Ansorge, Hermann and Eccard, Jana and Lang, Johannes and Jourdain, Elsa and Jacob, Jens and Marianneau, Philippe and Heckel, Gerald and Ulrich, Rainer G{\"u}nter}, title = {High genetic structuring of Tula hantavirus}, series = {Archives of virology}, volume = {161}, journal = {Archives of virology}, publisher = {Springer}, address = {Wien}, issn = {0304-8608}, doi = {10.1007/s00705-016-2762-6}, pages = {1135 -- 1149}, year = {2016}, abstract = {Tula virus (TULV) is a vole-associated hantavirus with low or no pathogenicity to humans. In the present study, 686 common voles (Microtus arvalis), 249 field voles (Microtus agrestis) and 30 water voles (Arvicola spec.) were collected at 79 sites in Germany, Luxembourg and France and screened by RT-PCR and TULV-IgG ELISA. TULV-specific RNA and/or antibodies were detected at 43 of the sites, demonstrating a geographically widespread distribution of the virus in the studied area. The TULV prevalence in common voles (16.7 \%) was higher than that in field voles (9.2 \%) and water voles (10.0 \%). Time series data at ten trapping sites showed evidence of a lasting presence of TULV RNA within common vole populations for up to 34 months, although usually at low prevalence. Phylogenetic analysis demonstrated a strong genetic structuring of TULV sequences according to geography and independent of the rodent species, confirming the common vole as the preferential host, with spillover infections to co-occurring field and water voles. TULV phylogenetic clades showed a general association with evolutionary lineages in the common vole as assessed by mitochondrial DNA sequences on a large geographical scale, but with local-scale discrepancies in the contact areas.}, language = {en} } @article{RyllEidenHeuseretal.2018, author = {Ryll, Rene and Eiden, Martin and Heuser, Elisa and Weinhardt, Markus and Ziege, Madlen and Hoeper, Dirk and Groschup, Martin H. and Heckel, Gerald and Johne, Reimar and Ulrich, Rainer G.}, title = {Hepatitis E virus in feral rabbits along a rural-urban transect in Central Germany}, series = {Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics and infectious diseases (MEEGID)}, volume = {61}, journal = {Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics and infectious diseases (MEEGID)}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1567-1348}, doi = {10.1016/j.meegid.2018.03.019}, pages = {155 -- 159}, year = {2018}, abstract = {Rabbit associated genotype 3 hepatitis E virus (HEV) strains were detected in feral, pet and farm rabbits in different parts of the world since 2009 and recently also in human patients. Here, we report a serological and molecular survey on 72 feral rabbits, collected along a rural-urban transect in and next to Frankfurt am Main, Central Germany. ELISA investigations revealed in 25 of 72 (34.7\%) animals HEV-specific antibodies. HEV derived RNA was detected in 18 of 72 (25\%) animals by reverse transcription-polymerase chain reaction assay. The complete genomes from two rabbitHEV-strains, one from a rural site and the other from an inner-city area, were generated by a combination of high-throughput sequencing, a primer walking approach and 5′- and 3′- rapid amplification of cDNA ends. Phylogenetic analysis of open reading frame (ORF)1-derived partial and complete ORF1/ORF2 concatenated coding sequences indicated their similarity to rabbit-associated HEV strains. The partial sequences revealed one cluster of closely-related rabbitHEV sequences from the urban trapping sites that is well separated from several clusters representing rabbitHEV sequences from rural trapping sites. The complete genome sequences of the two novel strains indicated similarities of 75.6-86.4\% to the other 17 rabbitHEV sequences; the amino acid sequence identity of the concatenated ORF1/ORF2-encoded proteins reached 89.0-93.1\%. The detection of rabbitHEV in an inner-city area with a high human population density suggests a high risk of potential human infection with the zoonotic rabbitHEV, either by direct or indirect contact with infected animals. Therefore, future investigations on the occurrence and frequency of human infections with rabbitHEV are warranted in populations with different contact to rabbits.}, language = {en} } @misc{EccardHerdeSchusteretal.2022, author = {Eccard, Jana and Herde, Antje and Schuster, Andrea C. and Liesenjohann, Thilo and Knopp, Tatjana and Heckel, Gerald and Dammhahn, Melanie}, title = {Fitness, risk taking, and spatial behavior covary with boldness in experimental vole populations}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-55886}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-558866}, pages = {1 -- 15}, year = {2022}, abstract = {Individuals of a population may vary along a pace-of-life syndrome from highly fecund, short-lived, bold, dispersive "fast" types at one end of the spectrum to less fecund, long-lived, shy, plastic "slow" types at the other end. Risk-taking behavior might mediate the underlying life history trade-off, but empirical evidence supporting this hypothesis is still ambiguous. Using experimentally created populations of common voles (Microtus arvalis)—a species with distinct seasonal life history trajectories—we aimed to test whether individual differences in boldness behavior covary with risk taking, space use, and fitness. We quantified risk taking, space use (via automated tracking), survival, and reproductive success (via genetic parentage analysis) in 8 to 14 experimental, mixed-sex populations of 113 common voles of known boldness type in large grassland enclosures over a significant part of their adult life span and two reproductive events. Populations were assorted to contain extreme boldness types (bold or shy) of both sexes. Bolder individuals took more risks than shyer ones, which did not affect survival. Bolder males but not females produced more offspring than shy conspecifics. Daily home range and core area sizes, based on 95\% and 50\% Kernel density estimates (20 ± 10 per individual, n = 54 individuals), were highly repeatable over time. Individual space use unfolded differently for sex-boldness type combinations over the course of the experiment. While day ranges decreased for shy females, they increased for bold females and all males. Space use trajectories may, hence, indicate differences in coping styles when confronted with a novel social and physical environment. Thus, interindividual differences in boldness predict risk taking under near-natural conditions and have consequences for fitness in males, which have a higher reproductive potential than females. Given extreme inter- and intra-annual fluctuations in population density in the study species and its short life span, density-dependent fluctuating selection operating differently on the sexes might maintain (co)variation in boldness, risk taking, and pace-of-life.}, language = {en} } @article{EccardHerdeSchusteretal.2022, author = {Eccard, Jana and Herde, Antje and Schuster, Andrea C. and Liesenjohann, Thilo and Knopp, Tatjana and Heckel, Gerald and Dammhahn, Melanie}, title = {Fitness, risk taking, and spatial behavior covary with boldness in experimental vole populations}, series = {Ecology And Evolution}, journal = {Ecology And Evolution}, publisher = {John Wiley \& Sons, Inc.}, address = {Vereinigte Staaten}, issn = {2045-7758}, doi = {10.1002/ece3.8521}, pages = {1 -- 15}, year = {2022}, abstract = {Individuals of a population may vary along a pace-of-life syndrome from highly fecund, short-lived, bold, dispersive "fast" types at one end of the spectrum to less fecund, long-lived, shy, plastic "slow" types at the other end. Risk-taking behavior might mediate the underlying life history trade-off, but empirical evidence supporting this hypothesis is still ambiguous. Using experimentally created populations of common voles (Microtus arvalis)—a species with distinct seasonal life history trajectories—we aimed to test whether individual differences in boldness behavior covary with risk taking, space use, and fitness. We quantified risk taking, space use (via automated tracking), survival, and reproductive success (via genetic parentage analysis) in 8 to 14 experimental, mixed-sex populations of 113 common voles of known boldness type in large grassland enclosures over a significant part of their adult life span and two reproductive events. Populations were assorted to contain extreme boldness types (bold or shy) of both sexes. Bolder individuals took more risks than shyer ones, which did not affect survival. Bolder males but not females produced more offspring than shy conspecifics. Daily home range and core area sizes, based on 95\% and 50\% Kernel density estimates (20 ± 10 per individual, n = 54 individuals), were highly repeatable over time. Individual space use unfolded differently for sex-boldness type combinations over the course of the experiment. While day ranges decreased for shy females, they increased for bold females and all males. Space use trajectories may, hence, indicate differences in coping styles when confronted with a novel social and physical environment. Thus, interindividual differences in boldness predict risk taking under near-natural conditions and have consequences for fitness in males, which have a higher reproductive potential than females. Given extreme inter- and intra-annual fluctuations in population density in the study species and its short life span, density-dependent fluctuating selection operating differently on the sexes might maintain (co)variation in boldness, risk taking, and pace-of-life.}, language = {en} }