@article{LehmannFranzToebbensetal.2019, author = {Lehmann, Frederike and Franz, Alexandra and Toebbens, Daniel M. and Levcenco, Sergej and Unold, Thomas and Taubert, Andreas and Schorr, Susan}, title = {The phase diagram of a mixed halide (Br, I) hybrid perovskite obtained by synchrotron X-ray diffraction}, series = {RSC Advances}, volume = {9}, journal = {RSC Advances}, number = {20}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/c8ra09398a}, pages = {11151 -- 11159}, year = {2019}, abstract = {By using synchrotron X-ray powder diffraction, the temperature dependent phase diagram of the hybrid perovskite tri-halide compounds, methyl ammonium lead iodide (MAPbI3, MA+ = CH3NH3+) and methyl ammonium lead bromide (MAPbBr3), as well as of their solid solutions, has been established. The existence of a large miscibility gap between 0.29 ≤ x ≤ 0.92 (±0.02) for the MAPb(I1-xBrx)3 solid solution has been proven. A systematic study of the lattice parameters for the solid solution series at room temperature revealed distinct deviations from Vegard's law. Furthermore, temperature dependent measurements showed that a strong temperature dependency of lattice parameters from the composition is present for iodine rich compositions. In contrast, the bromine rich compositions show an unusually low dependency of the phase transition temperature from the degree of substitution.}, language = {en} } @article{FranzToebbensLehmannetal.2020, author = {Franz, Alexandra and T{\"o}bbens, Daniel M. and Lehmann, Frederike and K{\"a}rgell, Martin and Schorr, Susan}, title = {The influence of deuteration on the crystal structure of hybrid halide perovskites: a temperature-dependent neutron diffraction study of FAPbBr(3)}, series = {Acta crystallographica; Section B, Structural science, crystal engineering and materials}, volume = {76}, journal = {Acta crystallographica; Section B, Structural science, crystal engineering and materials}, number = {2}, publisher = {Wiley-Blackwell}, address = {Oxford [u.a.]}, issn = {2052-5206}, doi = {10.1107/S2052520620002620}, pages = {267 -- 274}, year = {2020}, abstract = {This paper discusses the full structural solution of the hybrid perovskite formamidinium lead tribromide (FAPbBr(3)) and its temperature-dependent phase transitions in the range from 3 K to 300 K using neutron powder diffraction and synchrotron X-ray diffraction. Special emphasis is put on the influence of deuteration on formamidinium, its position in the unit cell and disordering in comparison to fully hydrogenated FAPbBr(3). The temperature-dependent measurements show that deuteration critically influences the crystal structures, i.e. results in partially-ordered temperature-dependent structural modifications in which two symmetry-independent molecule positions with additional dislocation of the molecular centre atom and molecular angle inclinations are present.}, language = {en} } @article{RyllSchmitzdeBooretal.2018, author = {Ryll, Britta and Schmitz, Andreas and de Boor, Johannes and Franz, Alexandra and Whitfield, Pamela S. and Reehuis, Manfred and Hoser, Andreas and M{\"u}ller, Eckhard and Habicht, Klaus and Fritscht, Katharina}, title = {Structure, phase composition, and thermoelectric properties of YbxCo4Sb12 and their dependence on synthesis method}, series = {ACS applied energy materials}, volume = {1}, journal = {ACS applied energy materials}, number = {1}, publisher = {American Chemical Society}, address = {Washington}, issn = {2574-0962}, doi = {10.1021/acsaem.7b00015}, pages = {113 -- 122}, year = {2018}, abstract = {We present a combined microscopic and macroscopic study of YbxCo4Sb12 skutterudites for a range of nominal filling fractions, 0.15 < x < 0.75. The samples were synthesized using two different methods — a melt-quench-annealing route in evacuated quartz ampoules and a non-equilibrium ball-mill route — for which we directly compare the crystal structure and phase composition as well as the thermoelectric properties. Rietveld refinements of high-quality neutron powder diffraction data reveal about a 30-40\% smaller Yb occupancy on the crystallographic 2a site than nominally expected for both synthesis routes. We observe a maximum filling fraction of at least 0.439(7) for a sample synthesized by the ball-mill routine, exceeding theoretical predictions of the filling fraction limit of 0.2-0.3. A single secondary phase of CoSb2 is observed in ball-mill-synthesized samples, while two secondary phases, CoSb2 and YbSb2, are detected for samples prepared by the ampoule route. A detrimental influence of the secondary phases on the thermoelectric properties is observed for secondary-phase fractions larger than 8 wt \% regardless of the kind of secondary phase. The largest figure of merit of all samples with a ZT ∼ 1.0 at 723 K is observed for the sample with a refined Yb content of x2a = 0.159(3), synthesized by the ampoule route.}, language = {en} } @article{FranzToebbensSteckhanetal.2018, author = {Franz, Alexandra and T{\"o}bbens, Daniel M. and Steckhan, Julia and Schorr, Susan}, title = {Determination of the miscibility gap in the solid solutions series of methylammonium lead iodide/chloride}, series = {Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials}, volume = {74}, journal = {Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials}, publisher = {International Union of Crystallography}, address = {Chester}, issn = {2052-5206}, doi = {10.1107/S2052520618010764}, pages = {445 -- 449}, year = {2018}, abstract = {Perovskites are widely known for their enormous possibility of elemental substitution, which leads to a large variety of physical properties. Hybrid perovskites such as CH3NH3PbI3 (MAPbI(3)) and CH3NH3PbCl3 (MAPbCl(3)) are perovskites with an A([XII])B([VI)X(-)([II)(])structure, where A is an organic molecule, B is a lead(II) cation and X is a halide anion of iodine or chlorine. Whereas MAPbCl(3) crystallizes in the cubic space group Pm (3) over barm, MAPbI(3) is in the tetragonal space group I4/mcm. The substitution of I by Cl leads to an increased tolerance against humidity but is challenging or even impossible due to their large difference in ionic radii. Here, the influence of an increasing Cl content in the reaction solution on the miscibility of the solid solution members is examined systematically. Powders were synthesized by two different routes depending on the I:Cl ratio. High-resolution synchrotron X-ray data are used to establish values for the limits of the miscibility gap which are 3.1 (1.1) mol\% MAPbCl(3) in MAPI(3) and 1.0 (1) mol\% MAPbI(3) in MAPCl. The establishment of relations between average pseudo-cubic lattice parameters for both phases allows a determination of the degree of substitution from the observed lattice parameters.}, language = {en} } @misc{LehmannBinetFranzetal.2018, author = {Lehmann, Frederike and Binet, Silvia and Franz, Alexandra and Taubert, Andreas and Schorr, Susan}, title = {Cation and anion substitutions in hybrid perovskites}, series = {7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC \& 34th EU PVSEC)}, journal = {7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC \& 34th EU PVSEC)}, publisher = {IEEE}, address = {New York}, isbn = {978-1-5386-8529-7}, issn = {2159-2330}, doi = {10.1109/PVSC.2018.8547645}, pages = {1555 -- 1558}, year = {2018}, abstract = {Organic or inorganic (A) metal (M) halide (X) perovskites (AMX(3)) are semiconductor materials setting the basis for the development of highly efficient, low-cost and multijunction solar energy conversion devices. The best efficiencies nowadays are obtained with mixed compositions containing methylammonium, formamidinium, Cs and Rb as well as iodine, bromine and chlorine as anions. The understanding of fundamental properties such as crystal structure and its effect on the band gap, as well as their phase stability is essential. In this systematic study X-ray diffraction and photoluminescense spectroscopy were applied to evaluate structural and optoelectronic properties of hybrid perovskites with mixed compositions.}, language = {en} }