@article{ShakiFischer2013, author = {Shaki, Samuel and Fischer, Martin H.}, title = {Your neighbors define your value a study of spatial bias in number comparison}, series = {Acta psychologica : international journal of psychonomics}, volume = {142}, journal = {Acta psychologica : international journal of psychonomics}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0001-6918}, doi = {10.1016/j.actpsy.2013.01.004}, pages = {308 -- 313}, year = {2013}, abstract = {Several chronometric biases in numerical cognition have informed our understanding of a mental number line (MNL). Complementing this approach, we investigated spatial performance in a magnitude comparison task. Participants located the larger or smaller number of a pair on a horizontal line representing the interval from 0 to 10. Experiments 1 and 2 used only number pairs one unit apart and found that digits were localized farther to the right with "select larger" instructions than with "select smaller" instructions. However, when numerical distance was varied (Experiment 3), digits were localized away from numerically near neighbors. This repulsion effect reveals context-specific distortions in number representation not previously noticed with chronometric measures.}, language = {en} } @article{TschentscherHaukFischeretal.2012, author = {Tschentscher, Nadja and Hauk, Olaf and Fischer, Martin H. and Pulverm{\"u}ller, Friedemann}, title = {You can count on the motor cortex finger counting habits modulate motor cortex activation evoked by numbers}, series = {NeuroImage : a journal of brain function}, volume = {59}, journal = {NeuroImage : a journal of brain function}, number = {4}, publisher = {Elsevier}, address = {San Diego}, issn = {1053-8119}, doi = {10.1016/j.neuroimage.2011.11.037}, pages = {3139 -- 3148}, year = {2012}, abstract = {The embodied cognition framework suggests that neural systems for perception and action are engaged during higher cognitive processes. In an event-related fMRI study, we tested this claim for the abstract domain of numerical symbol processing: is the human cortical motor system part of the representation of numbers, and is organization of numerical knowledge influenced by individual finger counting habits? Developmental studies suggest a link between numerals and finger counting habits due to the acquisition of numerical skills through finger counting in childhood. In the present study, digits 1 to 9 and the corresponding number words were presented visually to adults with different finger counting habits, i.e. left- and right-starters who reported that they usually start counting small numbers with their left and right hand, respectively. Despite the absence of overt hand movements, the hemisphere contralateral to the hand used for counting small numbers was activated when small numbers were presented. The correspondence between finger counting habits and hemispheric motor activation is consistent with an intrinsic functional link between finger counting and number processing.}, language = {en} } @article{Fischer2018, author = {Fischer, Martin H.}, title = {Why Numbers Are Embodied Concepts}, series = {Frontiers in Psychology}, volume = {8}, journal = {Frontiers in Psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2017.02347}, pages = {1 -- 3}, year = {2018}, language = {en} } @misc{Fischer2018, author = {Fischer, Martin H.}, title = {Why Numbers Are Embodied Concepts}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {440}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-412097}, pages = {3}, year = {2018}, language = {en} } @misc{FischerBrugger2011, author = {Fischer, Martin H. and Brugger, Peter}, title = {When digits help digits spatial-numerical associations point to finger counting as prime example of embodied cognition}, series = {Frontiers in psychology}, volume = {2}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2011.00260}, pages = {7}, year = {2011}, abstract = {Spatial numerical associations (SNAs) are prevalent yet their origin is poorly understood. We first consider the possible prime role of reading habits in shaping SNAs and list three observations that argue against a prominent influence of this role: (1) directional reading habits for numbers may conflict with those for non-numerical symbols, (2) short-term experimental manipulations can overrule the impact of decades of reading experience, (3) SNAs predate the acquisition of reading. As a promising alternative, we discuss behavioral, neuroscientific, and neuropsychological evidence in support of finger counting as the most likely initial determinant of SNAs. Implications of this "manumerical cognition" stance for the distinction between grounded, embodied, and situated cognition are discussed.}, language = {en} } @article{MyachykovEllisCangelosietal.2013, author = {Myachykov, Andriy and Ellis, Rob and Cangelosi, Angelo and Fischer, Martin H.}, title = {Visual and linguistic cues to graspable objects}, series = {Experimental brain research}, volume = {229}, journal = {Experimental brain research}, number = {4}, publisher = {Springer}, address = {New York}, issn = {0014-4819}, doi = {10.1007/s00221-013-3616-z}, pages = {545 -- 559}, year = {2013}, abstract = {Two experiments investigated (1) how activation of manual affordances is triggered by visual and linguistic cues to manipulable objects and (2) whether graspable object parts play a special role in this process. Participants pressed a key to categorize manipulable target objects copresented with manipulable distractor objects on a computer screen. Three factors were varied in Experiment 1: (1) the target's and (2) the distractor's handles' orientation congruency with the lateral manual response and (3) the Visual Focus on one of the objects. In Experiment 2, a linguistic cue factor was added to these three factors-participants heard the name of one of the two objects prior to the target display onset. Analysis of participants' motor and oculomotor behaviour confirmed that perceptual and linguistic cues potentiated activation of grasp affordances. Both target- and distractor-related affordance effects were modulated by the presence of visual and linguistic cues. However, a differential visual attention mechanism subserved activation of compatibility effects associated with target and distractor objects. We also registered an independent implicit attention attraction effect from objects' handles, suggesting that graspable parts automatically attract attention during object viewing. This effect was further amplified by visual but not linguistic cues, thus providing initial evidence for a recent hypothesis about differential roles of visual and linguistic information in potentiating stable and variable affordances (Borghi in Language and action in cognitive neuroscience. Psychology Press, London, 2012).}, language = {en} } @unpublished{CaligioreFischer2013, author = {Caligiore, Daniele and Fischer, Martin H.}, title = {Vision, action and language unified through embodiment}, series = {Psychological research : an international journal of perception, attention, memory, and action}, volume = {77}, journal = {Psychological research : an international journal of perception, attention, memory, and action}, number = {1}, publisher = {Springer}, address = {Heidelberg}, issn = {0340-0727}, doi = {10.1007/s00426-012-0417-0}, pages = {1 -- 6}, year = {2013}, language = {en} } @article{KeehnerFischer2012, author = {Keehner, Madeleine and Fischer, Martin H.}, title = {Unusual bodies, uncommon behaviors individual and group differences in embodied cognition in spatial tasks}, series = {Spatial cognition and computation}, volume = {12}, journal = {Spatial cognition and computation}, number = {2-3}, publisher = {Taylor \& Francis Group}, address = {Philadelphia}, issn = {1387-5868}, doi = {10.1080/13875868.2012.659303}, pages = {71 -- 82}, year = {2012}, abstract = {This editorial introduces a set of papers on differential embodiment in spatial tasks. According to the theoretical notion of embodied cognition, our experiences of acting in the world, and the constraints of our sensory and motor systems, strongly shape our cognitive functions. In the current set of papers, the authors were asked to particularly consider idiosyncratic or differential embodied cognition in the context of spatial tasks and processes. In each contribution, differential embodiment is considered from one of two complementary perspectives: either by considering unusual individuals, who have atypical bodies or uncommon experiences of interacting with the world; or by exploring individual differences in the general population that reflect the naturally occurring variability in embodied processes. Our editorial summarizes the contributions to this special issue and discusses the insights they offer. We conclude from this collection of papers that exploring differences in the recruitment and involvement of embodied processes can be highly informative, and can add an extra dimension to our understanding of spatial cognitive functions. Taking a broader perspective, it can also shed light on important theoretical and empirical questions concerning the nature of embodied cognition per se.}, language = {en} } @unpublished{FischerShaki2015, author = {Fischer, Martin H. and Shaki, Samuel}, title = {Two steps to space for numbers}, series = {Frontiers in psychology}, volume = {6}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2015.00612}, pages = {3}, year = {2015}, language = {en} } @misc{FischerShaki2015, author = {Fischer, Martin H. and Shaki, Samuel}, title = {Two steps to space for numbers}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {412}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-406522}, pages = {3}, year = {2015}, language = {en} } @article{WoodShakiFischer2021, author = {Wood, Danielle and Shaki, Samuel and Fischer, Martin H.}, title = {Turn the beat around: Commentary on "Slow and fast beat sequences are represented differently through space" (De Tommaso \& Prpic, 2020, in Attention, Perception, \& Psychophysics)}, series = {Attention, perception, \& psychophysics : AP\&P ; a journal of the Psychonomic Society, Inc.}, volume = {83}, journal = {Attention, perception, \& psychophysics : AP\&P ; a journal of the Psychonomic Society, Inc.}, number = {4}, publisher = {Springer}, address = {New York}, issn = {1943-3921}, doi = {10.3758/s13414-021-02247-8}, pages = {1518 -- 1521}, year = {2021}, abstract = {There has been increasing interest in the spatial mapping of various perceptual and cognitive magnitudes, such as expanding the spatial-numerical association of response codes (SNARC) effect into domains outside of numerical cognition. Recently, De Tommaso and Prpic (Attention, Perception, \& Psychophysics, 82, 2765-2773, 2020) reported in this journal that only fast tempos over 104 beats per minute have spatial associations, with more right-sided associations and faster responses for faster tempos. After discussing the role of perceived loudness and possible response strategies, we propose and recommend methodological improvements for further research.}, language = {en} } @misc{MiklashevskyLindemannFischer2018, author = {Miklashevsky, Alex A. and Lindemann, Oliver and Fischer, Martin H.}, title = {Think of the future in the right way}, series = {Cognitive processing : international quarterly of cognitive science}, volume = {19}, journal = {Cognitive processing : international quarterly of cognitive science}, publisher = {Springer}, address = {Heidelberg}, issn = {1612-4782}, pages = {S46 -- S46}, year = {2018}, language = {en} } @article{HartmannLaubrockFischer2018, author = {Hartmann, Matthias and Laubrock, Jochen and Fischer, Martin H.}, title = {The visual number world}, series = {The quarterly journal of experimental psychology}, volume = {71}, journal = {The quarterly journal of experimental psychology}, number = {1}, publisher = {Sage Publ.}, address = {London}, issn = {1747-0218}, doi = {10.1080/17470218.2016.1240812}, pages = {28 -- 36}, year = {2018}, abstract = {In the domain of language research, the simultaneous presentation of a visual scene and its auditory description (i.e., the visual world paradigm) has been used to reveal the timing of mental mechanisms. Here we apply this rationale to the domain of numerical cognition in order to explore the differences between fast and slow arithmetic performance, and to further study the role of spatial-numerical associations during mental arithmetic. We presented 30 healthy adults simultaneously with visual displays containing four numbers and with auditory addition and subtraction problems. Analysis of eye movements revealed that participants look spontaneously at the numbers they currently process (operands, solution). Faster performance was characterized by shorter latencies prior to fixating the relevant numbers and fewer revisits to the first operand while computing the solution. These signatures of superior task performance were more pronounced for addition and visual numbers arranged in ascending order, and for subtraction and numbers arranged in descending order (compared to the opposite pairings). Our results show that the visual number world-paradigm provides on-line access to the mind during mental arithmetic, is able to capture variability in arithmetic performance, and is sensitive to visual layout manipulations that are otherwise not reflected in response time measurements.}, language = {en} } @article{MyachykovCangelosiEllisetal.2015, author = {Myachykov, Andriy and Cangelosi, Angelo and Ellis, Rob and Fischer, Martin H.}, title = {The oculomotor resonance effect in spatial-numerical mapping}, series = {Acta psychologica : international journal of psychonomics}, volume = {161}, journal = {Acta psychologica : international journal of psychonomics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0001-6918}, doi = {10.1016/j.actpsy.2015.09.006}, pages = {162 -- 169}, year = {2015}, abstract = {We investigated automatic Spatial-Numerical Association of Response Codes (SNARC) effect in auditory number processing. Two experiments continually measured spatial characteristics of ocular drift at central fixation during and after auditory number presentation. Consistent with the notion of a spatially oriented mental number line, we found spontaneous magnitude-dependent gaze adjustments, both with and without a concurrent saccadic task. This fixation adjustment (1) had a small-number/left-lateralized bias and (2) it was biphasic as it emerged for a short time around the point of lexical access and it received later robust representation around following number onset. This pattern suggests a two-step mechanism of sensorimotor mapping between numbers and space a first-pass bottom-up activation followed by a top-down and more robust horizontal SNARC Our results inform theories of number processing as well as simulation-based approaches to cognition by identifying the characteristics of an oculomotor resonance phenomenon. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @misc{KuehneFischerZhou2020, author = {K{\"u}hne, Katharina and Fischer, Martin H. and Zhou, Yuefang}, title = {The Human Takes It All}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {700}, issn = {1866-8364}, doi = {10.25932/publishup-49162}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-491625}, pages = {17}, year = {2020}, abstract = {Background: The increasing involvement of social robots in human lives raises the question as to how humans perceive social robots. Little is known about human perception of synthesized voices. Aim: To investigate which synthesized voice parameters predict the speaker's eeriness and voice likability; to determine if individual listener characteristics (e.g., personality, attitude toward robots, age) influence synthesized voice evaluations; and to explore which paralinguistic features subjectively distinguish humans from robots/artificial agents. Methods: 95 adults (62 females) listened to randomly presented audio-clips of three categories: synthesized (Watson, IBM), humanoid (robot Sophia, Hanson Robotics), and human voices (five clips/category). Voices were rated on intelligibility, prosody, trustworthiness, confidence, enthusiasm, pleasantness, human-likeness, likability, and naturalness. Speakers were rated on appeal, credibility, human-likeness, and eeriness. Participants' personality traits, attitudes to robots, and demographics were obtained. Results: The human voice and human speaker characteristics received reliably higher scores on all dimensions except for eeriness. Synthesized voice ratings were positively related to participants' agreeableness and neuroticism. Females rated synthesized voices more positively on most dimensions. Surprisingly, interest in social robots and attitudes toward robots played almost no role in voice evaluation. Contrary to the expectations of an uncanny valley, when the ratings of human-likeness for both the voice and the speaker characteristics were higher, they seemed less eerie to the participants. Moreover, when the speaker's voice was more humanlike, it was more liked by the participants. This latter point was only applicable to one of the synthesized voices. Finally, pleasantness and trustworthiness of the synthesized voice predicted the likability of the speaker's voice. Qualitative content analysis identified intonation, sound, emotion, and imageability/embodiment as diagnostic features. Discussion: Humans clearly prefer human voices, but manipulating diagnostic speech features might increase acceptance of synthesized voices and thereby support human-robot interaction. There is limited evidence that human-likeness of a voice is negatively linked to the perceived eeriness of the speaker.}, language = {en} } @article{KuehneFischerZhou2020, author = {K{\"u}hne, Katharina and Fischer, Martin H. and Zhou, Yuefang}, title = {The Human Takes It All}, series = {Frontiers in Neurorobotics}, volume = {14}, journal = {Frontiers in Neurorobotics}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1662-5218}, doi = {10.3389/fnbot.2020.593732}, pages = {15}, year = {2020}, abstract = {Background: The increasing involvement of social robots in human lives raises the question as to how humans perceive social robots. Little is known about human perception of synthesized voices. Aim: To investigate which synthesized voice parameters predict the speaker's eeriness and voice likability; to determine if individual listener characteristics (e.g., personality, attitude toward robots, age) influence synthesized voice evaluations; and to explore which paralinguistic features subjectively distinguish humans from robots/artificial agents. Methods: 95 adults (62 females) listened to randomly presented audio-clips of three categories: synthesized (Watson, IBM), humanoid (robot Sophia, Hanson Robotics), and human voices (five clips/category). Voices were rated on intelligibility, prosody, trustworthiness, confidence, enthusiasm, pleasantness, human-likeness, likability, and naturalness. Speakers were rated on appeal, credibility, human-likeness, and eeriness. Participants' personality traits, attitudes to robots, and demographics were obtained. Results: The human voice and human speaker characteristics received reliably higher scores on all dimensions except for eeriness. Synthesized voice ratings were positively related to participants' agreeableness and neuroticism. Females rated synthesized voices more positively on most dimensions. Surprisingly, interest in social robots and attitudes toward robots played almost no role in voice evaluation. Contrary to the expectations of an uncanny valley, when the ratings of human-likeness for both the voice and the speaker characteristics were higher, they seemed less eerie to the participants. Moreover, when the speaker's voice was more humanlike, it was more liked by the participants. This latter point was only applicable to one of the synthesized voices. Finally, pleasantness and trustworthiness of the synthesized voice predicted the likability of the speaker's voice. Qualitative content analysis identified intonation, sound, emotion, and imageability/embodiment as diagnostic features. Discussion: Humans clearly prefer human voices, but manipulating diagnostic speech features might increase acceptance of synthesized voices and thereby support human-robot interaction. There is limited evidence that human-likeness of a voice is negatively linked to the perceived eeriness of the speaker.}, language = {en} } @article{MiklashevskyLindemannFischer2021, author = {Miklashevsky, Alex and Lindemann, Oliver and Fischer, Martin H.}, title = {The force of numbers}, series = {Frontiers in human neuroscience / Frontiers Research Foundation}, volume = {14}, journal = {Frontiers in human neuroscience / Frontiers Research Foundation}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1662-5161}, doi = {10.3389/fnhum.2020.590508}, pages = {16}, year = {2021}, abstract = {The study has two objectives: (1) to introduce grip force recording as a new technique for studying embodied numerical processing; and (2) to demonstrate how three competing accounts of numerical magnitude representation can be tested by using this new technique: the Mental Number Line (MNL), A Theory of Magnitude (ATOM) and Embodied Cognition (finger counting-based) account. While 26 healthy adults processed visually presented single digits in a go/no-go n-back paradigm, their passive holding forces for two small sensors were recorded in both hands. Spontaneous and unconscious grip force changes related to number magnitude occurred in the left hand already 100-140 ms after stimulus presentation and continued systematically. Our results support a two-step model of number processing where an initial stage is related to the automatic activation of all stimulus properties whereas a later stage consists of deeper conscious processing of the stimulus. This interpretation generalizes previous work with linguistic stimuli and elaborates the timeline of embodied cognition. We hope that the use of grip force recording will advance the field of numerical cognition research.}, language = {en} } @inproceedings{SixtusLindemannFischer2014, author = {Sixtus, Elena and Lindemann, Oliver and Fischer, Martin H.}, title = {The flexibility of finger-based magnitude representations}, series = {Cognitive processing : international quarterly of cognitive science}, volume = {15}, booktitle = {Cognitive processing : international quarterly of cognitive science}, number = {1}, publisher = {Springer}, address = {Heidelberg}, issn = {1612-4782}, pages = {S68 -- S69}, year = {2014}, language = {en} } @article{AdamBovend'EerdtvanDoorenetal.2012, author = {Adam, Jos J. and Bovend'Eerdt, Thamar J. H. and van Dooren, Fleur E. P. and Fischer, Martin H. and Pratt, Jay}, title = {The closer the better hand proximity dynamically affects letter recognition accuracy}, series = {Attention, perception, \& psychophysics : AP\&P ; a journal of the Psychonomic Society, Inc.}, volume = {74}, journal = {Attention, perception, \& psychophysics : AP\&P ; a journal of the Psychonomic Society, Inc.}, number = {7}, publisher = {Springer}, address = {New York}, issn = {1943-3921}, doi = {10.3758/s13414-012-0339-3}, pages = {1533 -- 1538}, year = {2012}, abstract = {A growing literature has suggested that processing of visual information presented near the hands is facilitated. In this study, we investigated whether the near-hands superiority effect also occurs with the hands moving. In two experiments, participants performed a cyclical bimanual movement task requiring concurrent visual identification of briefly presented letters. For both the static and dynamic hand conditions, the results showed improved letter recognition performance with the hands closer to the stimuli. The finding that the encoding advantage for near-hand stimuli also occurred with the hands moving suggests that the effect is regulated in real time, in accordance with the concept of a bimodal neural system that dynamically updates hand position in external space.}, language = {en} } @misc{AdamBovend'EerdtDoorenetal.2012, author = {Adam, Jos J. and Bovend'Eerdt, Thamar J. H. and Dooren, Fleur E. P. van and Fischer, Martin H. and Pratt, Jay}, title = {The closer the better}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {607}, issn = {1866-8364}, doi = {10.25932/publishup-43296}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-432963}, pages = {1533 -- 1538}, year = {2012}, abstract = {A growing literature has suggested that processing of visual information presented near the hands is facilitated. In this study, we investigated whether the near-hands superiority effect also occurs with the hands moving. In two experiments, participants performed a cyclical bimanual movement task requiring concurrent visual identification of briefly presented letters. For both the static and dynamic hand conditions, the results showed improved letter recognition performance with the hands closer to the stimuli. The finding that the encoding advantage for near-hand stimuli also occurred with the hands moving suggests that the effect is regulated in real time, in accordance with the concept of a bimodal neural system that dynamically updates hand position in external space.}, language = {en} } @article{FelisattiAagtenMurphyLaubrocketal.2020, author = {Felisatti, Arianna and Aagten-Murphy, David and Laubrock, Jochen and Shaki, Samuel and Fischer, Martin H.}, title = {The brain's asymmetric frequency tuning}, series = {Symmetry / Molecular Diversity Preservation International (MDPI)}, volume = {12}, journal = {Symmetry / Molecular Diversity Preservation International (MDPI)}, number = {12}, publisher = {MDPI}, address = {Basel}, issn = {2073-8994}, doi = {10.3390/sym12122083}, pages = {25}, year = {2020}, abstract = {To construct a coherent multi-modal percept, vertebrate brains extract low-level features (such as spatial and temporal frequencies) from incoming sensory signals. However, because frequency processing is lateralized with the right hemisphere favouring low frequencies while the left favours higher frequencies, this introduces asymmetries between the hemispheres. Here, we describe how this lateralization shapes the development of several cognitive domains, ranging from visuo-spatial and numerical cognition to language, social cognition, and even aesthetic appreciation, and leads to the emergence of asymmetries in behaviour. We discuss the neuropsychological and educational implications of these emergent asymmetries and suggest future research approaches.}, language = {en} } @article{MyachykovScheepersFischeretal.2014, author = {Myachykov, Andriy and Scheepers, Christoph and Fischer, Martin H. and Kessler, Klaus}, title = {TEST: A tropic, embodied, and situated theory of cognition}, series = {Topics in cognitive science}, volume = {6}, journal = {Topics in cognitive science}, number = {3}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1756-8757}, doi = {10.1111/tops.12024}, pages = {442 -- 460}, year = {2014}, abstract = {TEST is a novel taxonomy of knowledge representations based on three distinct hierarchically organized representational features: Tropism, Embodiment, and Situatedness. Tropic representational features reflect constraints of the physical world on the agent's ability to form, reactivate, and enrich embodied (i.e., resulting from the agent's bodily constraints) conceptual representations embedded in situated contexts. The proposed hierarchy entails that representations can, in principle, have tropic features without necessarily having situated and/or embodied features. On the other hand, representations that are situated and/or embodied are likely to be simultaneously tropic. Hence, although we propose tropism as the most general term, the hierarchical relationship between embodiment and situatedness is more on a par, such that the dominance of one component over the other relies on the distinction between offline storage versus online generation as well as on representation-specific properties.}, language = {en} } @article{ZhouKornherMohnkeetal.2021, author = {Zhou, Yuefang and Kornher, Tristan and Mohnke, Janett and Fischer, Martin H.}, title = {Tactile interaction with a humanoid robot}, series = {International journal of social robotics}, volume = {13}, journal = {International journal of social robotics}, number = {7}, publisher = {Springer}, address = {Dordrecht}, issn = {1875-4791}, doi = {10.1007/s12369-021-00749-x}, pages = {1657 -- 1677}, year = {2021}, abstract = {This study investigated how touching and being touched by a humanoid robot affects human physiology, impressions of the interaction, and attitudes towards humanoid robots. 21 healthy adult participants completed a 3 (touch style: touching, being touched, pointing) x 2 (body part: hand vs buttock) within-subject design using a Pepper robot. Skin conductance response (SCR) was measured during each interaction. Perceived impressions of the interaction (i.e., friendliness, comfort, arousal) were measured per questionnaire after each interaction. Participants' demographics and their attitude towards robots were also considered. We found shorter SCR rise times in the being touched compared to the touching condition, possibly reflecting psychological alertness to the unpredictability of robot-initiated contacts. The hand condition had shorter rise times than the buttock condition. Most participants evaluated the hand condition as most friendly and comfortable and the robot-initiated interactions as most arousing. Interacting with Pepper improved attitudes towards robots. Our findings require future studies with larger samples and improved procedures. They have implications for robot design in all domains involving tactile interactions, such as caring and intimacy.}, language = {en} } @misc{ShakiFischer2020, author = {Shaki, Samuel and Fischer, Martin H.}, title = {Systematic spatial distortion of quantitative estimates}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {6}, issn = {1866-8364}, doi = {10.25932/publishup-54545}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-545457}, pages = {11}, year = {2020}, abstract = {Magnitude estimation has been studied since the beginnings of scientific psychology and constitutes a fundamental aspect of human behavior. Yet, it has apparently never been noticed that estimates depend on the spatial arrangement used. We tested 167 adults in three experiments to show that the spatial layout of stimuli and responses systematically distorts number estimation, length production, and weight reproduction performance. The direction of distortion depends on the observer's counting habits, but does not seem to reflect the use of spatially associated number concepts. Our results imply that all quantitative estimates are contaminated by a "spell of space" whenever stimuli or responses are spatially distributed.}, language = {en} } @article{ShakiFischer2020, author = {Shaki, Samuel and Fischer, Martin H.}, title = {Systematic spatial distortion of quantitative estimates}, series = {Psychological research}, volume = {85}, journal = {Psychological research}, number = {6}, publisher = {Springer}, address = {Heidelberg}, issn = {0340-0727}, doi = {10.1007/s00426-020-01390-5}, pages = {2177 -- 2185}, year = {2020}, abstract = {Magnitude estimation has been studied since the beginnings of scientific psychology and constitutes a fundamental aspect of human behavior. Yet, it has apparently never been noticed that estimates depend on the spatial arrangement used. We tested 167 adults in three experiments to show that the spatial layout of stimuli and responses systematically distorts number estimation, length production, and weight reproduction performance. The direction of distortion depends on the observer's counting habits, but does not seem to reflect the use of spatially associated number concepts. Our results imply that all quantitative estimates are contaminated by a "spell of space" whenever stimuli or responses are spatially distributed.}, language = {en} } @article{SixtusLindemannFischer2018, author = {Sixtus, Elena and Lindemann, Oliver and Fischer, Martin H.}, title = {Stimulating numbers}, series = {Psychological research : an international journal of perception, attention, memory, and action}, volume = {84}, journal = {Psychological research : an international journal of perception, attention, memory, and action}, number = {1}, publisher = {Springer}, address = {Heidelberg}, issn = {0340-0727}, doi = {10.1007/s00426-018-0982-y}, pages = {152 -- 167}, year = {2018}, abstract = {Finger counting is one of the first steps in the development of mature number concepts. With a one-to-one correspondence of fingers to numbers in Western finger counting, fingers hold two numerical meanings: one is based on the number of fingers raised and the second is based on their ordinal position within the habitual finger counting sequence. This study investigated how these two numerical meanings of fingers are intertwined with numerical cognition in adults. Participants received tactile stimulation on their fingertips of one hand and named either the number of fingers stimulated (2, 3, or 4 fingers; Experiment 1) or the number of stimulations on one fingertip (2, 3, or 4 stimulations; Experiment 2). Responses were faster and more accurate when the set of stimulated fingers corresponded to finger counting habits (Experiment 1) and when the number of stimulations matched the ordinal position of the stimulated finger (Experiment 2). These results show that tactile numerosity perception is affected by individual finger counting habits and that those habits give numerical meaning to single fingers.}, language = {en} } @article{MiklashevskyFischerLindemann2022, author = {Miklashevsky, Alex and Fischer, Martin H. and Lindemann, Oliver}, title = {Spatial-numerical associations without a motor response? Grip force says 'Yes'}, series = {Acta Psychologica}, volume = {231}, journal = {Acta Psychologica}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-6297}, doi = {10.1016/j.actpsy.2022.103791}, pages = {1 -- 17}, year = {2022}, abstract = {In numerical processing, the functional role of Spatial-Numerical Associations (SNAs, such as the association of smaller numbers with left space and larger numbers with right space, the Mental Number Line hypothesis) is debated. Most studies demonstrate SNAs with lateralized responses, and there is little evidence that SNAs appear when no response is required. We recorded passive holding grip forces in no-go trials during number processing. In Experiment 1, participants performed a surface numerical decision task ("Is it a number or a letter?"). In Experiment 2, we used a deeper semantic task ("Is this number larger or smaller than five?"). Despite instruction to keep their grip force constant, participants' spontaneous grip force changed in both experiments: Smaller numbers led to larger force increase in the left than in the right hand in the numerical decision task (500-700 ms after stimulus onset). In the semantic task, smaller numbers again led to larger force increase in the left hand, and larger numbers increased the right-hand holding force. This effect appeared earlier (180 ms) and lasted longer (until 580 ms after stimulus onset). This is the first demonstration of SNAs with passive holding force. Our result suggests that (1) explicit motor response is not a prerequisite for SNAs to appear, and (2) the timing and strength of SNAs are task-dependent. (216 words).}, language = {en} } @misc{MiklashevskyFischerLindemann2022, author = {Miklashevsky, Alex and Fischer, Martin H. and Lindemann, Oliver}, title = {Spatial-numerical associations without a motor response? Grip force says 'Yes'}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {810}, issn = {1866-8364}, doi = {10.25932/publishup-57832}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-578324}, pages = {12}, year = {2022}, abstract = {In numerical processing, the functional role of Spatial-Numerical Associations (SNAs, such as the association of smaller numbers with left space and larger numbers with right space, the Mental Number Line hypothesis) is debated. Most studies demonstrate SNAs with lateralized responses, and there is little evidence that SNAs appear when no response is required. We recorded passive holding grip forces in no-go trials during number processing. In Experiment 1, participants performed a surface numerical decision task ("Is it a number or a letter?"). In Experiment 2, we used a deeper semantic task ("Is this number larger or smaller than five?"). Despite instruction to keep their grip force constant, participants' spontaneous grip force changed in both experiments: Smaller numbers led to larger force increase in the left than in the right hand in the numerical decision task (500-700 ms after stimulus onset). In the semantic task, smaller numbers again led to larger force increase in the left hand, and larger numbers increased the right-hand holding force. This effect appeared earlier (180 ms) and lasted longer (until 580 ms after stimulus onset). This is the first demonstration of SNAs with passive holding force. Our result suggests that (1) explicit motor response is not a prerequisite for SNAs to appear, and (2) the timing and strength of SNAs are task-dependent. (216 words).}, language = {en} } @unpublished{FischerShaki2014, author = {Fischer, Martin H. and Shaki, Samuel}, title = {Spatial biases in mental arithmetic}, series = {The quarterly journal of experimental psychology}, volume = {67}, journal = {The quarterly journal of experimental psychology}, number = {8}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1747-0218}, doi = {10.1080/17470218.2014.927516}, pages = {1457 -- 1460}, year = {2014}, language = {en} } @article{HartmannMastFischer2015, author = {Hartmann, Matthias and Mast, Fred W. and Fischer, Martin H.}, title = {Spatial biases during mental arithmetic: evidence from eye movements on a blank screen}, series = {Frontiers in psychology}, volume = {6}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2015.00012}, pages = {8}, year = {2015}, abstract = {While the influence of spatial-numerical associations in number categorization tasks has been well established, their role in mental arithmetic is less clear. It has been hypothesized that mental addition leads to rightward and upward shifts of spatial attention (along the "mental number line"), whereas subtraction leads to leftward and downward shifts. We addressed this hypothesis by analyzing spontaneous eye movements during mental arithmetic. Participants solved verbally presented arithmetic problems (e.g., 2 + 7, 8-3) aloud while looking at a blank screen. We found that eye movements reflected spatial biases in the ongoing mental operation: Gaze position shifted more upward when participants solved addition compared to subtraction problems, and the horizontal gaze position was partly determined by the magnitude of the operands. Interestingly, the difference between addition and subtraction trials was driven by the operator (plus vs. minus) but was not influenced by the computational process. Thus, our results do not support the idea of a mental movement toward the solution during arithmetic but indicate a semantic association between operation and space.}, language = {en} } @misc{HartmannMastFischer2015, author = {Hartmann, Matthias and Mast, Fred W. and Fischer, Martin H.}, title = {Spatial biases during mental arithmetic}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {426}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-406504}, pages = {8}, year = {2015}, abstract = {While the influence of spatial-numerical associations in number categorization tasks has been well established, their role in mental arithmetic is less clear. It has been hypothesized that mental addition leads to rightward and upward shifts of spatial attention (along the "mental number line"), whereas subtraction leads to leftward and downward shifts. We addressed this hypothesis by analyzing spontaneous eye movements during mental arithmetic. Participants solved verbally presented arithmetic problems (e.g., 2 + 7, 8-3) aloud while looking at a blank screen. We found that eye movements reflected spatial biases in the ongoing mental operation: Gaze position shifted more upward when participants solved addition compared to subtraction problems, and the horizontal gaze position was partly determined by the magnitude of the operands. Interestingly, the difference between addition and subtraction trials was driven by the operator (plus vs. minus) but was not influenced by the computational process. Thus, our results do not support the idea of a mental movement toward the solution during arithmetic but indicate a semantic association between operation and space.}, language = {en} } @article{FischerShaki2014, author = {Fischer, Martin H. and Shaki, Samuel}, title = {Spatial associations in numerical cognition-From single digits to arithmetic}, series = {The quarterly journal of experimental psychology}, volume = {67}, journal = {The quarterly journal of experimental psychology}, number = {8}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1747-0218}, doi = {10.1080/17470218.2014.927515}, pages = {1461 -- 1483}, year = {2014}, abstract = {The literature on spatial associations during number processing is dominated by the SNARC (spatial-numerical association of response codes) effect. We describe spatial biases found for single digits and pairs of numbers, first in the "original" speeded parity task and then extending the scope to encompass different tasks, a range of measures, and various populations. Then we review theoretical accounts before surveying the emerging evidence for similar spatial associations during mental arithmetic. We conclude that the mental number line hypothesis and an embodied approach are useful frameworks for further studies.}, language = {en} } @article{RobertsStablerFischeretal.2013, author = {Roberts, Andrew Michael and Stabler, Jane and Fischer, Martin H. and Otty, Lisa}, title = {Space and pattern in linear and postlinear poetry empirical and theoretical approaches}, series = {European journal of English studies : official journal of the European Society for the Study of English (ESSE)}, volume = {17}, journal = {European journal of English studies : official journal of the European Society for the Study of English (ESSE)}, number = {1}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1382-5577}, doi = {10.1080/13825577.2012.754967}, pages = {23 -- 40}, year = {2013}, abstract = {This article derives from two interdisciplinary research projects funded by the UK Arts and Humanities Research Council, involving the application of psychological experimental techniques to the study of poetic form and reader response. It discusses the semantic and expressive effects of space and pattern in innovative forms of contemporary British and American poetry. After referring to some historical and theoretical contexts for these issues, the article analyses the results of experiments using eye-tracking, manipulations of text, memory tests and readers' recorded responses and interpretations. The first group of poems studied were lineated, with extended spaces within lines and displacement of lines from the left margin. Referring to a poem from Geoffrey Hill'sCanaan(1996), the authors show that such use of space may serve to articulate syntactical structures, but may also promote richer interpretation by encouraging cross-linear semantic connections. The second technique studied was the break from linear into postlinear poetry, as an initially lineated sequence shifts to pages of dispersed text. In readings of Susan Howe'sPythagorean Silence(fromThe Europe of Trusts, 1990), the authors detected more radical effects of space, shape and pattern, with associated consequences for interpretative strategies and aesthetic responses. Finally, the article discusses the potential for both mutual support and heuristic challenge between an empirical study of reader response, and a historical-theoretical approach as exemplified by Jerome McGann's interpretation ofPythagorean Silence.}, language = {en} } @article{FischerRielloGiordanoetal.2013, author = {Fischer, Martin H. and Riello, Marianna and Giordano, Bruno L. and Rusconi, Elena}, title = {Singing numbers ... in cognitive space - a dual-task study of the link between pitch, space, and numbers}, series = {Topics in cognitive science}, volume = {5}, journal = {Topics in cognitive science}, number = {2}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1756-8757}, doi = {10.1111/tops.12017}, pages = {354 -- 366}, year = {2013}, abstract = {We assessed the automaticity of spatial-numerical and spatial-musical associations by testing their intentionality and load sensitivity in a dual-task paradigm. In separate sessions, 16 healthy adults performed magnitude and pitch comparisons on sung numbers with variable pitch. Stimuli and response alternatives were identical, but the relevant stimulus attribute (pitch or number) differed between tasks. Concomitant tasks required retention of either color or location information. Results show that spatial associations of both magnitude and pitch are load sensitive and that the spatial association for pitch is more powerful than that for magnitude. These findings argue against the automaticity of spatial mappings in either stimulus dimension.}, language = {en} } @article{HartmannFischerMast2019, author = {Hartmann, Matthias and Fischer, Martin H. and Mast, Fred Walter}, title = {Sharing a mental number line across individuals? The role of body position and empathy in joint numerical cognition}, series = {The quarterly journal of experimental psychology}, volume = {72}, journal = {The quarterly journal of experimental psychology}, number = {7}, publisher = {Sage Publ.}, address = {London}, issn = {1747-0218}, doi = {10.1177/1747021818809254}, pages = {1732 -- 1740}, year = {2019}, abstract = {A growing body of research shows that the human brain acts differently when performing a task together with another person than when performing the same task alone. In this study, we investigated the influence of a co-actor on numerical cognition using a joint random number generation (RNG) task. We found that participants generated relatively smaller numbers when they were located to the left (vs. right) of a co-actor (Experiment 1), as if the two individuals shared a mental number line and predominantly selected numbers corresponding to their relative body position. Moreover, the mere presence of another person on the left or right side or the processing of numbers from loudspeaker on the left or right side had no influence on the magnitude of generated numbers (Experiment 2), suggesting that a bias in RNG only emerged during interpersonal interactions. Interestingly, the effect of relative body position on RNG was driven by participants with high trait empathic concern towards others, pointing towards a mediating role of feelings of sympathy for joint compatibility effects. Finally, the spatial bias emerged only after the co-actors swapped their spatial position, suggesting that joint spatial representations are constructed only after the spatial reference frame became salient. In contrast to previous studies, our findings cannot be explained by action co-representation because the consecutive production of numbers does not involve conflict at the motor response level. Our results therefore suggest that spatial reference coding, rather than motor mirroring, can determine joint compatibility effects. Our results demonstrate how physical properties of interpersonal situations, such as the relative body position, shape seemingly abstract cognition.}, language = {en} } @unpublished{MurrayFischerTatler2013, author = {Murray, Wayne S. and Fischer, Martin H. and Tatler, Benjamin W.}, title = {Serial and parallel processes in eye movement control - current controversies and future directions}, series = {The quarterly journal of experimental psychology}, volume = {66}, journal = {The quarterly journal of experimental psychology}, number = {3}, publisher = {Wiley}, address = {Hove}, issn = {1747-0218}, doi = {10.1080/17470218.2012.759979}, pages = {417 -- 428}, year = {2013}, abstract = {In this editorial for the Special Issue on Serial and Parallel Processing in Reading we explore the background to the current debate concerning whether the word recognition processes in reading are strictly serialsequential or take place in an overlapping parallel fashion. We consider the history of the controversy and some of the underlying assumptions, together with an analysis of the types of evidence and arguments that have been adduced to both sides of the debate, concluding that both accounts necessarily presuppose some weakening of, or elasticity in, the eyemind assumption. We then consider future directions, both for reading research and for scene viewing, and wrap up the editorial with a brief overview of the following articles and their conclusions.}, language = {en} } @article{FelisattiFischerKulkovaetal.2021, author = {Felisatti, Arianna and Fischer, Martin H. and Kulkova, Elena and K{\"u}hne, Katharina and Michirev, Alexej}, title = {Separation/connection procedures}, series = {Behavioral and brain sciences : an international journal of current research and theory with open peer commentary}, volume = {44}, journal = {Behavioral and brain sciences : an international journal of current research and theory with open peer commentary}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {1469-1825}, doi = {10.1017/S0140525X20000461}, pages = {2}, year = {2021}, abstract = {Lee and Schwarz (L\&S) suggest that separation is the grounded procedure underlying cleansing effects in different psychological domains. Here, we interpret L\&S's account from a hierarchical view of cognition that considers the influence of physical properties and sensorimotor constraints on mental representations. This approach allows theoretical integration and generalization of L\&S's account to the domain of formal quantitative reasoning.}, language = {en} } @article{HatukaiAlgomFischer2020, author = {Hatukai, Tatiana and Algom, Daniel and Fischer, Martin H.}, title = {Rodin has it!}, series = {Acta psychologica : international journal of psychonomics}, volume = {210}, journal = {Acta psychologica : international journal of psychonomics}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0001-6918}, doi = {10.1016/j.actpsy.2020.103160}, pages = {6}, year = {2020}, abstract = {We report a new discovery on the role of hands in guiding attention, using the classic Stroop effect as our assay. We show that the Stroop effect diminishes, hence selective attention improves, when observers hold their chin, emulating Rodin's famous sculpture, "The Thinker." In two experiments we show that the Rodin posture improves the selectivity of attention as efficiently as holding the hands nearby the visual stimulus (the near-hands effect). Because spatial proximity to the displayed stimulus is neither present nor intended, the presence of the Rodin effect implies that attentional prioritization by the hands is not limited to the space between the hands.}, language = {en} } @misc{JeglinskiMendeShakiFischer2018, author = {Jeglinski-Mende, Melinda A. and Shaki, Samuel and Fischer, Martin H.}, title = {Rezension zu: Varma, Sashank ; Schwartz, Daniel L.: The mental representation of integers : an abstract-to-concrete shift in the understanding of mathematical concepts. - Cognition. - 121 (2011), 3. - S. 363 - 385}, series = {Frontiers in psychology}, volume = {9}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2018.00209}, pages = {4}, year = {2018}, language = {en} } @article{FischerShaki2018, author = {Fischer, Martin H. and Shaki, Samuel}, title = {Repeating Numbers Reduces Results: Violations of the Identity Axiom in Mental Arithmetic}, series = {Frontiers in psychology}, volume = {9}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2018.02453}, pages = {9}, year = {2018}, abstract = {Even simple mental arithmetic is fraught with cognitive biases. For example, adding repeated numbers (so-called tie problems, e.g., 2 + 2) not only has a speed and accuracy advantage over adding different numbers (e.g., 1 + 3) but may also lead to under-representation of the result relative to a standard value (Charras et al., 2012, 2014). Does the tie advantage merely reflect easier encoding or retrieval compared to non-ties, or also a distorted result representation? To answer this question, 47 healthy adults performed two tasks, both of which indicated under-representation of tie results: In a result-to-position pointing task (Experiment 1) we measured the spatial mapping of numbers and found a left-bias for tie compared to non-tie problems. In a result-to-line-length production task (Experiment 2) we measured the underlying magnitude representation directly and obtained shorter lines for tie-compared to non-tie problems. These observations suggest that the processing benefit of tie problems comes at the cost of representational reduction of result meaning. This conclusion is discussed in the context of a recent model of arithmetic heuristics and biases.}, language = {en} } @unpublished{ShakiFischer2014, author = {Shaki, Samuel and Fischer, Martin H.}, title = {Removing spatial responses reveals spatial concepts even in a culture with mixed reading habits}, series = {Frontiers in human neuroscienc}, volume = {8}, journal = {Frontiers in human neuroscienc}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1662-5161}, doi = {10.3389/fnhum.2014.00966}, pages = {2}, year = {2014}, language = {en} } @article{WasnerMoellerFischeretal.2015, author = {Wasner, Mirjam and M{\"o}ller, Korbinian and Fischer, Martin H. and Nuerk, Hans-Christoph}, title = {Related but not the same: Ordinality, cardinality and 1-to-1 correspondence in finger-based numerical representations}, series = {Journal of cognitive psychology}, volume = {27}, journal = {Journal of cognitive psychology}, number = {4}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {2044-5911}, doi = {10.1080/20445911.2014.964719}, pages = {426 -- 441}, year = {2015}, abstract = {Finger-based numerical representations have gained increasing research interest. However, their description and assessment often refer to different numerical principles of ordinality, cardinality and 1-to-1 correspondence. Our aim was to investigate similarities and differences between these principles in finger-based numerical representations. Sixty-eight healthy adults performed ordinal finger counting, cardinal finger montring (showing the number of gestures) and finger-to-number mapping with twisted arms and fingers. We found that counting gestures and montring postures were identical for Number 10 but differed to varying degrees for other numbers. Interestingly, there was no systematic relation between finger-to-number mapping and ordinal finger counting habits. These data question the assumption of a unitary embodied finger-based numerical representation, but suggest that different finger-based representations co-exist and can be recruited flexibly depending on the numerical aspects to be conveyed.}, language = {en} } @inproceedings{FischerShaki2014, author = {Fischer, Martin H. and Shaki, Samuel}, title = {Reading space into numbers: an update}, series = {Cognitive processing : international quarterly of cognitive science}, volume = {15}, booktitle = {Cognitive processing : international quarterly of cognitive science}, number = {1}, publisher = {Springer}, address = {Heidelberg}, issn = {1612-4782}, pages = {S21 -- S21}, year = {2014}, language = {en} } @book{GuentherPetscheFischeretal.2015, author = {G{\"u}nther, Oliver and Petsche, Hans-Joachim and Fischer, Martin H. and Franz, Norbert P. and Steup, Martin and Sixtus, Elena and Heimann, Heinz-Dieter and Pr{\"o}ve, Ralf}, title = {Raum und Zahl im Fokus der Wissenschaften}, series = {Studieren ++ : Konzepte, Perspektiven, Kompetenzen ; 1}, journal = {Studieren ++ : Konzepte, Perspektiven, Kompetenzen ; 1}, editor = {Petsche, Hans-Joachim}, publisher = {Trafo}, address = {Berlin}, isbn = {978-3-86464-082-7}, pages = {168}, year = {2015}, abstract = {Die nun begonnene Reihe „studieren++" resultiert aus einer von der Universit{\"a}t Potsdam angebotenen Vorlesungsreihe. Das Besondere an dieser Vorlesungsreihe ist der multidisziplin{\"a}re Anspruch und die konsequent umgesetzte Zusammenarbeit {\"u}ber Disziplingrenzen hinweg. Die nicht nur {\"u}ber Instituts-, sondern {\"u}ber Fakult{\"a}tsgrenzen praktizierte Interdisziplinarit{\"a}t erlaubt die Betrachtung eines Problems oder Sachverhalts aus unterschiedlichen Blickwinkeln. Wissenschaftliche Fragestellungen sind komplex und nicht immer auf eine Disziplin beschr{\"a}nkt. Sie in ihrer G{\"a}nze erfassen und nachhaltige L{\"o}sungsstrategien oder Konzepte entwickeln zu k{\"o}nnen gelingt oft nur durch eine multidisziplin{\"a}re Kooperation. Eine Lehrveranstaltung wie die vorliegende ist nicht nur f{\"u}r die Studierenden einer Universit{\"a}t eine hervorragende M{\"o}glichkeit, um {\"u}ber die Grenzen der eigenen Disziplin hinaus zu blicken und die Zusammenarbeit mit Wissenschaftlerinnen und Wissenschaftlern aus anderen Bereichen zu pflegen. So lernt man, sich in andere Sichtweisen hineinzuversetzen und sich zwischen den Disziplinen zu bewegen - eine Kompetenz, die in der hochkomplexen Arbeitswelt von heute von hohem Nutzen ist. Der vorliegende erste Band der Reihe hat „Raum und Zahl" zum Thema und ist aus einer Ringvorlesung aus dem Wintersemester 2013/2014 entstanden. Drei der f{\"u}nf Fakult{\"a}ten, insgesamt neun Institute der Universit{\"a}t Potsdam, haben sich an der Vorlesung beteiligt und sich dieses spannenden Themas angenommen. Als jemand, der sich jahrelang wissenschaftlich mit algorithmischer Geometrie sowie mit raumbezogenen Datenbanken und Navigationssystemen besch{\"a}ftigt hat, kann ich nur bekr{\"a}ftigen, dass die Bez{\"u}ge zwischen Raum und Zahl, zwischen R{\"a}umen und Zahlen, noch viel st{\"a}rker im {\"o}ffentlichen Bewusstsein verankert geh{\"o}ren. R{\"a}ume auch quantitativ zu erfassen und zu verstehen ist eine Kulturtechnik, die an Wichtigkeit eher noch zunimmt, vor allem vor dem Hintergrund, dass wir genetisch nicht allzu gut auf derartige Herausforderungen vorbereitet sind. Denn viele unserer einschl{\"a}gigen Gene entstammen noch aus der Zeit der Savanne, einer Zeit, zu der das Raumkonzept sich fast ausschließlich auf die unmittelbare r{\"a}umliche Umgebung bezog und Zahlen jenseits von 10 nur wenig Relevanz f{\"u}r das eigene {\"U}berleben hatten. Als Pr{\"a}sident der Universit{\"a}t Potsdam freut es mich ganz besonders, dass sich die hier vertretenen Wissenschaftler bereit erkl{\"a}rt haben, ihre {\"U}berlegungen mit den Studierenden und ihren Kolleginnen und Kollegen zu teilen. Herrn Kollegen Hans-Joachim Petsche m{\"o}chte ich f{\"u}r sein Engagement danken und ihm zu dieser gelungenen Reihe gratulieren. Der Geist der Wissenschaft, der nicht nur einsam im B{\"u}ro oder Labor gelebt wird, sondern gerade an einer Universit{\"a}t auch aktiv nach außen getragen werden sollte, wird hier in besonderer Weise sichtbar. Ich w{\"u}nsche Ihnen viel Freude bei der Lekt{\"u}re des Bandes und freue mich auf weitere Ver{\"o}ffentlichungen in dieser Reihe.}, subject = {Raum}, language = {de} } @article{ShakiFischer2014, author = {Shaki, Samuel and Fischer, Martin H.}, title = {Random walks on the mental number line}, series = {Experimental brain research}, volume = {232}, journal = {Experimental brain research}, number = {1}, publisher = {Springer}, address = {New York}, issn = {0014-4819}, doi = {10.1007/s00221-013-3718-7}, pages = {43 -- 49}, year = {2014}, language = {en} } @article{FischerHartmann2014, author = {Fischer, Martin H. and Hartmann, Matthias}, title = {Pushing forward in embodied cognition: may we mouse the mathematical mind?}, series = {Frontiers in psychology}, volume = {5}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2014.01315}, pages = {4}, year = {2014}, abstract = {Freely available software has popularized "mousetracking" to study cognitive processing; this involves the on-line recording of cursor positions while participants move a computer mouse to indicate their choice. Movement trajectories of the cursor can then be reconstructed off-line to assess the efficiency of responding in time and across space. Here we focus on the process of selecting among alternative numerical responses. Several studies have recently measured the mathematical mind with cursor movements while people decided about number magnitude or parity, computed sums or differences, or simply located numbers on a number line. After some general methodological considerations about mouse tracking we discuss several conceptual concerns that become particularly evident when "mousing" the mathematical mind.}, language = {en} } @unpublished{HartmannFischer2014, author = {Hartmann, Matthias and Fischer, Martin H.}, title = {Pupillometry: The eyes shed fresh light on the mind}, series = {Current biology}, volume = {24}, journal = {Current biology}, number = {7}, publisher = {Cell Press}, address = {Cambridge}, issn = {0960-9822}, doi = {10.1016/j.cub.2014.02.028}, pages = {R281 -- R282}, year = {2014}, language = {en} } @article{BarFischerAlgom2018, author = {Bar, Hofit and Fischer, Martin H. and Algom, Daniel}, title = {On the linear representation of numbers}, series = {Psychological research : an international journal of perception, attention, memory, and action}, volume = {83}, journal = {Psychological research : an international journal of perception, attention, memory, and action}, number = {1}, publisher = {Springer}, address = {Heidelberg}, issn = {0340-0727}, doi = {10.1007/s00426-018-1063-y}, pages = {48 -- 63}, year = {2018}, abstract = {In the number-to-position methodology, a number is presented on each trial and the observer places it on a straight line in a position that corresponds to its felt subjective magnitude. In the novel modification introduced in this study, the two-numbers-to-two-positions method, a pair of numbers rather than a single number is presented on each trial and the observer places them in appropriate positions on the same line. Responses in this method indicate not only the subjective magnitude of each single number but, simultaneously, provide a direct estimation of their subjective numerical distance. The results of four experiments provide strong evidence for a linear representation of numbers and, commensurately, for the linear representation of numerical distances. We attribute earlier results that indicate a logarithmic representation to the ordered nature of numbers and to the task used and not to a truly non-linear underlying representation.}, language = {en} } @article{MyachykovEllisCangelosietal.2016, author = {Myachykov, Andriy and Ellis, Rob and Cangelosi, Angelo and Fischer, Martin H.}, title = {Ocular drift along the mental number line}, series = {Psychological research : an international journal of perception, attention, memory, and action}, volume = {80}, journal = {Psychological research : an international journal of perception, attention, memory, and action}, publisher = {Springer}, address = {Heidelberg}, issn = {0340-0727}, doi = {10.1007/s00426-015-0731-4}, pages = {379 -- 388}, year = {2016}, abstract = {We examined the spontaneous association between numbers and space by documenting attention deployment and the time course of associated spatial-numerical mapping with and without overt oculomotor responses. In Experiment 1, participants maintained central fixation while listening to number names. In Experiment 2, they made horizontal target-direct saccades following auditory number presentation. In both experiments, we continuously measured spontaneous ocular drift in horizontal space during and after number presentation. Experiment 2 also measured visual-probe-directed saccades following number presentation. Reliable ocular drift congruent with a horizontal mental number line emerged during and after number presentation in both experiments. Our results provide new evidence for the implicit and automatic nature of the oculomotor resonance effect associated with the horizontal spatial-numerical mapping mechanism.}, language = {en} } @misc{MyachykovEllisCangelosietal.2016, author = {Myachykov, Andriy and Ellis, Rob and Cangelosi, Angelo and Fischer, Martin H.}, title = {Ocular drift along the mental number line}, series = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, number = {553}, issn = {1866-8364}, doi = {10.25932/publishup-43048}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-430483}, pages = {379 -- 388}, year = {2016}, abstract = {We examined the spontaneous association between numbers and space by documenting attention deployment and the time course of associated spatial-numerical mapping with and without overt oculomotor responses. In Experiment 1, participants maintained central fixation while listening to number names. In Experiment 2, they made horizontal target-direct saccades following auditory number presentation. In both experiments, we continuously measured spontaneous ocular drift in horizontal space during and after number presentation. Experiment 2 also measured visual-probe-directed saccades following number presentation. Reliable ocular drift congruent with a horizontal mental number line emerged during and after number presentation in both experiments. Our results provide new evidence for the implicit and automatic nature of the oculomotor resonance effect associated with the horizontal spatial-numerical mapping mechanism.}, language = {en} } @article{GoebelMcCrinkFischeretal.2018, author = {G{\"o}bel, Silke M. and McCrink, Koleen and Fischer, Martin H. and Shaki, Samuel}, title = {Observation of directional storybook reading influences young children's counting direction}, series = {Journal of experimental child psychology}, volume = {166}, journal = {Journal of experimental child psychology}, publisher = {Elsevier}, address = {New York}, issn = {0022-0965}, doi = {10.1016/j.jecp.2017.08.001}, pages = {49 -- 66}, year = {2018}, abstract = {Even before formal schooling, children map numbers onto space in a directional manner. The origin of this preliterate spatial-numerical association is still debated. We investigated the role of enculturation for shaping the directionality of the association between numbers and space, focusing on counting behavior in 3- to 5-year-old preliterate children. Two studies provide evidence that, after observing reading from storybooks (left-to-right or right-to-left reading) children change their counting direction in line with the direction of observed reading. Just observing visuospatial directional movements had no such effect on counting direction. Complementarily, we document that book illustrations, prevalent in children's cultures, exhibit directionality that conforms to the direction of a culture's written language. We propose that shared book reading activates spatiotemporal representations of order in young children, which in turn affect their spatial representation of numbers.}, language = {en} } @article{ApelCangelosiEllisetal.2012, author = {Apel, Jens K. and Cangelosi, Angelo and Ellis, Rob and Goslin, Jeremy and Fischer, Martin H.}, title = {Object affordance influences instruction span}, series = {Experimental brain research}, volume = {223}, journal = {Experimental brain research}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0014-4819}, doi = {10.1007/s00221-012-3251-0}, pages = {199 -- 206}, year = {2012}, abstract = {We measured memory span for assembly instructions involving objects with handles oriented to the left or right side. Right-handed participants remembered more instructions when objects' handles were spatially congruent with the hand used in forthcoming assembly actions. No such affordance-based memory benefit was found for left-handed participants. These results are discussed in terms of motor simulation as an embodied rehearsal mechanism.}, language = {en} } @article{D'AscenzoFischerShakietal.2022, author = {D'Ascenzo, Stefania and Fischer, Martin H. and Shaki, Samuel and Lugli, Luisa}, title = {Number to me, space to you}, series = {Psychonomic bulletin \& review : a journal of the Psychonomic Society}, volume = {29}, journal = {Psychonomic bulletin \& review : a journal of the Psychonomic Society}, number = {2}, publisher = {Springer}, address = {New York}, issn = {1069-9384}, doi = {10.3758/s13423-021-02013-9}, pages = {485 -- 491}, year = {2022}, abstract = {Recent work has shown that number concepts activate both spatial and magnitude representations. According to the social co-representation literature which has shown that participants typically represent task components assigned to others together with their own, we asked whether explicit magnitude meaning and explicit spatial coding must be present in a single mind, or can be distributed across two minds, to generate a spatial-numerical congruency effect. In a shared go/no-go task that eliminated peripheral spatial codes, we assigned explicit magnitude processing to participants and spatial processing to either human or non-human co-agents. The spatial-numerical congruency effect emerged only with human co-agents. We demonstrate an inter-personal level of conceptual congruency between space and number that arises from a shared conceptual representation not contaminated by peripheral spatial codes. Theoretical implications of this finding for numerical cognition are discussed.}, language = {en} } @misc{FischerShaki2018, author = {Fischer, Martin H. and Shaki, Samuel}, title = {Number concepts: abstract and embodied}, series = {Philosophical transactions of the Royal Society of London : B, Biological sciences}, volume = {373}, journal = {Philosophical transactions of the Royal Society of London : B, Biological sciences}, number = {1752}, publisher = {Royal Society}, address = {London}, issn = {0962-8436}, doi = {10.1098/rstb.2017.0125}, pages = {8}, year = {2018}, abstract = {Numerical knowledge, including number concepts and arithmetic procedures, seems to be a clear-cut case for abstract symbol manipulation. Yet, evidence from perceptual and motor behaviour reveals that natural number knowledge and simple arithmetic also remain closely associated with modal experiences. Following a review of behavioural, animal and neuroscience studies of number processing, we propose a revised understanding of psychological number concepts as grounded in physical constraints, embodied in experience and situated through task-specific intentions. The idea that number concepts occupy a range of positions on the continuum between abstract and modal conceptual knowledge also accounts for systematic heuristics and biases in mental arithmetic, thus inviting psycho-logical approaches to the study of the mathematical mind.}, language = {en} } @article{ShakiFischer2020, author = {Shaki, Samuel and Fischer, Martin H.}, title = {Nothing to dance about: unclear evidence for symbolic representations and numerical competence in honeybees}, series = {Proceedings of the Royal Society of London : B, Biological sciences}, volume = {287}, journal = {Proceedings of the Royal Society of London : B, Biological sciences}, number = {1925}, publisher = {Royal Society}, address = {London}, issn = {0962-8452}, doi = {10.1098/rspb.2019.2840}, pages = {2}, year = {2020}, language = {en} } @unpublished{ShakiFischer2015, author = {Shaki, Samuel and Fischer, Martin H.}, title = {Newborn chicks need no number tricks. Commentary: Number-space mapping in the newborn chick resembles humans' mental number line}, series = {Frontiers in human neuroscienc}, volume = {9}, journal = {Frontiers in human neuroscienc}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1662-5161}, doi = {10.3389/fnhum.2015.00451}, pages = {3}, year = {2015}, language = {en} } @misc{ShakiFischer2015, author = {Shaki, Samuel and Fischer, Martin H.}, title = {Newborn chicks need no number tricks}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {414}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-406425}, pages = {3}, year = {2015}, abstract = {kein Abstract}, language = {en} } @misc{SchmidtFelisattiAsteretal.2021, author = {Schmidt, Hendrikje and Felisatti, Arianna and Aster, Michael von and Wilbert, J{\"u}rgen and Moers, Arpad von and Fischer, Martin H.}, title = {Neuromuscular Diseases Affect Number Representation and Processing}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, issn = {1866-8364}, doi = {10.25932/publishup-52231}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-522312}, pages = {15}, year = {2021}, abstract = {Spinal muscular atrophy (SMA) and Duchenne muscular dystrophy (DMD) both are rare genetic neuromuscular diseases with progressive loss of motor ability. The neuromotor developmental course of those diseases is well documented. In contrast, there is only little evidence about characteristics of general and specific cognitive development. In both conditions the final motor outcome is characterized by an inability to move autonomously: children with SMA never accomplish independent motoric exploration of their environment, while children with DMD do but later lose this ability again. These profound differences in developmental pathways might affect cognitive development of SMA vs. DMD children, as cognition is shaped by individual motor experiences. DMD patients show impaired executive functions, working memory, and verbal IQ, whereas only motor ability seems to be impaired in SMA. Advanced cognitive capacity in SMA may serve as a compensatory mechanism for achieving in education, career progression, and social satisfaction. This study aimed to relate differences in basic numerical concepts and arithmetic achievement in SMA and DMD patients to differences in their motor development and resulting sensorimotor and environmental experiences. Horizontal and vertical spatial-numerical associations were explored in SMA/DMD children ranging between 6 and 12 years through the random number generation task. Furthermore, arithmetic skills as well as general cognitive ability were assessed. Groups differed in spatial number processing as well as in arithmetic and domain-general cognitive functions. Children with SMA showed no horizontal and even reversed vertical spatial-numerical associations. Children with DMD on the other hand revealed patterns in spatial numerical associations comparable to healthy developing children. From the embodied Cognition perspective, early sensorimotor experience does play a role in development of mental number representations. However, it remains open whether and how this becomes relevant for the acquisition of higher order cognitive and arithmetic skills.}, language = {en} } @article{SchmidtFelisattiAsteretal.2021, author = {Schmidt, Hendrikje and Felisatti, Arianna and Aster, Michael von and Wilbert, J{\"u}rgen and Moers, Arpad von and Fischer, Martin H.}, title = {Neuromuscular diseases affect number representation and processing}, series = {Frontiers in psychology / Frontiers Research Foundation}, volume = {12}, journal = {Frontiers in psychology / Frontiers Research Foundation}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2021.697881}, pages = {13}, year = {2021}, abstract = {Spinal muscular atrophy (SMA) and Duchenne muscular dystrophy (DMD) both are rare genetic neuromuscular diseases with progressive loss of motor ability. The neuromotor developmental course of those diseases is well documented. In contrast, there is only little evidence about characteristics of general and specific cognitive development. In both conditions the final motor outcome is characterized by an inability to move autonomously: children with SMA never accomplish independent motoric exploration of their environment, while children with DMD do but later lose this ability again. These profound differences in developmental pathways might affect cognitive development of SMA vs. DMD children, as cognition is shaped by individual motor experiences. DMD patients show impaired executive functions, working memory, and verbal IQ, whereas only motor ability seems to be impaired in SMA. Advanced cognitive capacity in SMA may serve as a compensatory mechanism for achieving in education, career progression, and social satisfaction. This study aimed to relate differences in basic numerical concepts and arithmetic achievement in SMA and DMD patients to differences in their motor development and resulting sensorimotor and environmental experiences. Horizontal and vertical spatial-numerical associations were explored in SMA/DMD children ranging between 6 and 12 years through the random number generation task. Furthermore, arithmetic skills as well as general cognitive ability were assessed. Groups differed in spatial number processing as well as in arithmetic and domain-general cognitive functions. Children with SMA showed no horizontal and even reversed vertical spatial-numerical associations. Children with DMD on the other hand revealed patterns in spatial numerical associations comparable to healthy developing children. From the embodied Cognition perspective, early sensorimotor experience does play a role in development of mental number representations. However, it remains open whether and how this becomes relevant for the acquisition of higher order cognitive and arithmetic skills.}, language = {en} } @article{ShakiFischer2012, author = {Shaki, Samuel and Fischer, Martin H.}, title = {Multiple spatial mappings in numerical cognition}, series = {Journal of experimental psychology : Human perception and performance}, volume = {38}, journal = {Journal of experimental psychology : Human perception and performance}, number = {3}, publisher = {American Psychological Association}, address = {Washington}, issn = {0096-1523}, doi = {10.1037/a0027562}, pages = {804 -- 809}, year = {2012}, abstract = {A recent cross-cultural comparison (Shaki, Fischer, \& Petrusic, 2009) suggested that spatially consistent processing habits for words and numbers are a necessary condition for the spatial representation of numbers (Spatial-Numerical Association of Response Codes; SNARC effect). Here we reexamine the SNARC in Israelis who read text from right to left but numbers from left to right. We show that, despite these spatially inconsistent processing habits, a SNARC effect still emerges when the response dimension is spatially orthogonal to the conflicting processing dimension. These results clarify the cognitive conditions for spatial-numerical mappings.}, language = {en} } @article{WernerRaabFischer2018, author = {Werner, Karsten and Raab, Markus and Fischer, Martin H.}, title = {Moving arms}, series = {Thinking \& Reasoning}, volume = {25}, journal = {Thinking \& Reasoning}, number = {2}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1354-6783}, doi = {10.1080/13546783.2018.1494630}, pages = {171 -- 191}, year = {2018}, abstract = {Embodied cognition postulates a bi-directional link between the human body and its cognitive functions. Whether this holds for higher cognitive functions such as problem solving is unknown. We predicted that arm movement manipulations performed by the participants could affect the problem-solving solutions. We tested this prediction in quantitative reasoning tasks that allowed two solutions to each problem (addition or subtraction). In two studies with healthy adults (N=53 and N=50), we found an effect of problem-congruent movements on problem solutions. Consistent with embodied cognition, sensorimotor information gained via right or left arm movements affects the solution in different types of problem-solving tasks.}, language = {en} } @misc{WernerRaabFischer2018, author = {Werner, Karsten and Raab, Markus and Fischer, Martin H.}, title = {Moving arms}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {488}, issn = {1866-8364}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-420579}, pages = {22}, year = {2018}, abstract = {Embodied cognition postulates a bi-directional link between the human body and its cognitive functions. Whether this holds for higher cognitive functions such as problem solving is unknown. We predicted that arm movement manipulations performed by the participants could affect the problem-solving solutions. We tested this prediction in quantitative reasoning tasks that allowed two solutions to each problem (addition or subtraction). In two studies with healthy adults (N=53 and N=50), we found an effect of problem-congruent movements on problem solutions. Consistent with embodied cognition, sensorimotor information gained via right or left arm movements affects the solution in different types of problem-solving tasks.}, language = {en} } @misc{MiklashevskyFischer2021, author = {Miklashevsky, Alex and Fischer, Martin H.}, title = {Motor simulation in sentence-picture verification}, series = {Cognitive processing : international quarterly of cognitive science; Abstracts and authors of the 8th International Conference on Spatial Cognition: Cognition and Action in a Plurality of Spaces (ICSC 2021) TALKS: Submission 58}, volume = {22}, journal = {Cognitive processing : international quarterly of cognitive science; Abstracts and authors of the 8th International Conference on Spatial Cognition: Cognition and Action in a Plurality of Spaces (ICSC 2021) TALKS: Submission 58}, number = {Suppl. 1}, publisher = {Springer}, address = {Heidelberg}, issn = {1612-4782}, doi = {10.1007/s10339-021-01058-x}, pages = {S32 -- S33}, year = {2021}, abstract = {Background and Aims: Ostarek et al. (2019) claimed a conclusive demonstration that language comprehension relies profoundly on visual simulations. They presented participants with visual noise during sentence-picture verification (SPV) and measured lateralized button response speed. The authors selectively eliminated the classical congruency effect (faster yes decisions when pictures match the objects implied by the sentences) with ''high level'' noise made from images of other objects. However, that visual noise included tool pictures, known to activate lateralized motor affordances. Moreover, some of their sentences described motor actions. This raises the question whether motor simulation may have contaminated their results. Methods: Replicating Ostarek et al. (2019), 33 right-handed participants performed SPV but either without visual noise or while viewing (a) only left-handled or (b) only right-handled or (c) alternatingly left- and right-handled tools. Accuracy and reaction times of manual yes responses were analyzed. Additionally, hand-relatedness of sentences was rated. Results: Replicating Ostarek et al. (2019), the classical SPV congruency effect appeared without noise and vanished when alternatingly handled tools were presented. Crucially, it reappeared when noise objects were consistently either left- or righthandled. Higher hand-relatedness of sentence content reduced SPV performance and accuracy was lower with right-handled noise. Conclusion: First, we demonstrated an interaction between motor- related language, visual affordances and motor responses in SPV. This result supports the embodied view of language processing. Second, we identified a motor process not previously known in SPV. This extends our understanding of mental simulation and calls for methodological controls in future studies.}, language = {en} } @article{ZhouFischer2018, author = {Zhou, Yuefang and Fischer, Martin H.}, title = {Mimicking non-verbal emotional expressions and empathy development in simulated consultations}, series = {Patient education and counseling}, volume = {101}, journal = {Patient education and counseling}, number = {2}, publisher = {Elsevier Science}, address = {Clare}, issn = {0738-3991}, doi = {10.1016/j.pec.2017.08.016}, pages = {304 -- 309}, year = {2018}, abstract = {Objective: To explore the feasibility of applying an experimental design to study the relationship between non-verbal emotions and empathy development in simulated consultations. Method: In video-recorded simulated consultations, twenty clinicians were randomly allocated to either an experimental group (instructed to mimic non-verbal emotions of a simulated patient, SP) or a control group (no such instruction). Baseline empathy scores were obtained before consultation, relational empathy was rated by SP after consultation. Multilevel logistic regression modelled the probability of mimicry occurrence, controlling for baseline empathy and clinical experience. ANCOVA compared group differences on relational empathy and consultation smoothness. Results: Instructed mimicry lasted longer than spontaneous mimicry. Mimicry was marginally related to improved relational empathy. SP felt being treated more like a whole person during consultations with spontaneous mimicry. Clinicians who displayed spontaneous mimicry felt consultations went more smoothly. Conclusion: The experimental approach improved our understanding of how non-verbal emotional mimicry contributed to relational empathy development during consultations. Further work should ascertain the potential of instructed mimicry to enhance empathy development. Practice implications: Understanding how non-verbal emotional mimicry impacts on patients' perceived clinician empathy during consultations may inform training and intervention programme development.}, language = {en} } @misc{WinterMatlockShakietal.2015, author = {Winter, Bodo and Matlock, Teenie and Shaki, Samuel and Fischer, Martin H.}, title = {Mental number space in three dimensions}, series = {Neuroscience \& biobehavioral reviews : official journal of the International Behavioral Neuroscience Society}, volume = {57}, journal = {Neuroscience \& biobehavioral reviews : official journal of the International Behavioral Neuroscience Society}, publisher = {Elsevier}, address = {Oxford}, issn = {0149-7634}, doi = {10.1016/j.neubiorev.2015.09.005}, pages = {209 -- 219}, year = {2015}, abstract = {A large number of experimental findings from neuroscience and experimental psychology demonstrated interactions between spatial cognition and numerical cognition. In particular, many researchers posited a horizontal mental number line, where small numbers are thought of as being to the left of larger numbers. This review synthesizes work on the mental association between space and number, indicating the existence of multiple spatial mappings: recent research has found associations between number and vertical space, as well as associations between number and near/far space. We discuss number space in three dimensions with an eye on potential origins of the different number mappings, and how these number mappings fit in with our current knowledge of brain organization and brain-culture interactions. We derive novel predictions and show how this research fits into a general view of cognition as embodied, grounded and situated. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @article{SixtusLonnemannFischeretal.2019, author = {Sixtus, Elena and Lonnemann, Jan and Fischer, Martin H. and Werner, Karsten}, title = {Mental Number Representations in 2D Space}, series = {Frontiers in Psychology}, volume = {10}, journal = {Frontiers in Psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2019.00172}, pages = {11}, year = {2019}, abstract = {There is evidence both for mental number representations along a horizontal mental number line with larger numbers to the right of smaller numbers (for Western cultures) and a physically grounded, vertical representation where "more is up." Few studies have compared effects in the horizontal and vertical dimension and none so far have combined both dimensions within a single paradigm where numerical magnitude was task-irrelevant and none of the dimensions was primed by a response dimension. We now investigated number representations over both dimensions, building on findings that mental representations of numbers and space co-activate each other. In a Go/No-go experiment, participants were auditorily primed with a relatively small or large number and then visually presented with quasi-randomly distributed distractor symbols and one Arabic target number (in Go trials only). Participants pressed a central button whenever they detected the target number and elsewise refrained from responding. Responses were not more efficient when small numbers were presented to the left and large numbers to the right. However, results indicated that large numbers were associated with upper space more strongly than small numbers. This suggests that in two-dimensional space when no response dimension is given, numbers are conceptually associated with vertical, but not horizontal space.}, language = {en} } @misc{SixtusLonnemannFischeretal.2019, author = {Sixtus, Elena and Lonnemann, Jan and Fischer, Martin H. and Werner, Karsten}, title = {Mental Number Representations in 2D Space}, series = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, number = {538}, issn = {1866-8364}, doi = {10.25932/publishup-42496}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-424960}, year = {2019}, abstract = {There is evidence both for mental number representations along a horizontal mental number line with larger numbers to the right of smaller numbers (for Western cultures) and a physically grounded, vertical representation where "more is up." Few studies have compared effects in the horizontal and vertical dimension and none so far have combined both dimensions within a single paradigm where numerical magnitude was task-irrelevant and none of the dimensions was primed by a response dimension. We now investigated number representations over both dimensions, building on findings that mental representations of numbers and space co-activate each other. In a Go/No-go experiment, participants were auditorily primed with a relatively small or large number and then visually presented with quasi-randomly distributed distractor symbols and one Arabic target number (in Go trials only). Participants pressed a central button whenever they detected the target number and elsewise refrained from responding. Responses were not more efficient when small numbers were presented to the left and large numbers to the right. However, results indicated that large numbers were associated with upper space more strongly than small numbers. This suggests that in two-dimensional space when no response dimension is given, numbers are conceptually associated with vertical, but not horizontal space.}, language = {en} } @article{FischerShaki2016, author = {Fischer, Martin H. and Shaki, Samuel}, title = {Measuring spatial-numerical associations: evidence for a purely conceptual link}, series = {Psychological research : an international journal of perception, attention, memory, and action}, volume = {80}, journal = {Psychological research : an international journal of perception, attention, memory, and action}, publisher = {Springer}, address = {Heidelberg}, issn = {0340-0727}, doi = {10.1007/s00426-015-0646-0}, pages = {109 -- 112}, year = {2016}, abstract = {Previous work on spatial-numerical association (SNAs) included either spatially distributed stimuli or responses. This raises the possibility that the inferred spatial nature of number concepts was a methodological artifact. We present results from a novel task that involves two categories (spatially oriented objects and number magnitudes) and dissociates spatial classification from number classification. The results reveal SNAs without inferential limitations of previous work and point to a working memory mechanism that transfers spatial coding across categories.}, language = {en} } @article{ScheepersMohrFischeretal.2013, author = {Scheepers, Christoph and Mohr, Sibylle and Fischer, Martin H. and Roberts, Andrew M.}, title = {Listening to Limericks - A Pupillometry Investigation of Perceivers' Expectancy}, series = {PLoS one}, volume = {8}, journal = {PLoS one}, number = {9}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0074986}, pages = {8}, year = {2013}, abstract = {What features of a poem make it captivating, and which cognitive mechanisms are sensitive to these features? We addressed these questions experimentally by measuring pupillary responses of 40 participants who listened to a series of Limericks. The Limericks ended with either a semantic, syntactic, rhyme or metric violation. Compared to a control condition without violations, only the rhyme violation condition induced a reliable pupillary response. An anomaly-rating study on the same stimuli showed that all violations were reliably detectable relative to the control condition, but the anomaly induced by rhyme violations was perceived as most severe. Together, our data suggest that rhyme violations in Limericks may induce an emotional response beyond mere anomaly detection.}, language = {en} } @article{RonasiFischerZimmermann2018, author = {Ronasi, Golnoush and Fischer, Martin H. and Zimmermann, Malte}, title = {Language and Arithmetic}, series = {Frontiers in psychology}, volume = {9}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2018.01524}, pages = {12}, year = {2018}, abstract = {We examined cross-domain semantic priming effects between arithmetic and language. We paired subtractions with their linguistic equivalent, exception phrases (EPs) with positive quantifiers (e.g., "everybody except John") while pairing additions with their own linguistic equivalent, EPs with negative quantifiers (e.g., "nobody except John"; Moltmann, 1995). We hypothesized that EPs with positive quantifiers prime subtractions and inhibit additions while EPs with negative quantifiers prime additions and inhibit subtractions. Furthermore, we expected similar priming and inhibition effects from arithmetic into semantics. Our design allowed for a bidirectional analysis by using one trial's target as the prime for the next trial. Two experiments failed to show significant priming effects in either direction. Implications and possible shortcomings are explored in the general discussion.}, language = {en} } @article{RonasiFischerZimmermann2018, author = {Ronasi, Golnoush and Fischer, Martin H. and Zimmermann, Malte}, title = {Language and Arithmetic}, series = {Frontiers in Psychology}, volume = {9}, journal = {Frontiers in Psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2018.01524}, pages = {1 -- 12}, year = {2018}, abstract = {We examined cross-domain semantic priming effects between arithmetic and language. We paired subtractions with their linguistic equivalent, exception phrases (EPs) with positive quantifiers (e.g., "everybody except John") while pairing additions with their own linguistic equivalent, EPs with negative quantifiers (e.g., "nobody except John"; Moltmann, 1995). We hypothesized that EPs with positive quantifiers prime subtractions and inhibit additions while EPs with negative quantifiers prime additions and inhibit subtractions. Furthermore, we expected similar priming and inhibition effects from arithmetic into semantics. Our design allowed for a bidirectional analysis by using one trial's target as the prime for the next trial. Two experiments failed to show significant priming effects in either direction. Implications and possible shortcomings are explored in the general discussion.}, language = {en} } @misc{RonasiFischerZimmermann2018, author = {Ronasi, Golnoush and Fischer, Martin H. and Zimmermann, Malte}, title = {Language and Arithmetic}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {469}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-417278}, pages = {12}, year = {2018}, abstract = {We examined cross-domain semantic priming effects between arithmetic and language. We paired subtractions with their linguistic equivalent, exception phrases (EPs) with positive quantifiers (e.g., "everybody except John") while pairing additions with their own linguistic equivalent, EPs with negative quantifiers (e.g., "nobody except John"; Moltmann, 1995). We hypothesized that EPs with positive quantifiers prime subtractions and inhibit additions while EPs with negative quantifiers prime additions and inhibit subtractions. Furthermore, we expected similar priming and inhibition effects from arithmetic into semantics. Our design allowed for a bidirectional analysis by using one trial's target as the prime for the next trial. Two experiments failed to show significant priming effects in either direction. Implications and possible shortcomings are explored in the general discussion.}, language = {en} } @article{GerthKlassertDolketal.2016, author = {Gerth, Sabrina and Klassert, Annegret and Dolk, Thomas and Fliesser, Michael and Fischer, Martin H. and Nottbusch, Guido and Festman, Julia}, title = {Is Handwriting Performance Affected by the Writing Surface? Comparing Tablet vs. Paper}, series = {Frontiers in psychology}, volume = {7}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2016.01308}, pages = {18}, year = {2016}, language = {en} } @article{GerthKlassertDolketal.2016, author = {Gerth, Sabrina and Klassert, Annegret and Dolk, Thomas and Fliesser, Michael and Fischer, Martin H. and Nottbusch, Guido and Festman, Julia}, title = {Is Handwriting Performance Affected by the Writing Surface?}, series = {Frontiers in psychology}, volume = {7}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2016.01308}, pages = {18}, year = {2016}, abstract = {Due to their multifunctionality, tablets offer tremendous advantages for research on handwriting dynamics or for interactive use of learning apps in schools. Further, the widespread use of tablet computers has had a great impact on handwriting in the current generation. But, is it advisable to teach how to write and to assess handwriting in pre- and primary schoolchildren on tablets rather than on paper? Since handwriting is not automatized before the age of 10 years, children's handwriting movements require graphomotor and visual feedback as well as permanent control of movement execution during handwriting. Modifications in writing conditions, for instance the smoother writing surface of a tablet, might influence handwriting performance in general and in particular those of non-automatized beginning writers. In order to investigate how handwriting performance is affected by a difference in friction of the writing surface, we recruited three groups with varying levels of handwriting automaticity: 25 preschoolers, 27 second graders, and 25 adults. We administered three tasks measuring graphomotor abilities, visuomotor abilities, and handwriting performance (only second graders and adults). We evaluated two aspects of handwriting performance: the handwriting quality with a visual score and the handwriting dynamics using online handwriting measures [e.g., writing duration, writing velocity, strokes and number of inversions in velocity (NIV)]. In particular, NIVs which describe the number of velocity peaks during handwriting are directly related to the level of handwriting automaticity. In general, we found differences between writing on paper compared to the tablet. These differences were partly task-dependent. The comparison between tablet and paper revealed a faster writing velocity for all groups and all tasks on the tablet which indicates that all participants—even the experienced writers—were influenced by the lower friction of the tablet surface. Our results for the group-comparison show advancing levels in handwriting automaticity from preschoolers to second graders to adults, which confirms that our method depicts handwriting performance in groups with varying degrees of handwriting automaticity. We conclude that the smoother tablet surface requires additional control of handwriting movements and therefore might present an additional challenge for learners of handwriting.}, language = {en} } @misc{GerthKlassertDolketal.2016, author = {Gerth, Sabrina and Klassert, Annegret and Dolk, Thomas and Fliesser, Michael and Fischer, Martin H. and Nottbusch, Guido and Festman, Julia}, title = {Is Handwriting Performance Affected by the Writing Surface?}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-100384}, pages = {18}, year = {2016}, abstract = {Due to their multifunctionality, tablets offer tremendous advantages for research on handwriting dynamics or for interactive use of learning apps in schools. Further, the widespread use of tablet computers has had a great impact on handwriting in the current generation. But, is it advisable to teach how to write and to assess handwriting in pre- and primary schoolchildren on tablets rather than on paper? Since handwriting is not automatized before the age of 10 years, children's handwriting movements require graphomotor and visual feedback as well as permanent control of movement execution during handwriting. Modifications in writing conditions, for instance the smoother writing surface of a tablet, might influence handwriting performance in general and in particular those of non-automatized beginning writers. In order to investigate how handwriting performance is affected by a difference in friction of the writing surface, we recruited three groups with varying levels of handwriting automaticity: 25 preschoolers, 27 second graders, and 25 adults. We administered three tasks measuring graphomotor abilities, visuomotor abilities, and handwriting performance (only second graders and adults). We evaluated two aspects of handwriting performance: the handwriting quality with a visual score and the handwriting dynamics using online handwriting measures [e.g., writing duration, writing velocity, strokes and number of inversions in velocity (NIV)]. In particular, NIVs which describe the number of velocity peaks during handwriting are directly related to the level of handwriting automaticity. In general, we found differences between writing on paper compared to the tablet. These differences were partly task-dependent. The comparison between tablet and paper revealed a faster writing velocity for all groups and all tasks on the tablet which indicates that all participants—even the experienced writers—were influenced by the lower friction of the tablet surface. Our results for the group-comparison show advancing levels in handwriting automaticity from preschoolers to second graders to adults, which confirms that our method depicts handwriting performance in groups with varying degrees of handwriting automaticity. We conclude that the smoother tablet surface requires additional control of handwriting movements and therefore might present an additional challenge for learners of handwriting.}, language = {en} } @article{FischerShaki2017, author = {Fischer, Martin H. and Shaki, Samuel}, title = {Implicit Spatial-Numerical Associations: Negative Numbers and the Role of Counting Direction}, series = {Journal of experimental psychology : Human perception and performance}, volume = {43}, journal = {Journal of experimental psychology : Human perception and performance}, publisher = {American Psychological Association}, address = {Washington}, issn = {0096-1523}, doi = {10.1037/xhp0000369}, pages = {639 -- 643}, year = {2017}, abstract = {It has been debated whether negative number concepts are cognitively represented on the same mental number line as positive number concepts. The present study reviews this debate and identifies limitations of previous studies. A method with nonspatial stimuli and responses is applied to overcome these limitations and to document a systematic implicit association of negative numbers with left space, thus indicating a leftward extension of the mental number line. Importantly, this result only held for left-to-right counting adults. Implications for the experiential basis of abstract conceptual knowledge are discussed.}, language = {en} } @misc{KulkovaFischer2019, author = {Kulkova, Elena S. and Fischer, Martin H.}, title = {Idioms in the World}, series = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, number = {561}, issn = {1866-8364}, doi = {10.25932/publishup-43570}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-435704}, pages = {4}, year = {2019}, language = {en} } @article{KulkovaFischer2019, author = {Kulkova, Elena S. and Fischer, Martin H.}, title = {Idioms in the World}, series = {Frontiers in Psychology}, volume = {10}, journal = {Frontiers in Psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2019.01155}, pages = {4}, year = {2019}, language = {en} } @misc{FischerShaki2019, author = {Fischer, Martin H. and Shaki, Samuel}, title = {How to make talks less boring}, series = {Nature : the international weekly journal of science}, volume = {565}, journal = {Nature : the international weekly journal of science}, number = {7739}, publisher = {Nature Publ. Group}, address = {London}, issn = {0028-0836}, doi = {10.1038/d41586-019-00153-6}, pages = {294 -- 294}, year = {2019}, language = {en} } @article{LachmairFernandezBuryetal.2016, author = {Lachmair, Martin and Fernandez, Susana Ruiz and Bury, Nils-Alexander and Gerjets, Peter and Fischer, Martin H. and Bock, Otmar L.}, title = {How Body Orientation Affects Concepts of Space, Time and Valence: Functional Relevance of Integrating Sensorimotor Experiences during Word Processing}, series = {PLoS one}, volume = {11}, journal = {PLoS one}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0165795}, pages = {16}, year = {2016}, language = {en} } @misc{LachmairRuizFernandezBuryetal.2016, author = {Lachmair, Martin and Ruiz Fernandez, Susana and Bury, Nils-Alexander and Gerjets, Peter and Fischer, Martin H. and Bock, Otmar L.}, title = {How body orientation affects concepts of space, time and valence}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {505}, issn = {1866-8364}, doi = {10.25932/publishup-41094}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410942}, pages = {16}, year = {2016}, abstract = {The aim of the present study was to test the functional relevance of the spatial concepts UP or DOWN for words that use these concepts either literally (space) or metaphorically (time, valence). A functional relevance would imply a symmetrical relationship between the spatial concepts and words related to these concepts, showing that processing words activate the related spatial concepts on one hand, but also that an activation of the concepts will ease the retrieval of a related word on the other. For the latter, the rotation angle of participant's body position was manipulated either to an upright or a head-down tilted body position to activate the related spatial concept. Afterwards participants produced in a within-subject design previously memorized words of the concepts space, time and valence according to the pace of a metronome. All words were related either to the spatial concept UP or DOWN. The results including Bayesian analyses show (1) a significant interaction between body position and words using the concepts UP and DOWN literally, (2) a marginal significant interaction between body position and temporal words and (3) no effect between body position and valence words. However, post-hoc analyses suggest no difference between experiments. Thus, the authors concluded that integrating sensorimotor experiences is indeed of functional relevance for all three concepts of space, time and valence. However, the strength of this functional relevance depends on how close words are linked to mental concepts representing vertical space.}, language = {en} } @article{MioniFischerShaki2021, author = {Mioni, Giovanna and Fischer, Martin H. and Shaki, Samuel}, title = {Heuristics and biases in the mental manipulation of magnitudes}, series = {Quarterly journal of experimental psychology / published in association with Experimental Psychology Society}, volume = {74}, journal = {Quarterly journal of experimental psychology / published in association with Experimental Psychology Society}, number = {3}, publisher = {SAGE Publishing}, address = {Thousand Oaks, CA}, issn = {1747-0218}, doi = {10.1177/1747021820967663}, pages = {536 -- 547}, year = {2021}, abstract = {There is a debate about whether and why we overestimate addition and underestimate subtraction results (Operational Momentum or OM effect). Spatial-attentional accounts of OM compete with a model which postulates that OM reflects a weighted combination of multiple arithmetic heuristics and biases (AHAB). This study addressed this debate with the theoretically diagnostic distinction between zero problems (e.g., 3 + 0, 3 - 0) and non-zero problems (e.g., 2 + 1, 4 - 1) because AHAB, in contrast to all other accounts, uniquely predicts reverse OM for the latter problem type. In two tests (line-length production and time production), participants indeed produced shorter lines and under-estimated time intervals in non-zero additions compared with subtractions. This predicted interaction between operation and problem type extends OM to non-spatial magnitudes and highlights the strength of AHAB regarding different problem types and modalities during the mental manipulation of magnitudes. They also suggest that OM reflects methodological details, whereas reverse OM is the more representative behavioural signature of mental arithmetic.}, language = {en} } @article{ShakiPinhasFischer2017, author = {Shaki, Samuel and Pinhas, Michal and Fischer, Martin H.}, title = {Heuristics and biases in mental arithmetic}, series = {Thinking \& Reasoning}, volume = {24}, journal = {Thinking \& Reasoning}, number = {2}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1354-6783}, doi = {10.1080/13546783.2017.1348987}, pages = {138 -- 156}, year = {2017}, abstract = {Mental arithmetic is characterised by a tendency to overestimate addition and to underestimate subtraction results: the operational momentum (OM) effect. Here, motivated by contentious explanations of this effect, we developed and tested an arithmetic heuristics and biases model that predicts reverse OM due to cognitive anchoring effects. Participants produced bi-directional lines with lengths corresponding to the results of arithmetic problems. In two experiments, we found regular OM with zero problems (e.g., 3+0, 3-0) but reverse OM with non-zero problems (e.g., 2+1, 4-1). In a third experiment, we tested the prediction of our model. Our results suggest the presence of at least three competing biases in mental arithmetic: a more-or-less heuristic, a sign-space association and an anchoring bias. We conclude that mental arithmetic exhibits shortcuts for decision-making similar to traditional domains of reasoning and problem-solving.}, language = {en} } @article{PinhasShakiFischer2014, author = {Pinhas, Michal and Shaki, Samuel and Fischer, Martin H.}, title = {Heed the signs: Operation signs have spatial associations}, series = {The quarterly journal of experimental psychology}, volume = {67}, journal = {The quarterly journal of experimental psychology}, number = {8}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1747-0218}, doi = {10.1080/17470218.2014.892516}, pages = {1527 -- 1540}, year = {2014}, abstract = {Mental arithmetic shows systematic spatial biases. The association between numbers and space is well documented, but it is unknown whether arithmetic operation signs also have spatial associations and whether or not they contribute to spatial biases found in arithmetic. Adult participants classified plus and minus signs with left and right button presses under two counterbalanced response rules. Results from two experiments showed that spatially congruent responses (i.e., right-side responses for the plus sign and left-side responses for the minus sign) were responded to faster than spatially incongruent ones (i.e., left-side responses for the plus sign and right-side responses for the minus sign). We also report correlations between this novel operation sign spatial association (OSSA) effect and other spatial biases in number processing. In a control experiment with no explicit processing requirements for the operation signs there were no sign-related spatial biases. Overall, the results suggest that (a) arithmetic operation signs can evoke spatial associations (OSSA), (b) experience with arithmetic operations probably underlies the OSSA, and (c) the OSSA only partially contributes to spatial biases in arithmetic.}, language = {en} } @incollection{FischerMatheja2016, author = {Fischer, Martin H. and Matheja, Anna}, title = {Grenz{\"u}berschreitungen in der Kognition}, series = {Grenzen im Fokus der Wissenschaften}, booktitle = {Grenzen im Fokus der Wissenschaften}, publisher = {Trafo}, address = {Berlin}, publisher = {Universit{\"a}t Potsdam}, pages = {197 -- 212}, year = {2016}, language = {de} } @article{SixtusFischerLindemann2017, author = {Sixtus, Elena and Fischer, Martin H. and Lindemann, Oliver}, title = {Finger posing primes number comprehension}, series = {Cognitive processing : international quarterly of cognitive science}, volume = {18}, journal = {Cognitive processing : international quarterly of cognitive science}, publisher = {Springer}, address = {Heidelberg}, issn = {1612-4782}, doi = {10.1007/s10339-017-0804-y}, pages = {237 -- 248}, year = {2017}, abstract = {Canonical finger postures, as used in counting, activate number knowledge, but the exact mechanism for this priming effect is unclear. Here we dissociated effects of visual versus motor priming of number concepts. In Experiment 1, participants were exposed either to pictures of canonical finger postures (visual priming) or actively produced the same finger postures (motor priming) and then used foot responses to rapidly classify auditory numbers (targets) as smaller or larger than 5. Classification times revealed that manually adopted but not visually perceived postures primed magnitude classifications. Experiment 2 obtained motor priming of number processing through finger postures also with vocal responses. Priming only occurred through canonical and not through non-canonical finger postures. Together, these results provide clear evidence for motor priming of number knowledge. Relative contributions of vision and action for embodied numerical cognition and the importance of canonicity of postures are discussed.}, language = {en} } @unpublished{FischerKaufmannDomahs2012, author = {Fischer, Martin H. and Kaufmann, Liane and Domahs, Frank}, title = {Finger counting and numerical cognition}, series = {Frontiers in psychology}, volume = {3}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2012.00108}, pages = {1}, year = {2012}, language = {en} } @article{LobmaierFischer2015, author = {Lobmaier, Janek S. and Fischer, Martin H.}, title = {Facial Feedback Affects Perceived Intensity but Not Quality of Emotional Expressions}, series = {Brain Sciences}, volume = {5}, journal = {Brain Sciences}, number = {3}, publisher = {MDPI AG}, address = {Basel}, issn = {2076-3425}, doi = {10.3390/brainsci5030357}, pages = {357 -- 368}, year = {2015}, abstract = {Motivated by conflicting evidence in the literature, we re-assessed the role of facial feedback when detecting quantitative or qualitative changes in others' emotional expressions. Fifty-three healthy adults observed self-paced morph sequences where the emotional facial expression either changed quantitatively (i.e., sad-to-neutral, neutral-to-sad, happy-to-neutral, neutral-to-happy) or qualitatively (i.e. from sad to happy, or from happy to sad). Observers held a pen in their own mouth to induce smiling or frowning during the detection task. When morph sequences started or ended with neutral expressions we replicated a congruency effect: Happiness was perceived longer and sooner while smiling; sadness was perceived longer and sooner while frowning. Interestingly, no such congruency effects occurred for transitions between emotional expressions. These results suggest that facial feedback is especially useful when evaluating the intensity of a facial expression, but less so when we have to recognize which emotion our counterpart is expressing.}, language = {en} } @misc{LobmaierFischer2015, author = {Lobmaier, Janek S. and Fischer, Martin H.}, title = {Facial Feedback Affects Perceived Intensity but Not Quality of Emotional Expressions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-96428}, pages = {357 -- 368}, year = {2015}, abstract = {Motivated by conflicting evidence in the literature, we re-assessed the role of facial feedback when detecting quantitative or qualitative changes in others' emotional expressions. Fifty-three healthy adults observed self-paced morph sequences where the emotional facial expression either changed quantitatively (i.e., sad-to-neutral, neutral-to-sad, happy-to-neutral, neutral-to-happy) or qualitatively (i.e. from sad to happy, or from happy to sad). Observers held a pen in their own mouth to induce smiling or frowning during the detection task. When morph sequences started or ended with neutral expressions we replicated a congruency effect: Happiness was perceived longer and sooner while smiling; sadness was perceived longer and sooner while frowning. Interestingly, no such congruency effects occurred for transitions between emotional expressions. These results suggest that facial feedback is especially useful when evaluating the intensity of a facial expression, but less so when we have to recognize which emotion our counterpart is expressing.}, language = {en} } @misc{LobmaierFischer2017, author = {Lobmaier, Janek S. and Fischer, Martin H.}, title = {Facial feedback affects perceived intensity but not quality of emotional expressions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400157}, pages = {12}, year = {2017}, abstract = {Motivated by conflicting evidence in the literature, we re-assessed the role of facial feedback when detecting quantitative or qualitative changes in others' emotional expressions. Fifty-three healthy adults observed self-paced morph sequences where the emotional facial expression either changed quantitatively (i.e., sad-to-neutral, neutral-to-sad, happy-to-neutral, neutral-to-happy) or qualitatively (i.e. from sad to happy, or from happy to sad). Observers held a pen in their own mouth to induce smiling or frowning during the detection task. When morph sequences started or ended with neutral expressions we replicated a congruency effect: Happiness was perceived longer and sooner while smiling; sadness was perceived longer and sooner while frowning. Interestingly, no such congruency effects occurred for transitions between emotional expressions. These results suggest that facial feedback is especially useful when evaluating the intensity of a facial expression, but less so when we have to recognize which emotion our counterpart is expressing.}, language = {en} } @misc{HartmannFischer2016, author = {Hartmann, Matthias and Fischer, Martin H.}, title = {Exploring the numerical mind by eye-tracking: a special issue}, series = {Psychological research : an international journal of perception, attention, memory, and action}, volume = {80}, journal = {Psychological research : an international journal of perception, attention, memory, and action}, publisher = {Springer}, address = {Heidelberg}, issn = {0340-0727}, doi = {10.1007/s00426-016-0759-0}, pages = {325 -- 333}, year = {2016}, language = {en} } @unpublished{LindemannFischer2015, author = {Lindemann, Oliver and Fischer, Martin H.}, title = {Embodied number processing}, series = {Journal of cognitive psychology}, volume = {27}, journal = {Journal of cognitive psychology}, number = {4}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {2044-5911}, doi = {10.1080/20445911.2015.1032295}, pages = {381 -- 387}, year = {2015}, language = {en} } @article{SixtusFischer2015, author = {Sixtus, Elena and Fischer, Martin H.}, title = {Eine kognitionswissenschaftliche Betrachtung der Konzepte "Raum" und "Zahl"}, series = {Raum und Zahl im Fokus der Wissenschaften : eine multidisziplin{\"a}re Vorlesungsreihe}, journal = {Raum und Zahl im Fokus der Wissenschaften : eine multidisziplin{\"a}re Vorlesungsreihe}, publisher = {Trafo}, address = {Berlin}, isbn = {978-3-86464-082-7}, pages = {35 -- 62}, year = {2015}, language = {de} } @article{GhahghaeiLinnellFischeretal.2013, author = {Ghahghaei, Saeideh and Linnell, Karina J. and Fischer, Martin H. and Dubey, Amit and Davis, Robert}, title = {Effects of load on the time course of attentional engagement, disengagement, and orienting in reading}, series = {The quarterly journal of experimental psychology}, volume = {66}, journal = {The quarterly journal of experimental psychology}, number = {3}, publisher = {Wiley}, address = {Hove}, issn = {1747-0218}, doi = {10.1080/17470218.2011.635795}, pages = {453 -- 470}, year = {2013}, abstract = {We examined how the frequency of the fixated word influences the spatiotemporal distribution of covert attention during reading. Participants discriminated gaze-contingent probes that occurred with different spatial and temporal offsets from randomly chosen fixation points during reading. We found that attention was initially focused at fixation and that subsequent defocusing was slower when the fixated word was lower in frequency. Later in a fixation, attention oriented more towards the next saccadic target for high- than for low-frequency words. These results constitute the first report of the time course of the effect of load on attentional engagement and orienting in reading. They are discussed in the context of serial and parallel models of reading.}, language = {en} } @misc{WiemersFischer2016, author = {Wiemers, Michael and Fischer, Martin H.}, title = {Effects of hand proximity and movement direction in spatial and temporal gap discrimination}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {428}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-406568}, pages = {10}, year = {2016}, abstract = {Previous research on the interplay between static manual postures and visual attention revealed enhanced visual selection near the hands (near-hand effect). During active movements there is also superior visual performance when moving toward compared to away from the stimulus (direction effect). The "modulated visual pathways" hypothesis argues that differential involvement of magno- and parvocellular visual processing streams causes the near-hand effect. The key finding supporting this hypothesis is an increase in temporal and a reduction in spatial processing in near-hand space (Gozli et al., 2012). Since this hypothesis has, so far, only been tested with static hand postures, we provide a conceptual replication of Gozli et al.'s (2012) result with moving hands, thus also probing the generality of the direction effect. Participants performed temporal or spatial gap discriminations while their right hand was moving below the display. In contrast to Gozli et al (2012), temporal gap discrimination was superior at intermediate and not near hand proximity. In spatial gap discrimination, a direction effect without hand proximity effect suggests that pragmatic attentional maps overshadowed temporal/spatial processing biases for far/near-hand space.}, language = {en} } @article{WiemersFischer2016, author = {Wiemers, Michael and Fischer, Martin H.}, title = {Effects of Hand Proximity and Movement Direction in Spatial and Temporal Gap Discrimination}, series = {Frontiers in psychology}, volume = {7}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2016.01930}, pages = {10}, year = {2016}, language = {en} } @article{AchillesFinkFischeretal.2016, author = {Achilles, E. I. S. and Fink, G. R. and Fischer, Martin H. and Dovern, A. and Held, A. and Timpert, D. C. and Schroeter, C. and Schuetz, K. and Kloetzsch, C. and Weiss, P. H.}, title = {Effect of meaning on apraxic finger imitation deficits}, series = {Neuropsychologia : an international journal in behavioural and cognitive neuroscience}, volume = {82}, journal = {Neuropsychologia : an international journal in behavioural and cognitive neuroscience}, publisher = {Elsevier}, address = {Oxford}, issn = {0028-3932}, doi = {10.1016/j.neuropsychologia.2015.12.022}, pages = {74 -- 83}, year = {2016}, abstract = {Apraxia typically results from left-hemispheric (LH), but also from right-hemispheric (RH) stroke, and often impairs gesture imitation. Especially in LH stroke, it is important to differentiate apraxia-induced gesture imitation deficits from those due to co-morbid aphasia and associated semantic deficits, possibly influencing the imitation of meaningful (MF) gestures. To explore this issue, we first investigated if the 10 supposedly meaningless (ML) gestures of a widely used finger imitation test really carry no meaning, or if the test also contains MF gestures, by asking healthy subjects (n=45) to classify these gestures as MF or ML. Most healthy subjects (98\%) classified three of the 10 gestures as clearly MF. Only two gestures were considered predominantly ML. We next assessed how imitation in stroke patients (255 LH, 113 RH stroke) is influenced by gesture meaning and how aphasia influences imitation of LH stroke patients (n=208). All patients and especially patients with imitation deficits (17\% of LH, 27\% of RH stroke patients) imitated MF gestures significantly better than ML gestures. Importantly, meaningfulness-scores of all 10 gestures significantly predicted imitation scores of patients with imitation deficits. Furthermore, especially in LH stroke patients with imitation deficits, the severity of aphasia significantly influenced the imitation of MF, but not ML gestures. Our findings in a large patient cohort support current cognitive models of imitation and strongly suggest that ML gestures are particularly sensitive to detect imitation deficits while minimising confounding effects of aphasia which affect the imitation of MF gestures in LH stroke patients. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @misc{KuehneFischerJeglinskiMende2022, author = {K{\"u}hne, Katharina and Fischer, Martin H. and Jeglinski-Mende, Melinda A.}, title = {During the COVID-19 pandemic participants prefer settings with a face mask, no interaction and at a closer distance}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-56218}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-562189}, pages = {1 -- 12}, year = {2022}, abstract = {Peripersonal space is the space surrounding our body, where multisensory integration of stimuli and action execution take place. The size of peripersonal space is flexible and subject to change by various personal and situational factors. The dynamic representation of our peripersonal space modulates our spatial behaviors towards other individuals. During the COVID-19 pandemic, this spatial behavior was modified by two further factors: social distancing and wearing a face mask. Evidence from offline and online studies on the impact of a face mask on pro-social behavior is mixed. In an attempt to clarify the role of face masks as pro-social or anti-social signals, 235 observers participated in the present online study. They watched pictures of two models standing at three different distances from each other (50, 90 and 150 cm), who were either wearing a face mask or not and were either interacting by initiating a hand shake or just standing still. The observers' task was to classify the model by gender. Our results show that observers react fastest, and therefore show least avoidance, for the shortest distances (50 and 90 cm) but only when models wear a face mask and do not interact. Thus, our results document both pro- and anti-social consequences of face masks as a result of the complex interplay between social distancing and interactive behavior. Practical implications of these findings are discussed.}, language = {en} } @article{KuehneFischerJeglinskiMende2022, author = {K{\"u}hne, Katharina and Fischer, Martin H. and Jeglinski-Mende, Melinda A.}, title = {During the COVID-19 pandemic participants prefer settings with a face mask, no interaction and at a closer distance}, series = {Scientific Reports}, volume = {12}, journal = {Scientific Reports}, publisher = {Springer Nature}, address = {Berlin}, issn = {2045-2322}, doi = {10.1038/s41598-022-16730-1}, pages = {1 -- 12}, year = {2022}, abstract = {Peripersonal space is the space surrounding our body, where multisensory integration of stimuli and action execution take place. The size of peripersonal space is flexible and subject to change by various personal and situational factors. The dynamic representation of our peripersonal space modulates our spatial behaviors towards other individuals. During the COVID-19 pandemic, this spatial behavior was modified by two further factors: social distancing and wearing a face mask. Evidence from offline and online studies on the impact of a face mask on pro-social behavior is mixed. In an attempt to clarify the role of face masks as pro-social or anti-social signals, 235 observers participated in the present online study. They watched pictures of two models standing at three different distances from each other (50, 90 and 150 cm), who were either wearing a face mask or not and were either interacting by initiating a hand shake or just standing still. The observers' task was to classify the model by gender. Our results show that observers react fastest, and therefore show least avoidance, for the shortest distances (50 and 90 cm) but only when models wear a face mask and do not interact. Thus, our results document both pro- and anti-social consequences of face masks as a result of the complex interplay between social distancing and interactive behavior. Practical implications of these findings are discussed.}, language = {en} } @article{ShakiFischerGoebel2012, author = {Shaki, Samuel and Fischer, Martin H. and Goebel, Silke M.}, title = {Direction counts A comparative study of spatially directional counting biases in cultures with different reading directions}, series = {Journal of experimental child psychology}, volume = {112}, journal = {Journal of experimental child psychology}, number = {2}, publisher = {Elsevier}, address = {San Diego}, issn = {0022-0965}, doi = {10.1016/j.jecp.2011.12.005}, pages = {275 -- 281}, year = {2012}, abstract = {Western adults associate small numbers with left space and large numbers with right space. Where does this pervasive spatial-numerical association come from? In this study, we first recorded directional counting preferences in adults with different reading experiences (left to right, right to left, mixed, and illiterate) and observed a clear relationship between reading and counting directions. We then recorded directional counting preferences in pre-schoolers and elementary school children from three of these reading cultures (left to right, right to left, and mixed). Culture-specific counting biases existed before reading acquisition in children as young as 3 years and were subsequently modified by early reading experience. Together, our results suggest that both directional counting and scanning activities contribute to number-space associations.}, language = {en} }