@misc{FigueroaCamposPerezBlocketal.2021, author = {Figueroa Campos, Gustavo A. and Perez, Jeffrey Paulo H. and Block, Inga and Tchewonpi Sagu, Sorel and Saravia Celis, Pedro and Taubert, Andreas and Rawel, Harshadrai Manilal}, title = {Preparation of activated carbons from spent coffee and coffee parchment and assessment of their adsorbent efficiency}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {8}, issn = {1866-8372}, doi = {10.25932/publishup-52191}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-521914}, pages = {20}, year = {2021}, abstract = {The valorization of coffee wastes through modification to activated carbon has been considered as a low-cost adsorbent with prospective to compete with commercial carbons. So far, very few studies have referred to the valorization of coffee parchment into activated carbon. Moreover, low-cost and efficient activation methods need to be more investigated. The aim of this work was to prepare activated carbon from spent coffee grounds and parchment, and to assess their adsorption performance. The co-calcination processing with calcium carbonate was used to prepare the activated carbons, and their adsorption capacity for organic acids, phenolic compounds and proteins was evaluated. Both spent coffee grounds and parchment showed yields after the calcination and washing treatments of around 9.0\%. The adsorption of lactic acid was found to be optimal at pH 2. The maximum adsorption capacity of lactic acid with standard commercial granular activated carbon was 73.78 mg/g, while the values of 32.33 and 14.73 mg/g were registered for the parchment and spent coffee grounds activated carbons, respectively. The Langmuir isotherm showed that lactic acid was adsorbed as a monolayer and distributed homogeneously on the surface. Around 50\% of total phenols and protein content from coffee wastewater were adsorbed after treatment with the prepared activated carbons, while 44, 43, and up to 84\% of hydrophobic compounds were removed using parchment, spent coffee grounds and commercial activated carbon, respectively; the adsorption efficiencies of hydrophilic compounds ranged between 13 and 48\%. Finally, these results illustrate the potential valorization of coffee by-products parchment and spent coffee grounds into activated carbon and their use as low-cost adsorbent for the removal of organic compounds from aqueous solutions.}, language = {en} } @article{FigueroaCamposPerezBlocketal.2021, author = {Figueroa Campos, Gustavo Adolfo and Perez, Jeffrey Paulo H. and Block, Inga and Sagu Tchewonpi, Sorel and Saravia Celis, Pedro and Taubert, Andreas and Rawel, Harshadrai Manilal}, title = {Preparation of activated carbons from spent coffee and coffee parchment and assessment of their adsorbent efficiency}, series = {Processes : open access journal}, volume = {9}, journal = {Processes : open access journal}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {2227-9717}, doi = {10.3390/pr9081396}, pages = {18}, year = {2021}, abstract = {The valorization of coffee wastes through modification to activated carbon has been considered as a low-cost adsorbent with prospective to compete with commercial carbons. So far, very few studies have referred to the valorization of coffee parchment into activated carbon. Moreover, low-cost and efficient activation methods need to be more investigated. The aim of this work was to prepare activated carbon from spent coffee grounds and parchment, and to assess their adsorption performance. The co-calcination processing with calcium carbonate was used to prepare the activated carbons, and their adsorption capacity for organic acids, phenolic compounds and proteins was evaluated. Both spent coffee grounds and parchment showed yields after the calcination and washing treatments of around 9.0\%. The adsorption of lactic acid was found to be optimal at pH 2. The maximum adsorption capacity of lactic acid with standard commercial granular activated carbon was 73.78 mg/g, while the values of 32.33 and 14.73 mg/g were registered for the parchment and spent coffee grounds activated carbons, respectively. The Langmuir isotherm showed that lactic acid was adsorbed as a monolayer and distributed homogeneously on the surface. Around 50\% of total phenols and protein content from coffee wastewater were adsorbed after treatment with the prepared activated carbons, while 44, 43, and up to 84\% of hydrophobic compounds were removed using parchment, spent coffee grounds and commercial activated carbon, respectively; the adsorption efficiencies of hydrophilic compounds ranged between 13 and 48\%. Finally, these results illustrate the potential valorization of coffee by-products parchment and spent coffee grounds into activated carbon and their use as low-cost adsorbent for the removal of organic compounds from aqueous solutions.}, language = {en} } @article{AdesinaBlockGuenteretal.2023, author = {Adesina, Morenike O. and Block, Inga and G{\"u}nter, Christina and Unuabonah, Emmanuel Iyayi and Taubert, Andreas}, title = {Efficient Removal of Tetracycline and Bisphenol A from Water with a New Hybrid Clay/TiO2 Composite}, series = {ACS Omega}, volume = {8}, journal = {ACS Omega}, number = {24}, publisher = {American Chemical Society}, address = {Washington}, issn = {2470-1343}, doi = {10.1021/acsomega.3c00184}, pages = {21594 -- 21604}, year = {2023}, abstract = {New TiO2 hybrid composites were prepared fromkaolinclay, predried and carbonized biomass, and titanium tetraisopropoxideand explored for tetracycline (TET) and bisphenol A (BPA) removalfrom water. Overall, the removal rate is 84\% for TET and 51\% for BPA.The maximum adsorption capacities (q (m))are 30 and 23 mg/g for TET and BPA, respectively. These capacitiesare far greater than those obtained for unmodified TiO2. Increasing the ionic strength of the solution does not change theadsorption capacity of the adsorbent. pH changes only slightly changeBPA adsorption, while a pH > 7 significantly reduces the adsorptionof TET on the material. The Brouers-Sotolongo fractal modelbest describes the kinetic data for both TET and BPA adsorption, predictingthat the adsorption process occurs via a complex mechanism involvingvarious forces of attraction. Temkin and Freundlich isotherms, whichbest fit the equilibrium adsorption data for TET and BPA, respectively,suggest that adsorption sites are heterogeneous in nature. Overall,the composite materials are much more effective for TET removal fromaqueous solution than for BPA. This phenomenon is assigned to a differencein the TET/adsorbent interactions vs the BPA/adsorbent interactions:the decisive factor appears to be favorable electrostatic interactionsfor TET yielding a more effective TET removal.}, language = {en} } @misc{BlockGuenterRodriguesetal.2021, author = {Block, Inga and G{\"u}nter, Christina and Rodrigues, Alysson Duarte and Paasch, Silvia and Hesemann, Peter and Taubert, Andreas}, title = {Carbon Adsorbents from Spent Coffee for Removal of Methylene Blue and Methyl Orange from Water}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {14}, issn = {1866-8372}, doi = {10.25932/publishup-52165}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-521653}, pages = {20}, year = {2021}, abstract = {Activated carbons (ACs) were prepared from dried spent coffee (SCD), a biological waste product, to produce adsorbents for methylene blue (MB) and methyl orange (MO) from aqueous solution. Pre-pyrolysis activation of SCD was achieved via treatment of the SCD with aqueous sodium hydroxide solutions at 90 °C. Pyrolysis of the pretreated SCD at 500 °C for 1 h produced powders with typical characteristics of AC suitable and effective for dye adsorption. As an alternative to the rather harsh base treatment, calcium carbonate powder, a very common and abundant resource, was also studied as an activator. Mixtures of SCD and CaCO3 (1:1 w/w) yielded effective ACs for MO and MB removal upon pyrolysis needing only small amounts of AC to clear the solutions. A selectivity of the adsorption process toward anionic (MO) or cationic (MB) dyes was not observed.}, language = {en} } @article{BlockGuenterRodriguesetal.2021, author = {Block, Inga and G{\"u}nter, Christina and Rodrigues, Alysson Duarte and Paasch, Silvia and Hesemann, Peter and Taubert, Andreas}, title = {Carbon Adsorbents from Spent Coffee for Removal of Methylene Blue and Methyl Orange from Water}, series = {Materials}, volume = {14}, journal = {Materials}, number = {14}, publisher = {MDPI}, address = {Basel}, issn = {1996-1944}, doi = {10.3390/ma14143996}, pages = {18}, year = {2021}, abstract = {Activated carbons (ACs) were prepared from dried spent coffee (SCD), a biological waste product, to produce adsorbents for methylene blue (MB) and methyl orange (MO) from aqueous solution. Pre-pyrolysis activation of SCD was achieved via treatment of the SCD with aqueous sodium hydroxide solutions at 90 °C. Pyrolysis of the pretreated SCD at 500 °C for 1 h produced powders with typical characteristics of AC suitable and effective for dye adsorption. As an alternative to the rather harsh base treatment, calcium carbonate powder, a very common and abundant resource, was also studied as an activator. Mixtures of SCD and CaCO3 (1:1 w/w) yielded effective ACs for MO and MB removal upon pyrolysis needing only small amounts of AC to clear the solutions. A selectivity of the adsorption process toward anionic (MO) or cationic (MB) dyes was not observed.}, language = {en} }