@article{ZhangBehlPengetal.2016, author = {Zhang, Pengfei and Behl, Marc and Peng, Xingzhou and Razzaq, Muhammad Yasar and Lendlein, Andreas}, title = {Ultrasonic Cavitation Induced Shape-Memory Effect in Porous Polymer Networks}, series = {Macromolecular rapid communications}, volume = {37}, journal = {Macromolecular rapid communications}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1336}, doi = {10.1002/marc.201600439}, pages = {1897 -- 1903}, year = {2016}, abstract = {Inspired by the application of ultrasonic cavitation based mechanical force (CMF) to open small channels in natural soft materials (skin or tissue), it is explored whether an artificial polymer network can be created, in which shape-changes can be induced by CMF. This concept comprises an interconnected macroporous rhodium-phosphine (Rh-P) coordination polymer network, in which a CMF can reversibly dissociate the Rh-P microphases. In this way, the ligand exchange of Rh-P coordination bonds in the polymer network is accelerated, resulting in a topological rearrangement of molecular switches. This rearrangement of molecular switches enables the polymer network to release internal tension under ultrasound exposure, resulting in a CMF-induced shape-memory capability. The interconnected macroporous structure with thin pore walls is essential for allowing the CMF to effectively permeate throughout the polymer network. Potential applications of this CMF-induced shape-memory polymer can be mechanosensors or ultrasound controlled switches.}, language = {en} } @article{FolikumahBehlLendlein2021, author = {Folikumah, Makafui Yao and Behl, Marc and Lendlein, Andreas}, title = {Thiol-Thioester exchange reactions in precursors enable pH-triggered hydrogel formation}, series = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, volume = {22}, journal = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, number = {5}, publisher = {American Chemical Society}, address = {Washington}, issn = {1525-7797}, doi = {10.1021/acs.biomac.0c01690}, pages = {1875 -- 1884}, year = {2021}, abstract = {Bio-interactive hydrogel formation in situ requires sensory capabilities toward physiologically relevant stimuli. Here, we report on pH-controlled in situ hydrogel formation relying on latent cross-linkers, which transform from pH sensors to reactive molecules. In particular, thiopeptolide/thio-depsipeptides were capable of pH-sensitive thiol-thioester exchange reactions to yield a,co-dithiols, which react with maleimide-functionalized multi-arm polyethylene glycol to polymer networks. Their water solubility and diffusibility qualify thiol/thioester-containing peptide mimetics as sensory precursors to drive in situ localized hydrogel formation with potential applications in tissue regeneration such as treatment of inflamed tissues of the urinary tract.}, language = {en} } @article{FolikumahNeffeBehletal.2019, author = {Folikumah, Makafui Yao and Neffe, Axel T. and Behl, Marc and Lendlein, Andreas}, title = {Thiol Michael-Type reactions of optically active mercapto-acids in aqueous medium}, series = {MRS advances : a journal of the Materials Research Society}, volume = {4}, journal = {MRS advances : a journal of the Materials Research Society}, number = {46-47}, publisher = {Springer Nature Switzerland AG}, address = {Cham}, issn = {2059-8521}, doi = {10.1557/adv.2019.308}, pages = {2515 -- 2525}, year = {2019}, abstract = {Defined chemical reactions in a physiological environment are a prerequisite for the in situ synthesis of implant materials potentially serving as matrix for drug delivery systems, tissue fillers or surgical glues. 'Click' reactions like thiol Michael-type reactions have been successfully employed as bioorthogonal reaction. However, due to the individual stereo-electronic and physical properties of specific substrates, an exact understanding their chemical reactivity is required if they are to be used for in-situ biomaterial synthesis. The chiral (S)-2-mercapto-carboxylic acid analogues of L-phenylalanine (SH-Phe) and L-leucine (SH-Leu) which are subunits of certain collagenase sensitive synthetic peptides, were explored for their potential for in-situ biomaterial formation via the thiol Michael-type reaction. In model reactions were investigated the kinetics, the specificity and influence of stereochemistry of this reaction. We could show that only reactions involving SH-Leu yielded the expected thiol-Michael product. The inability of SH-Phe to react was attributed to the steric hindrance of the bulky phenyl group. In aqueous media, successful reaction using SH-Leu is thought to proceed via the sodium salt formed in-situ by the addition of NaOH solution, which was intented to aid the solubility of the mercapto-acid in water. Fast reaction rates and complete acrylate/maleimide conversion were only realized at pH 7.2 or higher suggesting the possible use of SH-Leu under physiological conditions for thiol Michael-type reactions. This method of in-situ formed alkali salts could be used as a fast approach to screen mercapto-acids for thio Michael-type reactions without the synthesis of their corresponding esters.}, language = {en} } @article{NeffeLoewenbergJulichGruneretal.2021, author = {Neffe, Axel T. and L{\"o}wenberg, Candy and Julich-Gruner, Konstanze K. and Behl, Marc and Lendlein, Andreas}, title = {Thermally-induced shape-memory behavior of degradable gelatin-based networks}, series = {International journal of molecular sciences}, volume = {22}, journal = {International journal of molecular sciences}, number = {11}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms22115892}, pages = {15}, year = {2021}, abstract = {Shape-memory hydrogels (SMH) are multifunctional, actively-moving polymers of interest in biomedicine. In loosely crosslinked polymer networks, gelatin chains may form triple helices, which can act as temporary net points in SMH, depending on the presence of salts. Here, we show programming and initiation of the shape-memory effect of such networks based on a thermomechanical process compatible with the physiological environment. The SMH were synthesized by reaction of glycidylmethacrylated gelatin with oligo(ethylene glycol) (OEG) alpha,omega-dithiols of varying crosslinker length and amount. Triple helicalization of gelatin chains is shown directly by wide-angle X-ray scattering and indirectly via the mechanical behavior at different temperatures. The ability to form triple helices increased with the molar mass of the crosslinker. Hydrogels had storage moduli of 0.27-23 kPa and Young's moduli of 215-360 kPa at 4 degrees C. The hydrogels were hydrolytically degradable, with full degradation to water-soluble products within one week at 37 degrees C and pH = 7.4. A thermally-induced shape-memory effect is demonstrated in bending as well as in compression tests, in which shape recovery with excellent shape-recovery rates R-r close to 100\% were observed. In the future, the material presented here could be applied, e.g., as self-anchoring devices mechanically resembling the extracellular matrix.}, language = {en} } @article{RazzaqBehlLendlein2018, author = {Razzaq, Muhammad Yasar and Behl, Marc and Lendlein, Andreas}, title = {Thermally-induced actuation of magnetic nanocomposites based on Oligo(ω-pentadecalactone) and covalently integrated magnetic nanoparticles}, series = {MRS advances: a journal of the Materials Research Society (MRS)}, volume = {3}, journal = {MRS advances: a journal of the Materials Research Society (MRS)}, number = {63}, publisher = {Cambridge University Press}, address = {New York}, issn = {2059-8521}, doi = {10.1557/adv.2018.613}, pages = {3783 -- 3791}, year = {2018}, abstract = {The incorporation of inorganic particles in a polymer matrix has been established as a method to adjust the mechanical performance of composite materials. We report on the influence of covalent integration of magnetic nanoparticles (MNP) on the actuation behavior and mechanical performance of hybrid nanocomposite (H-NC) based shape-memory polymer actuators (SMPA). The H-NC were synthesized by reacting two types of oligo(ω-pentadecalactone) (OPDL) based precursors with terminal hydroxy groups, a three arm OPDL (3 AOPDL, Mn = 6000 g mol•1-1 ) and an OPDL (Mn =3300 g • mol-1 ) coated magnetite nanoparticle ({\O} = 10 ± 2 nm), with a diisocyanate. These H-NC were compared to the homopolymer network regarding the actuation performance, contractual stress (σcontr) as well as thermal and mechanical properties. The melting range of the OPDL crystals (ΔTm,OPDL) was shifted in homo polymer networks from 36 ºC - 76 ºC to 41ºC - 81 °C for H-NC with 9 wt\% of MNP content. The actuators were explored by variation of separating temperature (Tsep), which splits the OPDL crystalline domain into actuating and geometry determining segments. Tsep was varied in the melting range of the nanocomposites and the actuation capability and contractual stress (σcontr) of the nanocomposite actuators could be adjusted. The reversible strain (εrev) was decreased from 11 ± 0.3\% for homo polymer network to 3.2±0.3\% for H-NC9 with 9 wt\% of MNP indicating a restraining effect of the MNP on chain mobility. The results show that the performance of H-NCs in terms of thermal and elastic properties can be tailored by MNP content, however for higher reversible actuation, lower MNP contents are preferable.}, language = {en} } @article{WangKratzBehletal.2015, author = {Wang, Weiwei and Kratz, Karl and Behl, Marc and Yan, Wan and Liu, Yue and Xu, Xun and Baudis, Stefan and Li, Zhengdong and Kurtz, Andreas and Lendlein, Andreas and Ma, Nan}, title = {The interaction of adipose-derived human mesenchymal stem cells and polyether ether ketone}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {61}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, number = {2}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-152001}, pages = {301 -- 321}, year = {2015}, abstract = {Polyether ether ketone (PEEK) as a high-performance, thermoplastic implant material entered the field of medical applications due to its structural function and commercial availability. In bone tissue engineering, the combination of mesenchymal stem cells (MSCs) with PEEK implants may accelerate the bone formation and promote the osseointegration between the implant and the adjacent bone tissue. In this concept the question how PEEK influences the behaviour and functions of MSCs is of great interest. Here the cellular response of human adipose-derived MSCs to PEEK was evaluated and compared to tissue culture plate (TCP) as the reference material. Viability and morphology of cells were not altered when cultured on the PEEK film. The cells on PEEK presented a high proliferation activity in spite of a relatively lower initial cell adhesion rate. There was no significant difference on cell apoptosis and senescence between the cells on PEEK and TCP. The inflammatory cytokines and VEGF secreted by the cells on these two surfaces were at similar levels. The cells on PEEK showed up-regulated BMP2 and down-regulated BMP4 and BMP6 gene expression, whereas no conspicuous differences were observed in the committed osteoblast markers (BGLAP, COL1A1 and Runx2). With osteoinduction the cells on PEEK and TCP exhibited a similar osteogenic differentiation potential. Our results demonstrate the biofunctionality of PEEK for human MSC cultivation and differentiation. Its clinical benefits in bone tissue engineering may be achieved by combining MSCs with PEEK implants. These data may also provide useful information for further modification of PEEK with chemical or physical methods to regulate the cellular processes of MSCs and to consequently improve the efficacy of MSC-PEEK based therapies.}, language = {en} } @article{YanFangWeigeletal.2017, author = {Yan, Wan and Fang, Liang and Weigel, Thomas and Behl, Marc and Kratz, Karl and Lendlein, Andreas}, title = {The influence of thermal treatment on the morphology in differently prepared films of a oligodepsipeptide based multiblock copolymer}, series = {Polymers for advanced technologies}, volume = {28}, journal = {Polymers for advanced technologies}, publisher = {Wiley}, address = {Hoboken}, issn = {1042-7147}, doi = {10.1002/pat.3953}, pages = {1339 -- 1345}, year = {2017}, abstract = {Degradable multiblock copolymers prepared from equal weight amounts of poly(epsilon-caprolactone)-diol (PCL-diol) and poly[oligo(3S-iso-butylmorpholine-2,5-dione)]-diol (PIBMD-diol), named PCL-PIBMD, provide a phase-segregated morphology. It exhibits a low melting temperature from PCL domains (T-m,T-PCL) of 382 degrees C and a high T-m,T-PIBMD of 170 +/- 2 degrees C with a glass transition temperature (T-g,T-PIBMD) at 42 +/- 2 degrees C from PIBMD domains. In this study, we explored the influence of applying different thermal treatments on the resulting morphologies of solution-cast and spin-coated PCL-PIBMD thin films, which showed different initial surface morphologies. Differential scanning calorimetry results and atomic force microscopy images after different thermal treatments indicated that PCL and PIBMD domains showed similar crystallization behaviors in 270 +/- 30 mu m thick solution-cast films as well as in 30 +/- 2 and 8 +/- 1nm thick spin-coated PCL-PIBMD films. Existing PIBMD crystalline domains highly restricted the generation of PCL crystalline domains during cooling when the sample was annealed at 180 degrees C. By annealing the sample above 120 degrees C, the PIBMD domains crystallized sufficiently and covered the free surface, which restricted the crystallization of PCL domains during cooling. The PCL domains can crystallize by hindering the crystallization of PIBMD domains via the fast vitrification of PIBMD domains when the sample was cooled/quenched in liquid nitrogen after annealing at 180 degrees C. These findings contribute to a better fundamental understanding of the crystallization mechanism of multi-block copolymers containing two crystallizable domains whereby the T-g of the higher melting domain type is in the same temperature range as the T-m of the lower melting domain type. Copyright (c) 2016 John Wiley \& Sons, Ltd.}, language = {en} } @article{ZhangRudolphBenitezetal.2019, author = {Zhang, Quanchao and Rudolph, Tobias and Benitez, Alejandro J. and Gould, Oliver E. C. and Behl, Marc and Kratz, Karl and Lendlein, Andreas}, title = {Temperature-controlled reversible pore size change of electrospun fibrous shape-memory polymer actuator based meshes}, series = {Smart materials and structures}, volume = {28}, journal = {Smart materials and structures}, number = {5}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0964-1726}, doi = {10.1088/1361-665X/ab10a1}, pages = {10}, year = {2019}, abstract = {Fibrous membranes capable of dynamically responding to external stimuli are highly desirable in textiles and biomedical materials, where adaptive behavior is required to accommodate complex environmental changes. For example, the creation of fabrics with temperature-dependent moisture permeability or self-regulating membranes for air filtration is dependent on the development of materials that exhibit a reversible stimuli-responsive pore size change. Here, by imbuing covalently crosslinked poly(ε-caprolactone) (cPCL) fibrous meshes with a reversible bidirectional shape-memory polymer actuation (rbSMPA) we create a material capable of temperature-controlled changes in porosity. Cyclic thermomechanical testing was used to characterize the mechanical properties of the meshes, which were composed of randomly arranged microfibers with diameters of 2.3 ± 0.6 μm giving an average pore size of approx. 10 μm. When subjected to programming strains of εm = 300\% and 100\% reversible strain changes of εʹrev = 22\% ± 1\% and 6\% ± 1\% were measured, with switching temperature ranges of 10 °C-30 °C and 45 °C-60 °C for heating and cooling, respectively. The rbSMPA of cPCL fibrous meshes generated a microscale reversible pore size change of 11\% ± 3\% (an average of 1.5 ± 0.6 μm), as measured by scanning electron microscopy. The incorporation of a two-way shape-memory actuation capability into fibrous meshes is anticipated to advance the development and application of smart membrane materials, creating commercially viable textiles and devices with enhanced performance and novel functionality.}, language = {en} } @article{PengBehlZhangetal.2018, author = {Peng, Xingzhou and Behl, Marc and Zhang, Pengfei and Mazurek-Budzynska, Magdalena and Feng, Yakai and Lendlein, Andreas}, title = {Synthesis of Well-Defined Dihydroxy Telechelics by (Co)polymerization of Morpholine-2,5-Diones Catalyzed by Sn(IV) Alkoxide}, series = {Macromolecular bioscience}, volume = {18}, journal = {Macromolecular bioscience}, number = {12}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-5187}, doi = {10.1002/mabi.201800257}, pages = {11}, year = {2018}, abstract = {Well-defined dihydroxy telechelic oligodepsipeptides (oDPs), which have a high application potential as building blocks for scaffold materials for tissue engineering applications or particulate carrier systems for drug delivery applications are synthesized by ring-opening polymerization (ROP) of morpholine-2,5-diones (MDs) catalyzed by 1,1,6,6-tetra-n-butyl-1,6-distanna-2,5,7,10-tetraoxacyclodecane (Sn(IV) alkoxide). In contrast to ROP catalyzed by Sn(Oct)(2), the usage of Sn(IV) alkoxide leads to oDPs, with less side products and well-defined end groups, which is crucial for potential pharmaceutical applications. A slightly faster reaction of the ROP catalyzed by Sn(IV) alkoxide compared to the ROP initiated by Sn(Oct)(2)/EG is found. Copolymerization of different MDs resulted in amorphous copolymers with T(g)s between 44 and 54 degrees C depending on the molar comonomer ratios in the range from 25\% to 75\%. Based on the well-defined telechelic character of the Sn(IV) alkoxide synthesized oDPs as determined by matrix-assisted laser desorption/ionization time of flight measurements, they resemble interesting building blocks for subsequent postfunctionalization or multifunctional materials based on multiblock copolymer systems whereas the amorphous oDP-based copolymers are interesting building blocks for matrices of drug delivery systems.}, language = {en} } @article{SchmidtBehlLendleinetal.2014, author = {Schmidt, Christian and Behl, Marc and Lendlein, Andreas and Beuermann, Sabine}, title = {Synthesis of high molecular weight polyglycolide in supercritical carbon dioxide}, series = {RSC Advances}, volume = {4}, journal = {RSC Advances}, number = {66}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/c4ra06815g}, pages = {35099 -- 35105}, year = {2014}, abstract = {Polyglycolide (PGA) is a biodegradable polymer with multiple applications in the medical sector. Here the synthesis of high molecular weight polyglycolide by ring-opening polymerization of diglycolide is reported. For the first time stabilizer free supercritical carbon dioxide (scCO(2)) was used as a reaction medium. scCO(2) allowed for a reduction in reaction temperature compared to conventional processes. Together with the lowering of monomer concentration and consequently reduced heat generation compared to bulk reactions thermal decomposition of the product occurring already during polymerization is strongly reduced. The reaction temperatures and pressures were varied between 120 and 150 degrees C and 145 to 1400 bar. Tin(II) ethyl hexanoate and 1-dodecanol were used as catalyst and initiator, respectively. The highest number average molecular weight of 31 200 g mol(-1) was obtained in 5 hours from polymerization at 120 degrees C and 530 bar. In all cases the products were obtained as a dry white powder. Remarkably, independent of molecular weight the melting temperatures were always at (219 +/- 2)degrees C.}, language = {en} } @misc{SchmidtBehlLendleinetal.2014, author = {Schmidt, Christian and Behl, Marc and Lendlein, Andreas and Bauermann, Sabine}, title = {Synthesis of high molecular weight polyglycolide in supercritical carbon dioxide}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-99439}, year = {2014}, abstract = {Polyglycolide (PGA) is a biodegradable polymer with multiple applications in the medical sector. Here the synthesis of high molecular weight polyglycolide by ring-opening polymerization of diglycolide is reported. For the first time stabilizer free supercritical carbon dioxide (scCO2) was used as a reaction medium. scCO2 allowed for a reduction in reaction temperature compared to conventional processes. Together with the lowering of monomer concentration and consequently reduced heat generation compared to bulk reactions thermal decomposition of the product occurring already during polymerization is strongly reduced. The reaction temperatures and pressures were varied between 120 and 150 °C and 145 to 1400 bar. Tin(II) ethyl hexanoate and 1-dodecanol were used as catalyst and initiator, respectively. The highest number average molecular weight of 31 200 g mol-1 was obtained in 5 hours from polymerization at 120 °C and 530 bar. In all cases the products were obtained as a dry white powder. Remarkably, independent of molecular weight the melting temperatures were always at (219 ± 2) °C.}, language = {en} } @article{MelchertYongvongsoontornBehletal.2012, author = {Melchert, Christian and Yongvongsoontorn, Nunnarpas and Behl, Marc and Lendlein, Andreas}, title = {Synthesis and characterization of telechelic oligoethers with terminal cinnamylidene acetic acid moieties}, series = {Journal of applied biomaterials \& functional materials}, volume = {10}, journal = {Journal of applied biomaterials \& functional materials}, number = {3}, publisher = {Wichtig}, address = {Milano}, issn = {2280-8000}, doi = {10.5301/JABFM.2012.10364}, pages = {185 -- 190}, year = {2012}, abstract = {Purpose: The formation of photoresponsive hydrogels were reported by irradiation of star-shaped poly(ethylene glycol)s with terminal cinnamylidene acetic acid (CAA) groups, which are capable of a photoinduced [2+2] cycloaddition. In this study we explored whether oligo(ethylene glycol) s and oligo(propylene glycol)s of varying molecular architecture (linear or star-shaped) or molecular weights could be functionalized with CAA as terminal groups by esterification or by amide formation. Methods: Oligo(ethylene glycol) (OEG) and oligo(propylene glycol) (OPG) with varying molecular architecture (linear, star-shaped) and weight average molecular weights between 1000 and 5000 g.mol(-1) were functionalized by means of esterification of hydroxyl or amine endgroups with cinnamylidene acetic acid (CAA) or cinnamylidene acetyl chloride (CAC) as telechelic endgroups. The chemical structure, thermal properties, and molecular weights of the oligoethers obtained were determined by NMR spectroscopy, UV spectroscopy, DSC, and MALDI-TOF. Results: CAA-functionalized linear and star-shaped OEGs or OPGs could be obtained with a degree of functionalization higher than 90\%. In MALDI-TOF measurements an increase in Mw of about 150 g.mol(-1) (for each terminal end) after the functionalization reaction was observed. OEGCAA and OPGCAA showed an increase in glass transition temperature (T-g) from about -70 degrees C to -50 degrees C, compared to the unfunctionalized oligoethers. In addition, the melting temperature (T-m) of OEGCAA decreased from about 55 C to 30 degrees C, which can be accounted for by the hampered crystallization of the precursors because of the bulky CAA end groups as well as by the loss of the hydroxyl telechelic end groups. Conclusion: The synthesis of photoresponsive oligoethers containing cinnamylidene acetic acid as telechelic endgroup was reported and high degrees of functionalization could be achieved. Such photosensitive oligomers are promising candidates as reactive precursors, for the preparation of biocompatible high molecular weight polymers and polymer networks.}, language = {en} } @article{PengBehlZhangetal.2017, author = {Peng, Xingzhou and Behl, Marc and Zhang, Pengfei and Mazurek-Budzyńska, Magdalena and Feng, Yakai and Lendlein, Andreas}, title = {Synthesis and characterization of multiblock poly(ester-amide-urethane)s}, series = {MRS advances : a journal of the Materials Research Society (MRS)}, volume = {2}, journal = {MRS advances : a journal of the Materials Research Society (MRS)}, publisher = {Cambridge University Press}, address = {Cambridge}, issn = {2059-8521}, doi = {10.1557/adv.2017.486}, pages = {2551 -- 2559}, year = {2017}, abstract = {In this study, a multiblock copolymer containing oligo(3-methyl-morpholine-2, 5-dione) (oMMD) and oligo(3-sec-butyl-morpholine-2, 5-dione) (oBMD) building blocks obtained by ring-opening polymerization (ROP) of the corresponding monomers, was synthesized in a polyaddition reaction using an aliphatic diisocyanate. The multiblock copolymer (pBMD-MMD) provided a molecular weight of 40, 000 g·mol-1, determined by gel permeation chromatography (GPC). Incorporation of both oligodepsipeptide segments in multiblock copolymers was confirmed by 1H NMR and Matrix Assisted Laser Desorption/Ionization Time Of Flight Mass Spectroscopy (MALDI-TOF MS) analysis. pBMD-MMD showed two separated glass transition temperatures (61 °C and 74 °C) indicating a microphase separation. Furthermore, a broad glass transition was observed by DMTA, which can be attributed to strong physical interaction i.e. by H-bonds formed between amide, ester, and urethane groups of the investigated copolymers. The obtained multiblock copolymer is supposed to own the capability to exhibit strong physical interactions.}, language = {en} } @unpublished{BaudisBehlLendlein2014, author = {Baudis, Stefan and Behl, Marc and Lendlein, Andreas}, title = {Smart polymers for biomedical applications}, series = {Macromolecular chemistry and physics}, volume = {215}, journal = {Macromolecular chemistry and physics}, number = {24}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1352}, doi = {10.1002/macp.201400561}, pages = {2399 -- 2402}, year = {2014}, language = {en} } @article{ZhangBehlBalketal.2020, author = {Zhang, Pengfei and Behl, Marc and Balk, Maria and Peng, Xingzhou and Lendlein, Andreas}, title = {Shape-programmable architectured hydrogels sensitive to ultrasound}, series = {Macromolecular rapid communications}, volume = {41}, journal = {Macromolecular rapid communications}, number = {7}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1336}, doi = {10.1002/marc.201900658}, pages = {7}, year = {2020}, abstract = {On-demand motion of highly swollen polymer systems can be triggered by changes in pH, ion concentrations, or by heat. Here, shape-programmable, architectured hydrogels are introduced, which respond to ultrasonic-cavitation-based mechanical forces (CMF) by directed macroscopic movements. The concept is the implementation and sequential coupling of multiple functions (swellability in water, sensitivity to ultrasound, shape programmability, and shape-memory) in a semi-interpenetrating polymer network (s-IPN). The semi-IPN-based hydrogels are designed to function through rhodium coordination (Rh-s-IPNH). These coordination bonds act as temporary crosslinks. The porous hydrogels with coordination bonds (degree of swelling from 300 +/- 10 to 680 +/- 60) exhibit tensile strength sigma(max) up to 250 +/- 60 kPa. Shape fixity ratios up to 90\% and shape recovery ratios up to 94\% are reached. Potential applications are switches or mechanosensors.}, language = {en} } @article{MazurekBudzynskaRazzaqBehletal.2019, author = {Mazurek-Budzynska, Magdalena and Razzaq, Muhammad Yasar and Behl, Marc and Lendlein, Andreas}, title = {Shape-Memory Polymers}, series = {Functional Polymers}, journal = {Functional Polymers}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-95987-0}, issn = {2510-3458}, doi = {10.1007/978-3-319-95987-0_18}, pages = {605 -- 663}, year = {2019}, abstract = {Shape-memory polymers (SMPs) are stimuli-sensitive materials capable of changing their shape on demand. A shape-memory function is a result of the polymer architecture together with the application of a specific programming procedure. Various possible mechanisms to induce the shape-memory effect (SME) can be realized, which can be based on thermal transitions of switching domains or on reversible molecular switches (e.g., supramolecular interactions, reversible covalent bonds). Netpoints, which connect the switching domains and determine the permanent shape, can be either provided by covalent bonds or by physical intermolecular interactions, such as hydrogen bonds or crystallites. This chapter reviews different ways of implementing the phenomenon of programmable changes in the polymer shape, including the one-way shape-memory effect (1-W SME), triple-and multi-shape effects (TSE/ MSE), the temperature-memory effect (TME), and reversible shape-memory effects, which can be realized in constant stress conditions (rSME), or in stress-free conditions (reversible bidirectional shape-memory effect (rbSME)). Furthermore, magnetically actuated SMPs and shape-memory hydrogels (SMHs) are described to show the potential of the SMP technology in biomedical applications and multifunctional approaches.}, language = {en} } @article{YanRudolphNoecheletal.2018, author = {Yan, Wan and Rudolph, Tobias and N{\"o}chel, Ulrich and Gould, Oliver E. C. and Behl, Marc and Kratz, Karl and Lendlein, Andreas}, title = {Reversible actuation of thermoplastic multiblock copolymers with overlapping thermal transitions of crystalline and glassy domains}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {51}, journal = {Macromolecules : a publication of the American Chemical Society}, number = {12}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/acs.macromol.8b00322}, pages = {4624 -- 4632}, year = {2018}, abstract = {Polymeric materials possessing specific features like programmability, high deformability, and easy processability are highly desirable for creating modern actuating systems. In this study, thermoplastic shape-memory polymer actuators obtained by combining crystallizable poly(epsilon-caprolactone) (PCL) and poly(3S-isobutylmorpholin-2,5-dione) (PIBMD) segments in multiblock copolymers are described. We designed these materials according to our hypothesis that the confinement of glassy PIBMD domains present at the upper actuation temperature contribute to the stability of the actuator skeleton, especially at large programming strains. The copolymers have a phase-segregated morphology, indicated by the well-separated melting and glass transition temperatures for PIBMD and PCL, but possess a partially overlapping T-m of PCL and T-g of PIBMD in the temperature interval from 40 to 60 degrees C. Crystalline PIBMD hard domains act as strong physical netpoints in the PIBMD-PCL bulk material enabling high deformability (up to 2000\%) and good elastic recoverability (up to 80\% at 50 degrees C above T-m,T-PCL). In the programmed thermoplastic actuators a high content of crystallizable PCL actuation domains ensures pronounced thermoreversible shape changes upon repetitive cooling and heating. The programmed actuator skeleton, composed of PCL crystals present at the upper actuation temperature T-high and the remaining glassy PIBMD domains, enabled oriented crystallization upon cooling. The actuation performance of PIBMD-PCL could be tailored by balancing the interplay between actuation and skeleton, but also by varying the quantity of crystalline PIBMD hard domains via the copolymer composition, the applied programming strain, and the choice of T-high. The actuator with 17 mol\% PIBMD showed the highest reversible elongation of 11.4\% when programmed to a strain of 900\% at 50 degrees C. It is anticipated that the presented thermoplastic actuator materials can be applied as modern compression textiles.}, language = {en} } @article{WangRazzaqRudolphetal.2018, author = {Wang, Li and Razzaq, Muhammad Yasar and Rudolph, Tobias and Heuchel, Matthias and N{\"o}chel, Ulrich and Mansfeld, Ulrich and Jiang, Yi and Gould, Oliver E. C. and Behl, Marc and Kratz, Karl and Lendlein, Andreas}, title = {Reprogrammable, magnetically controlled polymeric nanocomposite actuators}, series = {Material horizons}, volume = {5}, journal = {Material horizons}, number = {5}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2051-6347}, doi = {10.1039/c8mh00266e}, pages = {861 -- 867}, year = {2018}, abstract = {Soft robots and devices with the advanced capability to perform adaptive motions similar to that of human beings often have stimuli-sensitive polymeric materials as the key actuating component. The external signals triggering the smart polymers' actuations can be transmitted either via a direct physical connection between actuator and controlling unit (tethered) or remotely without a connecting wire. However, the vast majority of such polymeric actuator materials are limited to one specific type of motion as their geometrical information is chemically fixed. Here, we present magnetically driven nanocomposite actuators, which can be reversibly reprogrammed to different actuation geometries by a solely physical procedure. Our approach is based on nanocomposite materials comprising spatially segregated crystallizable actuation and geometry determining units. Upon exposure to a specific magnetic field strength the actuators' geometric memory is erased by the melting of the geometry determining units allowing the implementation of a new actuator shape. The actuation performance of the nanocomposites can be tuned and the technical significance was demonstrated in a multi-cyclic experiment with several hundreds of repetitive free-standing shape shifts without losing performance.}, language = {en} } @article{JulichGrunerLoewenbergNeffeetal.2013, author = {Julich-Gruner, Konstanze K. and L{\"o}wenberg, Candy and Neffe, Axel T. and Behl, Marc and Lendlein, Andreas}, title = {Recent trends in the chemistry of shape-memory polymers}, series = {Macromolecular chemistry and physics}, volume = {214}, journal = {Macromolecular chemistry and physics}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1352}, doi = {10.1002/macp.201200607}, pages = {527 -- 536}, year = {2013}, abstract = {Shape-memory polymers (SMPs) are stimuli-sensitive materials capable of performing complex movements on demand, which makes them interesting candidates for various applications, for example, in biomedicine or aerospace. This trend article highlights current approaches in the chemistry of SMPs, such as tailored segment chemistry to integrate additional functions and novel synthetic routes toward permanent and temporary netpoints. Multiphase polymer networks and multimaterial systems illustrate that SMPs can be constructed as a modular system of different building blocks and netpoints. Future developments are aiming at multifunctional and multistimuli-sensitive SMPs.}, language = {en} } @article{FolikumahBehlLendlein2021, author = {Folikumah, Makafui Y. and Behl, Marc and Lendlein, Andreas}, title = {Reaction behaviour of peptide-based single thiol-thioesters exchange reaction substrate in the presence of externally added thiols}, series = {MRS communications / a publication of the Materials Research Society}, volume = {11}, journal = {MRS communications / a publication of the Materials Research Society}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {2159-6859}, doi = {10.1557/s43579-021-00041-z}, pages = {402 -- 410}, year = {2021}, abstract = {Identification of patterns in chemical reaction pathways aids in the effective design of molecules for specific applications. Here, we report on model reactions with a water-soluble single thiol-thioester exchange (TTE) reaction substrate, which was designed taking in view biological and medical applications. This substrate consists of the thio-depsipeptide, Ac-Pro-Leu-Gly-SLeu-Leu-Gly-NEtSH (TDP) and does not yield foul-smelling thiol exchange products when compared with aromatic thiol containing single TTE substrates. TDP generates an alpha,omega-dithiol crosslinker in situ in a 'pseudo intramolecular' TTE. Competitive intermolecular TTE of TDP with externally added "basic" thiols increased the crosslinker concentration whilst "acidic" thiols decreased its concentration. TDP could potentially enable in situ bioconjugation and crosslinking applications.}, language = {en} } @article{BalkBehlLendlein2019, author = {Balk, Maria and Behl, Marc and Lendlein, Andreas}, title = {Quadruple-shape hydrogels}, series = {Smart materials and structures}, volume = {28}, journal = {Smart materials and structures}, number = {5}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0964-1726}, doi = {10.1088/1361-665X/ab0e91}, pages = {10}, year = {2019}, abstract = {The capability of directed movements by two subsequent shape changes could be implemented in shape-memory hydrogels by incorporation of two types of crystallizable side chains While in non-swollen polymer networks even more directed movements could be realized, the creation of multi-shape hydrogels is still a challenge. We hypothesize that a quadruple-shape effect in hydrogels can be realized, when a swelling capacity almost independent of temperature is generated, whereby directed movements could be enabled, which are not related to swelling. In this case, entropy elastic recovery could be realized by hydrophilic segments and the fixation of different macroscopic shapes by means of three semi-crystalline side chains generating temporary crosslinks. Monomethacrylated semi-crystalline oligomers were connected as side chains in a hydrophilic polymer network via radical copolymerization. Computer assisted modelling was utilized to design a demonstrator capable of complex shape shifts by creating a casting mold via 3D printing from polyvinyl alcohol. The demonstrator was obtained after copolymerization of polymer network forming components within the mold, which was subsequently dissolved in water. A thermally-induced quadruple-shape effect was realized after equilibrium swelling of the polymer network in water. Three directed movements were successfully obtained when the temperature was continuously increased from 5 degrees C to 90 degrees C with a recovery ratio of the original shape above 90\%. Hence, a thermally-induced quadruple-shape effect as new record for hydrogels was realized. Here, the temperature range for the multi-shape effect was limited by water as swelling media (0 degrees C-100 degrees C), simultaneously distinctly separated thermal transitions were required, and the overall elasticity indispensable for successive deformations was reduced as result of partially chain segment orientation induced by swelling in water. Conclusively the challenges for penta- or hexa-shape gels are the design of systems enabling higher elastic deformability and covering a larger temperature range by switching to a different solvent.}, language = {en} } @inproceedings{BehlKratzNoecheletal.2014, author = {Behl, Marc and Kratz, Karl and N{\"o}chel, Ulrich and Sauter, Tilman and Lendlein, Andreas}, title = {Polymer networks capable of reversible shape-memory-effects}, series = {Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS}, volume = {248}, booktitle = {Abstracts of papers : joint conference / The Chemical Institute of Cananda, CIC, American Chemical Society, ACS}, publisher = {American Chemical Society}, address = {Washington}, issn = {0065-7727}, pages = {1}, year = {2014}, language = {en} } @article{BehlRazzaqMazurekBudzynskaetal.2020, author = {Behl, Marc and Razzaq, Muhammad Yasar and Mazurek-Budzynska, Magdalena and Lendlein, Andreas}, title = {Polyetheresterurethane based porous scaffolds with tailorable architectures by supercritical CO2 foaming}, series = {MRS advances}, volume = {5}, journal = {MRS advances}, number = {45}, publisher = {Cambridge University Press}, address = {New York, NY}, issn = {2059-8521}, doi = {10.1557/adv.2020.345}, pages = {2317 -- 2330}, year = {2020}, abstract = {Porous three-dimensional (3D) scaffolds are promising treatment options in regenerative medicine. Supercritical and dense-phase fluid technologies provide an attractive alternative to solvent-based scaffold fabrication methods. In this work, we report on the fabrication of poly-etheresterurethane (PPDO-PCL) based porous scaffolds with tailorable pore size, porosity, and pore interconnectivity by using supercritical CO2(scCO(2)) fluid-foaming. The influence of the processing parameters such as soaking time, soaking temperature and depressurization on porosity, pore size, and interconnectivity of the foams were investigated. The average pore diameter could be varied between 100-800 mu m along with a porosity in the range from (19 +/- 3 to 61 +/- 6)\% and interconnectivity of up to 82\%. To demonstrate their applicability as scaffold materials, selected foams were sterilized via ethylene oxide sterilization. They showed negligible cytotoxicity in tests according to DIN EN ISO 10993-5 and 10993-12 using L929 cells. The study demonstrated that the pore size, porosity and the interconnectivity of this multi-phase semicrystalline polymer could be tailored by careful control of the processing parameters during the scCO(2)foaming process. In this way, PPDO-PCL scaffolds with high porosity and interconnectivity are potential candidate materials for regenerative treatment options.}, language = {en} } @article{BehlBalkMansfeldetal.2021, author = {Behl, Marc and Balk, Maria and Mansfeld, Ulrich and Lendlein, Andreas}, title = {Phase morphology of multiblock copolymers differing in sequence of blocks}, series = {Macromolecular materials and engineering}, volume = {306}, journal = {Macromolecular materials and engineering}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-2054}, doi = {10.1002/mame.202000672}, pages = {9}, year = {2021}, abstract = {The chemical nature, the number length of integrated building blocks, as well as their sequence structure impact the phase morphology of multiblock copolymers (MBC) consisting of two non-miscible block types. It is hypothesized that a strictly alternating sequence should impact phase segregation. A library of well-defined MBC obtained by coupling oligo(epsilon-caprolactone) (OCL) of different molecular weights (2, 4, and 8 kDa) with oligotetrahydrofuran (OTHF, 2.9 kDa) via Steglich esterification results in strictly alternating (MBCalt) or random (MBCran) MBC. The three different series has a weight average molecular weight (M-w) of 65 000, 165 000, and 168 000 g mol(-1) for MBCalt and 80 500, 100 000, and 147 600 g mol(-1) for MBCran. When the chain length of OCL building blocks is increased, the tendency for phase segregation is facilitated, which is attributed to the decrease in chain mobility within the MBC. Furthermore, it is found that the phase segregation disturbs the crystallization by causing heterogeneities in the semi-crystalline alignment, which is attributed to an increase of the disorder of the OCL semi-crystalline alignment.}, language = {en} } @article{YouBehlLoewenbergetal.2017, author = {You, Zewang and Behl, Marc and L{\"o}wenberg, Candy and Lendlein, Andreas}, title = {pH-sensitivity and conformation change of the n-terminal methacrylated peptide VK20}, series = {MRS advances : a journal of the Materials Research Society (MRS)}, volume = {2}, journal = {MRS advances : a journal of the Materials Research Society (MRS)}, publisher = {Cambridge University Press}, address = {Cambridge}, issn = {2059-8521}, doi = {10.1557/adv.2017.491}, pages = {2571 -- 2579}, year = {2017}, abstract = {N-terminal methacrylation of peptide MAXI, which is capable of conformational changes variation of the pH, results in a peptide, named VK20. Increasing the reactivity of this terminal group enables further coupling reactions or chemical modifications of the peptidc. However, this end group functionalization may influence the ability of confonnational changes of VK20; as well as its properties. In this paper; the influence of pH on the transition between random coil and beta-sheet conformation of VK20; including the transition kinetics, were investigated. At pH values of 9 and higher, the kinetics beta-sheet formation increased tor VK(2 0, compared to MAXI. The self-assembly into beta-sheets recognized by the formation of a physically crosslinked gel was furthermore indicated by a significant increase of G. An increase in pH (from 9 to 9.5) led to a faster gelation of the peptide VK20. Simultaneously, G was increased from 460 +/- 70 Pa (at pH 9) to 1520 +/- 180 Pa (at pH 9.5). At the nanoscale, the gel showed a highly interconnected fibrillar/network structure with uniform fibril widths of approximately 3.4 +/- 0.5 nm (N=30). The recovery of the peptide conformation back to random coil resulted in the dissolution of the gel; whereby the kinetics of the recovery depended on the pH. Conclusively, the ability of MAXI to undergo confommtional changes was not affected by N-terminal methacrylation whereas the kinetics of pH-sensitive beta-sheet formations has been increased.}, language = {en} } @article{FarhanBehlKratzetal.2021, author = {Farhan, Muhammad and Behl, Marc and Kratz, Karl and Lendlein, Andreas}, title = {Origami hand for soft robotics driven by thermally controlled polymeric fiber actuators}, series = {MRS communications / a publication of the Materials Research Society}, volume = {11}, journal = {MRS communications / a publication of the Materials Research Society}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {2159-6859}, doi = {10.1557/s43579-021-00058-4}, pages = {476 -- 482}, year = {2021}, abstract = {Active fibers can serve as artificial muscles in robotics or components of smart textiles. Here, we present an origami hand robot, where single fibers control the reversible movement of the fingers. A recovery/contracting force of 0.2 N with a work capacity of 0.175 kJ kg(-1) was observed in crosslinked poly[ethylene-co-(vinyl acetate)] (cPEVA) fibers, which could enable the bending movement of the fingers by contraction upon heating. The reversible opening of the fingers was attributed to a combination of elastic recovery force of the origami structure and crystallization-induced elongation of the fibers upon cooling.}, language = {en} } @article{RazzaqBehlFranketal.2012, author = {Razzaq, Muhammad Yasar and Behl, Marc and Frank, Ute and Koetz, Joachim and Szczerba, Wojciech and Lendlein, Andreas}, title = {Oligo(omega-pentadecalactone) decorated magnetic nanoparticles}, series = {Journal of materials chemistry}, volume = {22}, journal = {Journal of materials chemistry}, number = {18}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {0959-9428}, doi = {10.1039/c2jm16146j}, pages = {9237 -- 9243}, year = {2012}, abstract = {Hybrid magnetic nanoparticles (mgNP) with a magnetite core diameter of 10 +/- 1 nm surface functionalized with oligo(omega-pentadecalactone) (OPDL) oligomers with M-n between 1300 and 3300 g mol(-1) could be successfully prepared having OPDL grafted from 200 mg g(-1) to 2170 mg g(-1). The particles are dispersible in chloroform resulting in stable suspensions. Magnetic response against an external magnetic field proved the superparamagnetic nature of the particles with a low coercivity (B-c) value of 297 mu T. The combination of the advantageous superparamagnetism of the mgNP with the exceptional stability of OPDL makes these novel hybrid mgNP promising candidates as multifunctional building blocks for magnetic nanocomposites with tunable physical properties.}, language = {en} } @article{FriessWischkeBehletal.2012, author = {Friess, Fabian and Wischke, Christian and Behl, Marc and Lendlein, Andreas}, title = {Oligo(epsilon-caprolactone)-based polymer networks prepared by photocrosslinking in solution}, series = {Journal of applied biomaterials \& functional materials}, volume = {10}, journal = {Journal of applied biomaterials \& functional materials}, number = {3}, publisher = {Wichtig}, address = {Milano}, issn = {2280-8000}, doi = {10.5301/JABFM.2012.10372}, pages = {273 -- 279}, year = {2012}, abstract = {Purpose: Polymer networks with adjustable properties prepared from endgroup-functionalized oligoesters by UV-crosslinking in melt have evolved into versatile multifunctional biomaterials. In addition to the molecular weight or architecture of precursors, the reaction conditions for crosslinking are pivotal for the polymer network properties. Crosslinking of precursors in solution may facilitate low-temperature processes and are compared here to networks synthesized in melt. Methods: Oligo(epsilon-caprolactone)-(z) methacrylate (oCL-(z) IEMA) precursors with a linear (z = di) or a four-armed star-shaped (z = tetra) architecture were crosslinked by radical polymerization in melt or in solution with UV irradiation. The thermal, mechanical, and swelling properties of the polymer networks obtained were characterized. Results: Crosslinking in solution resulted in materials with lower Young's moduli (E), lower maximum stress (sigma(max)), and higher elongation at break (epsilon(B)) as determined at 70 degrees C. Polymer networks from 8 kDa star-shaped precursors exhibited poor elasticity when synthesized in the melt, but can be established as stretchable materials with a semi-crystalline morphology, a high gel-content, and a high elongation at break when prepared in solution. Conclusions: The crosslinking condition of methacrylate functionalized precursors significantly affected network properties. For some types of precursors such as star-shaped telechelics, synthesis in solution provided semi-crystalline elastic materials that were not accessible from crosslinking in melt.}, language = {en} } @article{ZentelBehlNeheretal.2004, author = {Zentel, Rudolf and Behl, Marc and Neher, Dieter and Zen, Achmad and Lucht, Sylvia}, title = {Nanostructured polytriarylamines : orientation layers for polyfluorene}, issn = {0065-7727}, year = {2004}, language = {en} } @misc{NoechelReddyWangetal.2015, author = {N{\"o}chel, Ulrich and Reddy, Chaganti Srinivasa and Wang, Ke and Cui, Jing and Zizak, Ivo and Behl, Marc and Kratz, Karl and Lendlein, Andreas}, title = {Nanostructural changes in crystallizable controlling units determine the temperature-memory of polymers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-81124}, pages = {8284 -- 8293}, year = {2015}, abstract = {Temperature-memory polymers remember the temperature, where they were deformed recently, enabled by broad thermal transitions. In this study, we explored a series of crosslinked poly[ethylene-co-(vinyl acetate)] networks (cPEVAs) comprising crystallizable polyethylene (PE) controlling units exhibiting a pronounced temperature-memory effect (TME) between 16 and 99 °C related to a broad melting transition (∼100 °C). The nanostructural changes in such cPEVAs during programming and activation of the TME were analyzed via in situ X-ray scattering and specific annealing experiments. Different contributions to the mechanism of memorizing high or low deformation temperatures (Tdeform) were observed in cPEVA, which can be associated to the average PE crystal sizes. At high deformation temperatures (>50 °C), newly formed PE crystals, which are established during cooling when fixing the temporary shape, dominated the TME mechanism. In contrast, at low Tdeform (<50 °C), corresponding to a cold drawing scenario, the deformation led preferably to a disruption of existing large crystals into smaller ones, which then fix the temporary shape upon cooling. The observed mechanism of memorizing a deformation temperature might enable the prediction of the TME behavior and the knowledge based design of other TMPs with crystallizable controlling units.}, language = {en} } @article{NoechelReddyWangetal.2015, author = {N{\"o}chel, Ulrich and Reddy, Chaganti Srinivasa and Wang, Ke and Cui, Jing and Zizak, Ivo and Behl, Marc and Kratz, Karl and Lendlein, Andreas}, title = {Nanostructural changes in crystallizable controlling units determine the temperature-memory of polymers}, series = {Journal of Materials Chemistry A, Materials for energy and sustainability}, volume = {16}, journal = {Journal of Materials Chemistry A, Materials for energy and sustainability}, number = {3}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-7488}, doi = {10.1039/c4ta06586g}, pages = {8284 -- 8293}, year = {2015}, abstract = {Temperature-memory polymers remember the temperature, where they were deformed recently, enabled by broad thermal transitions. In this study, we explored a series of crosslinked poly[ethylene-co-(vinyl acetate)] networks (cPEVAs) comprising crystallizable polyethylene (PE) controlling units exhibiting a pronounced temperature-memory effect (TME) between 16 and 99 °C related to a broad melting transition (∼100 °C). The nanostructural changes in such cPEVAs during programming and activation of the TME were analyzed via in situ X-ray scattering and specific annealing experiments. Different contributions to the mechanism of memorizing high or low deformation temperatures (Tdeform) were observed in cPEVA, which can be associated to the average PE crystal sizes. At high deformation temperatures (>50 °C), newly formed PE crystals, which are established during cooling when fixing the temporary shape, dominated the TME mechanism. In contrast, at low Tdeform (<50 °C), corresponding to a cold drawing scenario, the deformation led preferably to a disruption of existing large crystals into smaller ones, which then fix the temporary shape upon cooling. The observed mechanism of memorizing a deformation temperature might enable the prediction of the TME behavior and the knowledge based design of other TMPs with crystallizable controlling units.}, language = {en} } @article{NoechelReddyWangetal.2015, author = {N{\"o}chel, Ulrich and Reddy, Chaganti Srinivasa and Wang, Ke and Cui, Jing and Zizak, Ivo and Behl, Marc and Kratz, Karl and Lendlein, Andreas}, title = {Nanostructural changes in crystallizable controlling units determine the temperature-memory of polymers}, series = {Journal of materials chemistry : A, Materials for energy and sustainability}, volume = {3}, journal = {Journal of materials chemistry : A, Materials for energy and sustainability}, number = {16}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2050-7488}, doi = {10.1039/c4ta06586g}, pages = {8284 -- 8293}, year = {2015}, abstract = {Temperature-memory polymers remember the temperature, where they were deformed recently, enabled by broad thermal transitions. In this study, we explored a series of crosslinked poly[ethylene-co-(vinyl acetate)] networks (cPEVAs) comprising crystallizable polyethylene (PE) controlling units exhibiting a pronounced temperature-memory effect (TME) between 16 and 99 degrees C related to a broad melting transition (similar to 100 degrees C). The nanostructural changes in such cPEVAs during programming and activation of the TME were analyzed via in situ X-ray scattering and specific annealing experiments. Different contributions to the mechanism of memorizing high or low deformation temperatures (T-deform) were observed in cPEVA, which can be associated to the average PE crystal sizes. At high deformation temperatures (>50 degrees C), newly formed PE crystals, which are established during cooling when fixing the temporary shape, dominated the TME mechanism. In contrast, at low T-deform (<50 degrees C), corresponding to a cold drawing scenario, the deformation led preferably to a disruption of existing large crystals into smaller ones, which then fix the temporary shape upon cooling. The observed mechanism of memorizing a deformation temperature might enable the prediction of the TME behavior and the knowledge based design of other TMPs with crystallizable controlling units.}, language = {en} } @article{ZhangRešetičBehletal.2021, author = {Zhang, Pengfei and Rešetič, Andraž and Behl, Marc and Lendlein, Andreas}, title = {Multifunctionality in polymer networks by dynamic of coordination bonds}, series = {Macromolecular chemistry and physics}, volume = {222}, journal = {Macromolecular chemistry and physics}, number = {3}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-3935}, doi = {10.1002/macp.202000394}, pages = {11}, year = {2021}, abstract = {The need for multifunctional materials is driven by emerging technologies and innovations, such as in the field of soft robotics and tactile or haptic systems, where minimizing the number of operational components is not only desirable, but can also be essential for realizing such devices. This study report on designing a multifunctional soft polymer material that can address a number of operating requirements such as solvent resistance, reshaping ability, self-healing capability, fluorescence stimuli-responsivity, and anisotropic structural functions. The numerous functional abilities are associated to rhodium(I)-phosphine coordination bonds, which in a polymer network act with their dynamic and non-covalently bonded nature as multifunctional crosslinks. Reversible aggregation of coordination bonds leads to changes in fluorescence emission intensity that responds to chemical or mechanical stimuli. The fast dynamics and diffusion of rhodium-phosphine ions across and through contacting areas of the material provide for reshaping and self-healing abilities that can be further exploited for assembly of multiple pieces into complex forms, all without any loss to material-sensing capabilities.}, language = {en} } @article{RazzaqBehlHeucheletal.2019, author = {Razzaq, Muhammad Yasar and Behl, Marc and Heuchel, Matthias and Lendlein, Andreas}, title = {Matching magnetic heating and thermal actuation for sequential coupling in hybrid composites by design}, series = {Macromolecular rapid communications}, volume = {41}, journal = {Macromolecular rapid communications}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1336}, doi = {10.1002/marc.201900440}, pages = {7}, year = {2019}, abstract = {Sequentially coupling two material functions requires matching the output from the first with the input of the second function. Here, magnetic heating controls thermal actuation of a hybrid composite in a challenging system environment causing an elevated level of heat loss. The concept is a hierarchical design consisting of an inner actuator of nanocomposite material, which can be remotely heated by exposure to an alternating magnetic field (AMF) and outer layers of a porous composite system with a closed pore morphology. These porous layers act as heat insulators and as barriers to the surrounding water. By exposure to the AMF, a local bulk temperature of 71 degrees C enables the magnetic actuation of the device, while the temperature of the surrounding water is kept below 50 degrees C. Interestingly, the heat loss during magnetic heating leads to an increase of the water phase (small volume) temperature. The temperature increase is able to sequentially trigger an adjacent thermal actuator attached to the actuator composite. In this way it could be demonstrated how the AMF is able to initiate two kinds of independent actuations, which might be interesting for robotics operating in aqueous environments.}, language = {en} } @article{RazzaqBehlLendlein2019, author = {Razzaq, Muhammad Yasar and Behl, Marc and Lendlein, Andreas}, title = {Magneto-Mechanical Actuators with Reversible Stretching and Torsional Actuation Capabilities}, series = {MRS Advances}, volume = {4}, journal = {MRS Advances}, number = {19}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {2059-8521}, doi = {10.1557/adv.2019.123}, pages = {1057 -- 1065}, year = {2019}, abstract = {Composite actuators consisting of magnetic nanoparticles dispersed in a crystallizable multiphase polymer system can be remotely controlled by alternating magnetic fields (AMF). These actuators contain spatially segregated crystalline domains with chemically different compositions. Here, the crystalline domain associated to low melting transition range is responsible for actuation while the crystalline domain associated to the higher melting transition range determines the geometry of the shape change. This paper reports magnetomechanical actuators which are based on a single crystalline domain of oligo(omega-pentadecalactone) (OPDL) along with covalently integrated iron(III) oxide nanoparticles (ioNPs). Different geometrical modes of actuation such as a reversible change in length or twisting were implemented by a magneto-mechanical programming procedure. For an individual actuation mode, the degree of actuation could be tailored by variation of the magnetic field strengths. This material design can be easily extended to other composites containing other magnetic nanoparticles, e.g. with a high magnetic susceptibility.}, language = {en} } @article{YanFangNoecheletal.2018, author = {Yan, Wan and Fang, Liang and N{\"o}chel, Ulrich and Gould, Oliver E. C. and Behl, Marc and Kratz, Karl and Lendlein, Andreas}, title = {Investigating the roles of crystallizable and glassy switching segments within multiblock copolymer shape-memory materials}, series = {MRS Advances}, volume = {3}, journal = {MRS Advances}, number = {63}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {2059-8521}, doi = {10.1557/adv.2018.590}, pages = {3741 -- 3749}, year = {2018}, abstract = {The variation of the molecular architecture of multiblock copolymers has enabled the introduction of functional behaviour and the control of key mechanical properties. In the current study, we explore the synergistic relationship of two structural components in a shape-memory material formed of a multiblock copolymer with crystallizable poly(epsilon-caprolactone) and crystallizable polyfoligo(3S-iso-butylmorpholine-2,5-dione) segments (PCL-PIBMD). The thermal and structural properties of PCL-PIBMD films were compared with PCI.-PU and PMMD-PU investigated by means of DSC, SAXS and WARS measurements. The shape-memory properties were quantified by cyclic, thermomechanical tensile tests, where deformation strains up to 900\% were applied for programming PCL-PIBMD films at 50 degrees C. Toluene vapor treatment experiments demonstrated that the temporary shape was fixed mainly by glassy PIBMD domains at strains lower than 600\% with the PCL contribution to fixation increasing to 42 +/- 2\% at programming strains of 900\% This study into the shape-memory mechanism of PCL-PIBMD provides insight into the structure function relation in multiblock copolymers with both crystallizable and glassy switching segments.}, language = {en} } @article{MelchertBehlNoecheletal.2012, author = {Melchert, Christian and Behl, Marc and N{\"o}chel, Ulrich and Lendlein, Andreas}, title = {Influence of Comesogens on the Thermal and Actuation Properties of 2-tert-Butyl-1,4-bis[4-(4-pentenyloxy)benzoyl]hydroquinone Based Nematic Main-Chain Liquid Crystalline Elastomers}, series = {Macromolecular materials and engineering}, volume = {297}, journal = {Macromolecular materials and engineering}, number = {12}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1438-7492}, doi = {10.1002/mame.201200238}, pages = {1203 -- 1212}, year = {2012}, abstract = {Although the shape-changing capabilities of LCEs hold great potential for applications ranging from micropumps to artificial muscles, customization of the LCE functionality to the applications' requirements is still a challenge. It is studied whether the orientation of NMC-LCPs and NMC-LCEs based on 2-tert-butyl-1,4-bis[4-(4-pentenyloxy)benzoyl]hydroquinone can be enhanced by copolymerization with 2-methyl-1,4-bis[4-(4-pentenyloxy)benzoyl]hydroquinone or 2,6-bis[4-(4-pentenyl-oxy)-benzoyl]anthracene. An increasing content of the comonomers stabilizes the nematic phase, which enables a tailoring of T-NI for the NMC-LCP between 45 and 68 degrees C, while for the NMC-LCE T-NI ranges between 69 and 76 degrees C. In addition, NMC-LCE show an increased actuation performance.}, language = {en} } @article{BehlBalkLuetzowetal.2021, author = {Behl, Marc and Balk, Maria and L{\"u}tzow, Karola and Lendlein, Andreas}, title = {Impact of block sequence on the phase morphology of multiblock copolymers obtained by high-throughput robotic synthesis}, series = {European polymer journal : EPJ}, volume = {143}, journal = {European polymer journal : EPJ}, publisher = {Elsevier}, address = {Oxford}, issn = {0014-3057}, doi = {10.1016/j.eurpolymj.2020.110207}, pages = {9}, year = {2021}, abstract = {The chemical nature, the number length of integrated building blocks, as well as their sequence structure impact the phase morphology of multiblock copolymers (MBC) consisting of two non-miscible block types. We hypothesized that a strictly alternating sequence should favour phase segregation and in this way the elastic properties. A library of well-defined MBCs composed of two different hydrophobic, semi-crystalline blocks providing domains with well-separated melting temperatures (T(m)s) were synthesized from the same type of precursor building blocks as strictly alternating (MBCsalt) or random (MBCsran) MBCs and compared. Three different series of MBCsalt or MBCsran were synthesized by high-throughput synthesis by coupling oligo(e-caprolactone) (OCL) of different molecular weights (2, 4, and 8 kDa) with oligotetrahydrofuran (OTHF, 2.9 kDa) via Steglich esterification in which the molar ratio of the reaction partners was slightly adjusted. Maximum of weight average molecular weight (M-w) were 65,000 g center dot mol(-1), 165,000 g center dot mol(-1), and 168,000 g center dot mol(-1) for MBCsalt and 80,500 g center dot mol(-1), 100,000 g center dot mol(-1), and 147,600 g center dot mol(-1) for MBCsran. When Mw increased, a decrease of both Tms associated to the melting of the OCL and OTHF domains was observed for all MBCs. T-m (OTHF) of MBCsran was always higher than Tm (OTHF) of MBCsalt, which was attributed to a better phase segregation. In addition, the elongation at break of MBCsalt was almost half as high when compared to MBCsran. In this way this study elucidates role of the block length and sequence structure in MBCs and enables a quantitative discussion of the structure-function relationship when two semi-crystalline block segments are utilized for the design of block copolymers.}, language = {en} } @article{MazurekBudzyńskaBehlRazzaqetal.2019, author = {Mazurek-Budzyńska, Magdalena and Behl, Marc and Razzaq, Muhammad Yasar and N{\"o}chel, Ulrich and Rokicki, Gabriel and Lendlein, Andreas}, title = {Hydrolytic stability of aliphatic poly(carbonate-urea-urethane)s: Influence of hydrocarbon chain length in soft segment}, series = {Polymer Degradation and Stability}, volume = {161}, journal = {Polymer Degradation and Stability}, publisher = {Elsevier}, address = {Oxford}, issn = {0141-3910}, pages = {283 -- 297}, year = {2019}, abstract = {Poly(carbonate-urethane)s (PCUs) exhibit improved resistance to hydrolytic degradation and in vivo stress cracking compared to poly(ester-urethane)s and their degradation leads to lower inflammation of the surrounding tissues. Therefore, PCUs are promising implant materials and are considered for devices such as artificial heart or spine implants. In this work, the hydrolytic stability of different poly(carbonate-urethane-urea)s (PCUUs) was studied under variation of the length of hydrocarbon chain (6, 9, 10, and 12 methylene units) between the carbonate linkages in the precursors. PCUUs were synthesized from isophorone diisocyanate and oligo(alkylene carbonate) diols using the moisture-cure method. The changes of sample weight, thermal and mechanical properties, morphology, as well as the degradation products after immersion in a buffer solution (PBS, pH = 7.4) for up to 10 weeks at 37 degrees C were monitored and analyzed. In addition, mechanical properties after 20 weeks (in PBS, 37 degrees C) were investigated. The gel content was determined based on swelling experiments in chloroform. Based on the DSC analysis, slight increases of melting transitions of PCUUs were observed, which were attributed to structure reorganization related to annealing at 37 degrees C rather than to the degradation of the PCUU. Tensile strength after 20 weeks of all investigated samples remained in the range of 29-39 MPa, whereas the elongation at break e(m) decreased only slightly and remained in the range between 670 and 800\%. Based on the characterization of degradation products after up to 10 weeks of immersion it was assessed that oligomers are mainly consisting of hard segments containing urea linkages, which could be assigned to hindered-urea dissociation mechanism. The investigations confirmed good resistance of PCUUs to hydrolysis. Only minor changes in the crystallinity, as well as thermal and mechanical properties were observed and depended on hydrocarbon chain length in soft segment of PCUUs. (C) 2019 Published by Elsevier Ltd.}, language = {en} } @article{BalkBehlLendlein2019, author = {Balk, Maria and Behl, Marc and Lendlein, Andreas}, title = {Hydrolytic Degradation of Actuators Based on Copolymer Networks From Oligo(epsilon-caprolactone) Dimethacrylate and n-Butyl Acrylate}, series = {MRS advances}, volume = {4}, journal = {MRS advances}, number = {21}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {2059-8521}, doi = {10.1557/adv.2019.202}, pages = {1193 -- 1205}, year = {2019}, abstract = {Shape-memory polymer actuators often contain crystallizable polyester segments. Here, the influence of accelerated hydrolytic degradation on the actuation performance in copolymer networks based on oligo(epsilon-caprolactone) dimethacrylate (OCL) and n-butyl acrylate is studied The semi-crystalline OCL was utilized as crosslinker with molecular weights of 2.3 and 15.2 kg.mol(-1) (ratio: 1:1 wt\%) and n-butyl acrylate (25 wt\% relative to OCL content) acted as softening agent creating the polymer main chain segments within the network architecture. The copolymer networks were programmed by 50\% elongation and were degraded by means of alkaline hydrolysis utilizing sodium hydroxide solution (pH = 13). Experiments were performed in the range of the broad melting range of the actuators at 40 degrees C. The degradation of test specimen was monitored by the sample mass, which was reduced by 25 wt\% within 105 d .45 degradation products, fragments of OCL with molecular masses ranging from 400 to 50.000 g.mol(-1) could be detected by NMR spectroscopy and GPC measurements. The cleavage of ester groups included in OCL segments resulted in a decrease of the melting temperature (T-m) related to the actuator domains (amorphous at the temperature of degradation) and simultaneously, the T-m associated to the skeleton domain was increased (semi-crystalline at the temperature of degradation). The alkaline hydrolysis decreased the polymer chain orientation of OCL domains until a random alignment of crystalline domains was obtained. This result was confirmed by cyclic thermomechanical actuation tests. The performance of directed movements decreased almost linearly as function of degradation time resulting in the loss of functionality when the orientation of polymer chains disappeared. Here, actuators were able to provide reversible movements until 91 d when the accelerated bulk degradation procedure using alkaline hydrolysis (pH = 13) was applied. Accordingly, a lifetime of more than one year can be guaranteed under physiological conditions (pH = 7.4) when, e.g., artificial muscles for biomimetic robots as potential application for these kind of shape-memory polymer actuators will be addressed.}, language = {en} } @article{TartivelBehlSchroeteretal.2012, author = {Tartivel, Lucile and Behl, Marc and Schr{\"o}ter, Michael and Lendlein, Andreas}, title = {Hydrogel networks based on ABA triblock copolymers}, series = {Journal of applied biomaterials \& functional materials}, volume = {10}, journal = {Journal of applied biomaterials \& functional materials}, number = {3}, publisher = {Wichtig}, address = {Milano}, issn = {2280-8000}, doi = {10.5301/JABFM.2012.10295}, pages = {243 -- 248}, year = {2012}, abstract = {Background: Triblock copolymers from hydrophilic oligo(ethylene glycol) segment A and oligo(propylene glycol) segment B, providing an ABA structure (OEG-OPG-OEG triblock), are known to be biocompatible and are used as self-solidifying gels in drug depots. A complete removal of these depots would be helpful in cases of undesired side effects of a drug, but this remains a challenge as they liquefy below their transition temperature. Therefore we describe the synthesis of covalently cross-linked hydrogel networks. Method: Triblock copolymer-based hydrogels were created by irradiating aqueous solutions of the corresponding macro-dimethacrylates with UV light. The degree of swelling, swelling kinetics, mechanical properties and morphology of the networks were investigated. Results: Depending on precursor concentration, equilibrium degree of swelling of the films ranged between 500\% and 880\% and was reached in 1 hour. In addition, values for storage and loss moduli of the hydrogel networks were in the 100 Pa to 10 kPa range. Conclusion: Although OEG-OPG-OEG triblocks are known for their micellization, which could hamper polymer network formation, reactive OEG-OPG-OEG triblock oligomers could be successfully polymerized into hydrogel networks. The degree of swelling of these hydrogels depends on their molecular weight and on the oligomer concentration used for hydrogel preparation. In combination with the temperature sensitivity of the ABA triblock copolymers, it is assumed that such hydrogels might be beneficial for future medical applications -e.g., removable drug release systems.}, language = {en} } @article{BehlZhaoLendlein2020, author = {Behl, Marc and Zhao, Qian and Lendlein, Andreas}, title = {Glucose-responsive shape-memory cryogels}, series = {Journal of materials research : JMR}, volume = {35}, journal = {Journal of materials research : JMR}, number = {18}, publisher = {Springer}, address = {Berlin}, issn = {0884-2914}, doi = {10.1557/jmr.2020.204}, pages = {2396 -- 2404}, year = {2020}, abstract = {Boronic ester bonds can be reversibly formed between phenylboronic acid (PBA) and triol moieties. Here, we aim at a glucose-induced shape-memory effect by implementing such bonds as temporary netpoints, which are cleavable by glucose and by minimizing the volume change upon stimulation by a porous cryogel structure. The polymer system consisted of a semi-interpenetrating network (semi-IPN) architecture, in which the triol moieties were part of the permanent network and the PBA moieties were located in the linear polymer diffused into the semi-IPN. In an alkaline medium (pH = 10), the swelling ratio was approximately 35, independent of C-glu varied between 0 and 300 mg/dL. In bending experiments, shape fixity R-f approximate to 80\% and shape recovery R-r approximate to 100\% from five programming/recovery cycles could be determined. R-r was a function of C-glu in the range from 0 to 300 mg/dL, which accords with the fluctuation range of C-glu in human blood. In this way, the shape-memory hydrogels could play a role in future diabetes treatment options.}, language = {en} } @article{BalkBehlNoecheletal.2021, author = {Balk, Maria and Behl, Marc and N{\"o}chel, Ulrich and Lendlein, Andreas}, title = {Enzymatically triggered Jack-in-the-box-like hydrogels}, series = {ACS applied materials \& interfaces / American Chemical Society}, volume = {13}, journal = {ACS applied materials \& interfaces / American Chemical Society}, number = {7}, publisher = {American Chemical Society}, address = {Washington, DC}, issn = {1944-8244}, doi = {10.1021/acsami.1c00466}, pages = {8095 -- 8101}, year = {2021}, abstract = {Enzymes can support the synthesis or degradation of biomacromolecules in natural processes. Here, we demonstrate that enzymes can induce a macroscopic-directed movement of microstructured hydrogels following a mechanism that we call a "Jack-in-the-box" effect. The material's design is based on the formation of internal stresses induced by a deformation load on an architectured microscale, which are kinetically frozen by the generation of polyester locking domains, similar to a Jack-in-thebox toy (i.e., a compressed spring stabilized by a closed box lid). To induce the controlled macroscopic movement, the locking domains are equipped with enzyme-specific cleavable bonds (i.e., a box with a lock and key system). As a result of enzymatic reaction, a transformed shape is achieved by the release of internal stresses. There is an increase in entropy in combination with a swelling-supported stretching of polymer chains within the microarchitectured hydrogel (i.e., the encased clown pops-up with a pre-stressed movement when the box is unlocked). This utilization of an enzyme as a physiological stimulus may offer new approaches to create interactive and enzyme-specific materials for different applications such as an optical indicator of the enzyme's presence or actuators and sensors in biotechnology and in fermentation processes.}, language = {en} } @article{FarhanChaudharyNoecheletal.2020, author = {Farhan, Muhammad and Chaudhary, Deeptangshu and N{\"o}chel, Ulrich and Behl, Marc and Kratz, Karl and Lendlein, Andreas}, title = {Electrical actuation of coated and composite fibers based on poly[ethylene-co-(vinyl acetate)]}, series = {Macromolecular materials and engineering}, volume = {306}, journal = {Macromolecular materials and engineering}, number = {2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1438-7492}, doi = {10.1002/mame.202000579}, pages = {8}, year = {2020}, abstract = {Robots are typically controlled by electrical signals. Resistive heating is an option to electrically trigger actuation in thermosensitive polymer systems. In this study electrically triggerable poly[ethylene-co-(vinyl acetate)] (PEVA)-based fiber actuators are realized as composite fibers as well as polymer fibers with conductive coatings. In the coated fibers, the core consists of crosslinked PEVA (cPEVA), while the conductive coating shell is achieved via a dip coating procedure with a coating thickness between 10 and 140 mu m. The conductivity of coated fibers sigma = 300-550 S m(-1) is much higher than that of the composite fibers sigma = 5.5 S m(-1). A voltage (U) of 110 V is required to heat 30 cm of coated fiber to a targeted temperature of approximate to 65 degrees C for switching in less than a minute. Cyclic electrical actuation investigations reveal epsilon '(rev) = 5 +/- 1\% reversible change in length for coated fibers. The fabrication of such electro-conductive polymeric actuators is suitable for upscaling so that their application potential as artificial muscles can be explored in future studies.}, language = {en} } @misc{FarhanChaudharyNoecheletal.2020, author = {Farhan, Muhammad and Chaudhary, Deeptangshu and N{\"o}chel, Ulrich and Behl, Marc and Kratz, Karl and Lendlein, Andreas}, title = {Electrical actuation of coated and composite fibers based on poly[ethylene-co-(vinyl acetate)]}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {2}, issn = {1866-8372}, doi = {10.25932/publishup-57167}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-571679}, pages = {10}, year = {2020}, abstract = {Robots are typically controlled by electrical signals. Resistive heating is an option to electrically trigger actuation in thermosensitive polymer systems. In this study electrically triggerable poly[ethylene-co-(vinyl acetate)] (PEVA)-based fiber actuators are realized as composite fibers as well as polymer fibers with conductive coatings. In the coated fibers, the core consists of crosslinked PEVA (cPEVA), while the conductive coating shell is achieved via a dip coating procedure with a coating thickness between 10 and 140 mu m. The conductivity of coated fibers sigma = 300-550 S m(-1) is much higher than that of the composite fibers sigma = 5.5 S m(-1). A voltage (U) of 110 V is required to heat 30 cm of coated fiber to a targeted temperature of approximate to 65 degrees C for switching in less than a minute. Cyclic electrical actuation investigations reveal epsilon '(rev) = 5 +/- 1\% reversible change in length for coated fibers. The fabrication of such electro-conductive polymeric actuators is suitable for upscaling so that their application potential as artificial muscles can be explored in future studies.}, language = {en} } @article{LiangBehlLendlein2021, author = {Liang, Xiao and Behl, Marc and Lendlein, Andreas}, title = {Dihydroxy terminated teroligomers from morpholine-2,5-diones}, series = {European polymer journal : EPJ}, volume = {143}, journal = {European polymer journal : EPJ}, publisher = {Elsevier}, address = {Oxford}, issn = {0014-3057}, doi = {10.1016/j.eurpolymj.2020.110189}, pages = {9}, year = {2021}, abstract = {Oligodepsipeptides (ODPs) attract increasing attention as degradable materials in controlled drug delivery or as building blocks for nano-carriers. Their strong intermolecular interactions provide high stability. Tailoring the side groups of the amino acid repeating units to achieve a strong affinity to particular drugs allows a high drug-loading capacity. Here we describe synthesis and characterization of dihydroxy terminated teroligodepsipeptides (ter-ODPs) by ring-opening copolymerization (ROP) of three different morpholine-2,5-diones (MDs) in bulk in order to provide a set of teroligomers with structural variation for drug release or transfection. Ter-ODPs with equivalent co-monomer feed ratios were prepared as well as ter-ODPs, in which the co-monomer feed ratio was varied between 9 mol\% and 78 mol\%. Ter-ODPs were synthesized by ROP using 1,1,10,10-tetra-n-butyl-1,10-distanna-2,9,11,18-tetraoxa-5,6,14,15-tetrasulfur-cyclodecane (tin(IV) alkoxide) that was obtained by the reaction of dibutyl tin(II) oxide with 2-hydroxyethyl disulfide. The number average molecular weight (M-n) of ter-ODPs, determined by H-1 NMR and gel permeation chromatography (GPC), ranged between 4000 g center dot mol(-1) and 8600 g center dot mol(-1). Co-monomer compositions in ter-ODPs could be controlled by changing the feed ratio of co-monomers as observed by H-1 NMR spectroscopy and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The amount of remaining monomers as determined by H-1 NMR could be kept below 1 wt\%. Macrocycles as main sources of byproducts as determined from MALDI-TOF-MS measurements were significantly lower as compared to polymerization by Sn(Oct)(2). Glass-transition temperature (T-g) of ter-ODPs ranged between 59 degrees C and 70 degrees C.}, language = {en} } @article{SaatchiBehlNoecheletal.2015, author = {Saatchi, Mersa and Behl, Marc and N{\"o}chel, Ulrich and Lendlein, Andreas}, title = {Copolymer Networks From Oligo(epsilon-caprolactone) and n-Butyl Acrylate Enable a Reversible Bidirectional Shape-Memory Effect at Human Body Temperature}, series = {Macromolecular rapid communications}, volume = {36}, journal = {Macromolecular rapid communications}, number = {10}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1336}, doi = {10.1002/marc.201400729}, pages = {880 -- 884}, year = {2015}, abstract = {Exploiting the tremendous potential of the recently discovered reversible bidirectional shape-memory effect (rbSME) for biomedical applications requires switching temperatures in the physiological range. The recent strategy is based on the reduction of the melting temperature range (T-m) of the actuating oligo(epsilon-caprolactone) (OCL) domains in copolymer networks from OCL and n-butyl acrylate (BA), where the reversible effect can be adjusted to the human body temperature. In addition, it is investigated whether an rbSME in the temperature range close or even above T-m,T-offset (end of the melting transition) can be obtained. Two series of networks having mixtures of OCLs reveal broad T(m)s from 2 degrees C to 50 degrees C and from -10 degrees C to 37 degrees C, respectively. In cyclic, thermomechanical experiments the rbSME can be tailored to display pronounced actuation in a temperature interval between 20 degrees C and 37 degrees C. In this way, the application spectrum of the rbSME can be extended to biomedical applications.}, language = {en} } @article{LiangBehlLuetzowetal.2021, author = {Liang, Xiao and Behl, Marc and L{\"u}tzow, Karola and Lendlein, Andreas}, title = {Cooligomers from morpholine-2,5-dione and para-dioxanone and catalyst complex SnOct(2)/2-hydroxyethyl sulfide}, series = {MRS advances : a journal of the Materials Research Society (MRS)}, volume = {6}, journal = {MRS advances : a journal of the Materials Research Society (MRS)}, number = {32}, publisher = {Springer}, address = {Heidelberg}, issn = {2059-8521}, doi = {10.1557/s43580-021-00082-5}, pages = {764 -- 768}, year = {2021}, abstract = {Complexes from catalysts and initiator can be used to insert a specific number of additional chemical functional groups in (co)polymers prepared by ring-opening polymerization (ROP) of lactones. We report on the synthesis of cooligomers from sec-butyl-morpholine-2,5-dione (SBMD) and para-dioxanone (PDX) by ROP with varied feed ratios in the bulk using the catalyst complex SnOct(2)/2-hydroxyethyl sulfide. M-n of the cooligomers (determined by GPC) decreased with decreasing SBMD feed ratio from 4200 +/- 420 to 800 +/- 80 g mol(-1). When the feed ratio was reduced from 80 to 50 mol\% the molar ratio of SBMD of the cooligomers (determined by H-1-NMR) remained nearly unchanged between 81 and 86 mol\% and was attributed to a higher reactivity of SBMD. This assumption was confirmed by fractionation of GPC, in which an increase of SBMD with increasing molecular weight was observed. The catalyst/initiator system provides a high potential to create orthogonal building blocks by cleavage of the sulfide bond.}, language = {en} } @article{ZhangBehlPengetal.2019, author = {Zhang, Pengfei and Behl, Marc and Peng, Xingzhou and Balk, Maria and Lendlein, Andreas}, title = {Chemoresponsive Shape-Memory Effect of Rhodium-Phosphine Coordination Polymer Networks}, series = {Chemistry of materials : a publication of the American Chemical Society}, volume = {31}, journal = {Chemistry of materials : a publication of the American Chemical Society}, number = {15}, publisher = {American Chemical Society}, address = {Washington}, issn = {0897-4756}, doi = {10.1021/acs.chemmater.9b00363}, pages = {5402 -- 5407}, year = {2019}, abstract = {Chemoresponsive polymers are of technological significance for smart sensors or systems capable of molecular recognition. An important key requirement for these applications is the material's structural integrity after stimulation. We explored whether covalently cross-linked metal ion-phosphine coordination polymers (MPN) can be shaped into any temporary shape and are capable of recovering from this upon chemoresponsive exposure to triphenylphosphine (Ph3P) ligands, whereas the MPN provide structural integrity. Depending on the metal-ion concentration used during synthesis of the MPN, the degree of swelling of the coordination polymer networks could be adjusted. Once the MPN was immersed into Ph3P solution, the reversible ligand-exchange reaction between the metal ions and the free Ph3P in solution causes a decrease of the coordination cross-link density in MPN again. The Ph3P-treated MPN was able to maintain its original shape, indicating a certain stability of shape even after stimulation. In this way, chemoresponsive control of the elastic properties (increase in volume and decrease of mechanical strength) of the MPN was demonstrated. This remarkable behavior motivated us to explore whether the MPN are capable of a chemoresponsive shape-memory effect. In initial experiments, shape fixity of around 60\% and shape recovery of almost 90\% were achieved when the MPN was exposed to Ph3P in case of rhodium. Potential applications for chemoresponsive shape-memory systems could be shapable semiconductors, e.g., for lighting or catalysts, which provide catalytic activity on demand.}, language = {en} } @article{TartivelBlockiBrauneetal.2022, author = {Tartivel, Lucile and Blocki, Anna M. and Braune, Steffen and Jung, Friedrich and Behl, Marc and Lendlein, Andreas}, title = {An Inverse shape-memory hydrogel scaffold switching upon cooling in a tissue-tolerated temperature range}, series = {Advanced materials interfaces}, volume = {9}, journal = {Advanced materials interfaces}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {2196-7350}, doi = {10.1002/admi.202101588}, pages = {9}, year = {2022}, abstract = {Tissue reconstruction has an unmet need for soft active scaffolds that enable gentle loading with regeneration-directing bioactive components by soaking up but also provide macroscopic dimensional stability. Here microporous hydrogels capable of an inverse shape-memory effect (iSME) are described, which in contrast to classical shape-memory polymers (SMPs) recover their permanent shape upon cooling. These hydrogels are designed as covalently photo cross-linked polymer networks with oligo(ethylene glycol)-oligo(propylene glycol)-oligo(ethylene glycol) (OEG-OPG-OEG) segments. When heated after deformation, the OEG-OPG-OEG segments form micelles fixing the temporary shape. Upon cooling, the micelles dissociate again, the deformation is reversed and the permanent shape is obtained. Applicability of this iSME is demonstrated by the gentle loading of platelet-rich plasma (PRP) without causing any platelet activation during this process. PRP is highly bioactive and is widely acknowledged for its regenerative effects. Hence, the microporous inverse shape-memory hydrogel (iSMH) with a cooling induced pore-size effect represents a promising candidate scaffold for tissue regeneration for potential usage in minimally invasive surgery applications.}, language = {en} } @article{BalkBehlLendlein2020, author = {Balk, Maria and Behl, Marc and Lendlein, Andreas}, title = {Actuators based on oligo[(epsilon-caprolactone)-co-glycolide] with accelerated hydrolytic degradation}, series = {MRS advances : a journal of the Materials Research Society (MRS)}, volume = {5}, journal = {MRS advances : a journal of the Materials Research Society (MRS)}, number = {12-13}, publisher = {Cambridge University Press}, address = {New York, NY}, issn = {2059-8521}, doi = {10.1557/adv.2019.447}, pages = {655 -- 666}, year = {2020}, abstract = {Polyester-based shape-memory polymer actuators are multifunctional materials providing reversible macroscopic shape shifts as well as hydrolytic degradability. Here, the function-function interdependencies (between shape shifts and degradation behaviour) will determine actuation performance and its life time. In this work, glycolide units were incorporated in poly(epsilon-caprolactone) based actuator materials in order to achieve an accelerated hydrolytic degradation and to explore the function-function relationship. Three different oligo[(epsilon-caprolactone)-co-glycolide] copolymers (OCGs) with similar molecular weights (10.5 +/- 0.5 kg center dot mol(-1)) including a glycolide content of 8, 16, and 26 mol\% (ratio 1:1:1 wt\%) terminated with methacrylated moieties were crosslinked. The obtained actuators provided a broad melting transition in the range from 27 to 44 degrees C. The hydrolytic degradation of programmed OCG actuators (200\% of elongation) resulted in a reduction of sample mass to 51 wt\% within 21 days at pH = 7.4 and 40 degrees C. Degradation results in a decrease of T-m associated to the actuating units and increasing T-m associated to the skeleton forming units. The actuation capability decreased almost linear as function of time. After 11 days of hydrolytic degradation the shape-memory functionality was lost. Accordingly, a fast degradation behaviour as required, e.g., for actuator materials intended as implant material can be realized.}, language = {en} } @article{MazurekBudzyńskaBehlNeumannetal.2022, author = {Mazurek-Budzyńska, Magdalena and Behl, Marc and Neumann, Richard and Lendlein, Andreas}, title = {4D-actuators by 3D-printing combined with water-based curing}, series = {Materials today. Communications}, volume = {30}, journal = {Materials today. Communications}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2352-4928}, doi = {10.1016/j.mtcomm.2021.102966}, pages = {7}, year = {2022}, abstract = {The shape and the actuation capability of state of the art robotic devices typically relies on multimaterial systems from a combination of geometry determining materials and actuation components. Here, we present multifunctional 4D-actuators processable by 3D-printing, in which the actuator functionality is integrated into the shaped body. The materials are based on crosslinked poly(carbonate-urea-urethane) networks (PCUU), synthesized in an integrated process, applying reactive extrusion and subsequent water-based curing. Actuation capability could be added to the PCUU, prepared from aliphatic oligocarbonate diol, isophorone diisocyanate (IPDI) and water, in a thermomechanical programming process. When programmed with a strain of epsilon(prog) = 1400\% the PCUU networks exhibited actuation apparent by reversible elongation epsilon'(rev) of up to 22\%. In a gripper a reversible bending epsilon'(rev)((be)(nd)()) in the range of 37-60\% was achieved when the actuation temperature (T-high) was varied between 45 degrees C and 49 degrees C. The integration of actuation and shape formation could be impressively demonstrated in two PCUU-based reversible fastening systems, which were able to hold weights of up to 1.1 kg. In this way, the multifunctional materials are interesting candidate materials for robotic applications where a freedom in shape design and actuation is required as well as for sustainable fastening systems.}, language = {en} }