@article{FitznerFrickeSchreineretal.2021, author = {Fitzner, Maria and Fricke, Anna and Schreiner, Monika and Baldermann, Susanne}, title = {Utilization of regional natural brines for the indoor cultivation of Salicornia europaea}, series = {Sustainability / Multidisciplinary Digital Publishing Institute (MDPI)}, volume = {13}, journal = {Sustainability / Multidisciplinary Digital Publishing Institute (MDPI)}, number = {21}, publisher = {MDPI}, address = {Basel}, issn = {2071-1050}, doi = {10.3390/su132112105}, pages = {12}, year = {2021}, abstract = {Scaling agriculture to the globally rising population demands new approaches for future crop production such as multilayer and multitrophic indoor farming. Moreover, there is a current trend towards sustainable local solutions for aquaculture and saline agriculture. In this context, halophytes are becoming increasingly important for research and the food industry. As Salicornia europaea is a highly salt-tolerant obligate halophyte that can be used as a food crop, indoor cultivation with saline water is of particular interest. Therefore, finding a sustainable alternative to the use of seawater in non-coastal regions is crucial. Our goal was to determine whether natural brines, which are widely distributed and often available in inland areas, provide an alternative water source for the cultivation of saline organisms. This case study investigated the potential use of natural brines for the production of S. europaea. In the control group, which reflects the optimal growth conditions, fresh weight was increased, but there was no significant difference between the treatment groups comparing natural brines with artificial sea water. A similar pattern was observed for carotenoids and chlorophylls. Individual components showed significant differences. However, within treatments, there were mostly no changes. In summary, we showed that the influence of the different chloride concentrations was higher than the salt composition. Moreover, nutrient-enriched natural brine was demonstrated to be a suitable alternative for cultivation of S. europaea in terms of yield and nutritional quality. Thus, the present study provides the first evidence for the future potential of natural brine waters for the further development of aquaculture systems and saline agriculture in inland regions.}, language = {en} } @article{RaffeinerUestuenGuerraetal.2022, author = {Raffeiner, Margot and {\"U}st{\"u}n, Suayib and Guerra, Tiziana and Spinti, Daniela and Fitzner, Maria and Sonnewald, Sophia and Baldermann, Susanne and B{\"o}rnke, Frederik}, title = {The Xanthomonas type-III effector XopS stabilizes CaWRKY40a to regulate defense responses and stomatal immunity in pepper (Capsicum annuum)}, series = {The plant cell}, volume = {34}, journal = {The plant cell}, number = {5}, publisher = {Oxford Univ. Press}, address = {Cary}, issn = {1040-4651}, doi = {10.1093/plcell/koac032}, pages = {1684 -- 1708}, year = {2022}, abstract = {As a critical part of plant immunity, cells that are attacked by pathogens undergo rapid transcriptional reprogramming to minimize virulence. Many bacterial phytopathogens use type III effector (T3E) proteins to interfere with plant defense responses, including this transcriptional reprogramming. Here, we show that Xanthomonas outer protein S (XopS), a T3E of Xanthomonas campestris pv. vesicatoria (Xcv), interacts with and inhibits proteasomal degradation of WRKY40, a transcriptional regulator of defense gene expression. Virus-induced gene silencing of WRKY40 in pepper (Capsicum annuum) enhanced plant tolerance to Xcv infection, indicating that WRKY40 represses immunity. Stabilization of WRKY40 by XopS reduces the expression of its targets, which include salicylic acid-responsive genes and the jasmonic acid signaling repressor JAZ8. Xcv bacteria lacking XopS display significantly reduced virulence when surface inoculated onto susceptible pepper leaves. XopS delivery by Xcv, as well as ectopic expression of XopS in Arabidopsis thaliana or Nicotiana benthamiana, prevented stomatal closure in response to bacteria and biotic elicitors. Silencing WRKY40 in pepper or N. benthamiana abolished XopS's ability to prevent stomatal closure. This suggests that XopS interferes with both preinvasion and apoplastic defense by manipulating WRKY40 stability and downstream gene expression, eventually altering phytohormone crosstalk to promote pathogen proliferation.}, language = {en} } @article{ZhouZengFuetal.2016, author = {Zhou, Ying and Zeng, Lanting and Fu, Xiumin and Mei, Xin and Cheng, Sihua and Liao, Yinyin and Deng, Rufang and Xu, Xinlan and Jiang, Yueming and Duan, Xuewu and Baldermann, Susanne and Yang, Ziyin}, title = {The sphingolipid biosynthetic enzyme Sphingolipid delta8 desaturase is important for chilling resistance of tomato}, series = {Scientific reports}, volume = {6}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep38742}, pages = {10}, year = {2016}, abstract = {The physiological functions of sphingolipids in animals have been intensively studied, while less attention has been paid to their roles in plants. Here, we reveal the involvement of sphingolipid delta8 desaturase (SlSLD) in the chilling resistance of tomato (Solanum lycopersicum cv. Micro-Tom). We used the virus-induced gene silencing (VIGS) approach to knock-down SlSLD expression in tomato leaves, and then evaluated chilling resistance. Changes in leaf cell structure under a chilling treatment were observed by transmission electron microscopy. In control plants, SlSLD was highly expressed in the fruit and leaves in response to a chilling treatment. The degree of chilling damage was greater in SlSLD-silenced plants than in control plants, indicating that SlSLD knock-down significantly reduced the chilling resistance of tomato. Compared with control plants, SlSLD-silenced plants showed higher relative electrolytic leakage and malondialdehyde content, and lower superoxide dismutase and peroxidase activities after a chilling treatment. Chilling severely damaged the chloroplasts in SlSLD-silenced plants, resulting in the disruption of chloroplast membranes, swelling of thylakoids, and reduced granal stacking. Together, these results show that SlSLD is crucial for chilling resistance in tomato.}, language = {en} } @article{BergerBaldermannRuppel2017, author = {Berger, Beatrice and Baldermann, Susanne and Ruppel, Silke}, title = {The plant growth-promoting bacterium Kosakonia radicincitans improves fruit yield and quality of Solanum lycopersicum}, series = {Journal of the Science of Food and Agriculture}, volume = {97}, journal = {Journal of the Science of Food and Agriculture}, publisher = {Wiley}, address = {Hoboken}, issn = {0022-5142}, doi = {10.1002/jsfa.8357}, pages = {4865 -- 4871}, year = {2017}, abstract = {BACKGROUNDProduction and the quality of tomato fruits have a strong economic relevance. Microorganisms such as the plant growth-promoting bacterium (PGPB) Kosakonia radicincitans (DSM 16656) have been demonstrated to improve shoot and root growth of young tomato plants, but data on yield increase and fruit quality by K. radicincitans are lacking. RESULTSThis study investigated how K. radicincitans affects tomato fruits. After inoculation of tomato seeds with K. radicincitans or a sodium chloride buffer control solution, stalk length, first flowering and the amount of ripened fruits produced by inoculated and non-inoculated plants were monitored over a period of 21 weeks. Inoculation of tomato seeds with K. radicincitans accelerated flowering and ripening of tomato fruits. Sugars, acidity, amino acids, volatile organic compounds and carotenoids in the fruits were also analyzed. CONCLUSIONIt was found that the PGPBK. radicincitans affected the amino acid, sugar and volatile composition of ripened fruits, contributing to a more pleasant-tasting fruit without forfeiting selected quality indicators. (c) 2017 Society of Chemical Industry}, language = {en} } @article{TuKagaGerickeetal.2014, author = {Tu, Vo Anh and Kaga, Atsushi and Gericke, Karl-Heinz and Watanabe, Naoharu and Narumi, Tetsuo and Toda, Mitsuo and Brueckner, Bernhard and Baldermann, Susanne and Mase, Nobuyuki}, title = {Synthesis and characterization of quantum dot nanoparticles bound to the plant volatile precursor of Hydroxy-apo-10'-carotenal}, series = {The journal of organic chemistry}, volume = {79}, journal = {The journal of organic chemistry}, number = {15}, publisher = {American Chemical Society}, address = {Washington}, issn = {0022-3263}, doi = {10.1021/jo500605c}, pages = {6808 -- 6815}, year = {2014}, abstract = {This study is focused on the synthesis and characterization of hydroxy-apo-10'-carotenal/quantum dot (QD) conjugates aiming at the in vivo visualization of beta-ionone, a carotenoid-derived volatile compound known for its important contribution to the flavor and aroma of many fruits, vegetables, and plants. The synthesis of nanoparticles bound to plant volatile precursors was achieved via coupling reaction of the QD to C-27-aldehyde which was prepared from alpha-ionone via 12 steps in 2.4\% overall yield. The formation of the QD-conjugate was confirmed by measuring its fluorescence spectrum to observe the occurrence of fluorescence resonance energy transfer.}, language = {en} } @article{FredeHenzeKhaliletal.2014, author = {Frede, Katja and Henze, Andrea and Khalil, Mahmoud and Baldermann, Susanne and Schweigert, Florian J. and Rawel, Harshadrai Manilal}, title = {Stability and cellular uptake of lutein-loaded emulsions}, series = {Journal of functional food}, volume = {8}, journal = {Journal of functional food}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1756-4646}, doi = {10.1016/j.jff.2014.03.011}, pages = {118 -- 127}, year = {2014}, abstract = {The carotenoid lutein can improve human health. Since only a fraction is absorbed from food, lutein supplementation might be recommended. Emulsions could be good carrier systems to improve the bioavailability of lutein. Six different emulsifier compositions were used in this study to prepare lutein-loaded emulsions: beta-lactoglobulin, beta-lactoglobulin/lecithin, Biozate 1, Biozate 1/lecithin, Been 20 and Tween 20/lecithin. The droplet size, resistance to creaming, lutein stability, cytotoxicity and lutein uptake by HT29 cells were investigated. The whey protein beta-lactoglobulin, the whey protein hydrolysate Biozate 1 and the combination with lecithin brought the most promising results. The small droplet sizes and resistance to creaming were an indication of physical stable emulsions. Furthermore, these emulsifiers prevented oxidation of lutein. The choice of emulsifier had a strong impact on the uptake by HT29 cells. The highest lutein absorption was observed with the combination of Biozate 1 and lecithin.}, language = {en} } @article{ErrardUlrichsKuehneetal.2015, author = {Errard, Audrey and Ulrichs, Christian and Kuehne, Stefan and Mewis, Inga and Drungowski, Mario and Schreiner, Monika and Baldermann, Susanne}, title = {Single- versus multiple-pest infestation affects differently the Biochemistry of Tomato (Solanum lycopersicum 'Ailsa Craig')}, series = {Journal of agricultural and food chemistry : a publication of the American Chemical Society}, volume = {63}, journal = {Journal of agricultural and food chemistry : a publication of the American Chemical Society}, number = {46}, publisher = {American Chemical Society}, address = {Washington}, issn = {0021-8561}, doi = {10.1021/acs.jafc.5b03884}, pages = {10103 -- 10111}, year = {2015}, abstract = {Tomato is susceptible to pest infestations by both spider mites and aphids. The effects of each individual pest on plants are known, whereas multiple-pest infestations have received little interest. We studied the effects of single-versus multiple-pest infestation by Tetranychus urticae and Myzus persicae on tomato biochemistry (Solanum lycopersicum) by combining a metabolomic approach and analyses of carotenoids using UHPLC-ToF-MS and volatiles using GC-MS. Plants responded differently to aphids and mites after 3 weeks of infestation, and a multiple infestation induced a specific metabolite composition in plants. In addition, we showed that volatiles emissions differed between the adaxial and abaxial leaf epidermes and identified compounds emitted particularly in response to a multiple infestation (cyclohexadecane, dodecane, aromadendrene, and beta-elemene). Finally, the carotenoid concentrations in leaves and stems were more affected by multiple than single infestations. Our study highlights and discusses the interplay of biotic stressors within the terpenoid metabolism.}, language = {en} } @misc{BaldermannHomannNeugartetal.2018, author = {Baldermann, Susanne and Homann, Thomas and Neugart, Susanne and Chmielewski, Frank M. and G{\"o}tz, Klaus-Peter and G{\"o}deke, Kristin and Huschek, Gerd and Morlock, Gertrud E. and Rawel, Harshadrai Manilal}, title = {Selected Plant Metabolites Involved in Oxidation-Reduction Processes during Bud Dormancy and Ontogenetic Development in Sweet Cherry Buds (Prunus avium L.)}, series = {Molecules}, journal = {Molecules}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-417442}, pages = {19}, year = {2018}, abstract = {Many biochemical processes are involved in regulating the consecutive transition of different phases of dormancy in sweet cherry buds. An evaluation based on a metabolic approach has, as yet, only been partly addressed. The aim of this work, therefore, was to determine which plant metabolites could serve as biomarkers for the different transitions in sweet cherry buds. The focus here was on those metabolites involved in oxidation-reduction processes during bud dormancy, as determined by targeted and untargeted mass spectrometry-based methods. The metabolites addressed included phenolic compounds, ascorbate/dehydroascorbate, reducing sugars, carotenoids and chlorophylls. The results demonstrate that the content of phenolic compounds decrease until the end of endodormancy. After a long period of constancy until the end of ecodormancy, a final phase of further decrease followed up to the phenophase open cluster. The main phenolic compounds were caffeoylquinic acids, coumaroylquinic acids and catechins, as well as quercetin and kaempferol derivatives. The data also support the protective role of ascorbate and glutathione in the para- and endodormancy phases. Consistent trends in the content of reducing sugars can be elucidated for the different phenophases of dormancy, too. The untargeted approach with principle component analysis (PCA) clearly differentiates the different timings of dormancy giving further valuable information.}, language = {en} } @article{BaldermannHomannNeugartetal.2018, author = {Baldermann, Susanne and Homann, Thomas and Neugart, Susanne and Chmielewski, Frank M. and G{\"o}tz, Klaus-Peter and G{\"o}deke, Kristin and Huschek, Gerd and Morlock, Gertrud E. and Rawel, Harshadrai Manilal}, title = {Selected Plant Metabolites Involved in Oxidation-Reduction Processes during Bud Dormancy and Ontogenetic Development in Sweet Cherry Buds (Prunus avium L.)}, series = {Molecules}, volume = {23}, journal = {Molecules}, number = {5}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {1420-3049}, doi = {10.3390/molecules23051197}, pages = {1 -- 19}, year = {2018}, abstract = {Many biochemical processes are involved in regulating the consecutive transition of different phases of dormancy in sweet cherry buds. An evaluation based on a metabolic approach has, as yet, only been partly addressed. The aim of this work, therefore, was to determine which plant metabolites could serve as biomarkers for the different transitions in sweet cherry buds. The focus here was on those metabolites involved in oxidation-reduction processes during bud dormancy, as determined by targeted and untargeted mass spectrometry-based methods. The metabolites addressed included phenolic compounds, ascorbate/dehydroascorbate, reducing sugars, carotenoids and chlorophylls. The results demonstrate that the content of phenolic compounds decrease until the end of endodormancy. After a long period of constancy until the end of ecodormancy, a final phase of further decrease followed up to the phenophase open cluster. The main phenolic compounds were caffeoylquinic acids, coumaroylquinic acids and catechins, as well as quercetin and kaempferol derivatives. The data also support the protective role of ascorbate and glutathione in the para- and endodormancy phases. Consistent trends in the content of reducing sugars can be elucidated for the different phenophases of dormancy, too. The untargeted approach with principle component analysis (PCA) clearly differentiates the different timings of dormancy giving further valuable information.}, language = {en} } @misc{YangBaldermannWatanabe2013, author = {Yang, Ziyin and Baldermann, Susanne and Watanabe, Naoharu}, title = {Recent studies of the volatile compounds in tea}, series = {FOOD RESEARCH INTERNATIONAL}, volume = {53}, journal = {FOOD RESEARCH INTERNATIONAL}, number = {2}, publisher = {ELSEVIER SCIENCE BV}, address = {AMSTERDAM}, issn = {0963-9969}, doi = {10.1016/j.foodres.2013.02.011}, pages = {585 -- 599}, year = {2013}, abstract = {Tea aroma is one of the most important factors affecting the character and quality of tea. Recent advances in methods and instruments for separating and identifying volatile compounds have led to intensive investigations of volatile compounds in tea. These studies have resulted in a number of insightful and useful discoveries. Here we summarize the recent investigations into tea volatile compounds: the volatile compounds in tea products; the metabolic pathways of volatile formation in tea plants and the glycosidically-bound volatile compounds in tea; and the techniques used for studying such compounds. Finally, we discuss practical applications for the improvement of aroma and flavor quality in teas. (C) 2013 Elsevier Ltd. All rights reserved.}, language = {en} } @misc{WitzelNeugartRuppeletal.2015, author = {Witzel, Katja and Neugart, Susanne and Ruppel, Silke and Schreiner, Monika and Wiesner, Melanie and Baldermann, Susanne}, title = {Recent progress in the use of 'omics technologies in brassicaceous vegetables}, series = {Frontiers in plant science}, journal = {Frontiers in plant science}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-406479}, pages = {14}, year = {2015}, abstract = {Continuing advances in 'omics methodologies and instrumentation is enhancing the understanding of how plants cope with the dynamic nature of their growing environment. 'Omics platforms have been only recently extended to cover horticultural crop species. Many of the most widely cultivated vegetable crops belong to the genus Brassica: these include plants grown for their root (turnip, rutabaga/swede), their swollen stem base (kohlrabi), their leaves (cabbage, kale, pak choi) and their inflorescence (cauliflower, broccoli). Characterization at the genome, transcript, protein and metabolite levels has illustrated the complexity of the cellular response to a whole series of environmental stresses, including nutrient deficiency, pathogen attack, heavy metal toxicity, cold acclimation, and excessive and sub optimal irradiation. This review covers recent applications of omics technologies to the brassicaceous vegetables, and discusses future scenarios in achieving improvements in crop end-use quality.}, language = {en} } @misc{WitzelNeugartRuppeletal.2015, author = {Witzel, Katja and Neugart, Susanne and Ruppel, Silke and Schreiner, Monika and Wiesner, Melanie and Baldermann, Susanne}, title = {Recent progress in the use of 'omics technologies in brassicaceous vegetables}, series = {Frontiers in plant science}, volume = {6}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2015.00244}, pages = {14}, year = {2015}, abstract = {Continuing advances in 'omics methodologies and instrumentation is enhancing the understanding of how plants cope with the dynamic nature of their growing environment. 'Omics platforms have been only recently extended to cover horticultural crop species. Many of the most widely cultivated vegetable crops belong to the genus Brassica: these include plants grown for their root (turnip, rutabaga/swede), their swollen stem base (kohlrabi), their leaves (cabbage, kale, pak choi) and their inflorescence (cauliflower, broccoli). Characterization at the genome, transcript, protein and metabolite levels has illustrated the complexity of the cellular response to a whole series of environmental stresses, including nutrient deficiency, pathogen attack, heavy metal toxicity, cold acclimation, and excessive and sub optimal irradiation. This review covers recent applications of omics technologies to the brassicaceous vegetables, and discusses future scenarios in achieving improvements in crop end-use quality.}, language = {en} } @article{RailaSchweigertStanitznigetal.2017, author = {Raila, Jens and Schweigert, Florian J. and Stanitznig, A. and Lambacher, B. and Franz, S. and Baldermann, Susanne and Wittek, T.}, title = {No detectable carotenoid concentrations in serum of llamas and alpacas}, series = {Journal of animal physiology and animal nutrition}, volume = {101}, journal = {Journal of animal physiology and animal nutrition}, publisher = {Wiley}, address = {Hoboken}, issn = {0931-2439}, doi = {10.1111/jpn.12638}, pages = {629 -- 634}, year = {2017}, abstract = {Carotenoids are lipid-soluble pigments and important for a variety of physiological functions. They are major dietary vitamin A precursors and act as lipophilic antioxidants in a variety of tissues and are associated with important health benefits in humans and animals. All animals must acquire carotenoids from their diet, but to our knowledge, there are no studies investigating the intestinal carotenoid absorption and their blood concentrations in New World camelids. The present study aimed to assess the serum concentrations of selected carotenoids in llamas (n=13) and alpacas (n=27). Serum carotenoids as well as retinol (vitamin A) and -tocopherol (vitamin E) were determined by high-performance liquid chromatography coupled with mass spectrometry and these were unable to detect any carotenoids (- and -carotene, - and -cryptoxanthin, lutein, zeaxanthin, lycopene) in the samples. The concentrations of retinol in alpacas (2.89 +/- 1.13mol/l; mean +/- SD) were higher (p=0.024) than those found in llamas (2.05 +/- 0.87mol/l); however, the concentrations of -tocopherol were not significantly (p=0.166) different (llamas: 3.98 +/- 1.83mol/l; alpacas: 4.95 +/- 2.14mol/l). The results show that both llamas and alpacas are not able to absorb intact carotenoids, but efficiently convert provitamin A carotenoids to retinol.}, language = {en} } @article{KlopschBaldermannVossetal.2019, author = {Klopsch, Rebecca and Baldermann, Susanne and Voss, Alexander and Rohn, Sascha and Schreiner, Monika and Neugart, Susanne}, title = {Narrow-Banded UVB Affects the Stability of Secondary Plant Metabolites in Kale (Brassica oleracea var. sabellica) and Pea (Pisum sativum) Leaves Being Added to Lentil Flour Fortified Bread: A Novel Approach for Producing Functional Foods}, series = {Foods}, volume = {8}, journal = {Foods}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {2304-8158}, doi = {10.3390/foods8100427}, pages = {20}, year = {2019}, abstract = {Young kale and pea leaves are rich in secondary plant metabolites (SPMs) whose profile can be affected by ultraviolet B (UVB) radiation. Carotenoids and flavonoids in kale and pea exposed to narrow-banded UVB, produced by innovative light-emitting diodes (LEDs), and subsequently used for breadmaking were investigated for the first time, thus combining two important strategies to increase the SPMs intake. Breads were also fortified with protein-rich lentil flour. Antioxidant activity in the 'vegetable breads' indicated health-promoting effects. Lentil flour increased the antioxidant activity in all of the 'vegetable breads'. While carotenoids and chlorophylls showed a minor response to UVB treatment, kaempferol glycosides decreased in favor of increasing quercetin glycosides, especially in kale. Additionally, breadmaking caused major decreases in carotenoids and a conversion of chlorophyll to bioactive degradation products. In 'kale breads' and 'pea breads', 20\% and 84\% of flavonoid glycosides were recovered. Thus, kale and pea leaves seem to be suitable natural ingredients for producing innovative Functional Foods.}, language = {en} } @article{ZhouZhangGuietal.2015, author = {Zhou, Ying and Zhang, Ling and Gui, Jiadong and Dong, Fang and Cheng, Sihua and Mei, Xin and Zhang, Linyun and Li, Yongqing and Su, Xinguo and Baldermann, Susanne and Watanabe, Naoharu and Yang, Ziyin}, title = {Molecular Cloning and Characterization of a Short-Chain Dehydrogenase Showing Activity with Volatile Compounds Isolated from Camellia sinensis}, series = {Plant molecular biology reporter}, volume = {33}, journal = {Plant molecular biology reporter}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0735-9640}, doi = {10.1007/s11105-014-0751-z}, pages = {253 -- 263}, year = {2015}, abstract = {Camellia sinensis synthesizes and emits a large variety of volatile phenylpropanoids and benzenoids (VPB). To investigate the enzymes involved in the formation of these VPB compounds, a new C. sinensis short-chain dehydrogenase/reductase (CsSDR) was isolated, cloned, sequenced, and functionally characterized. The complete open reading frame of CsSDR contains 996 nucleotides with a calculated protein molecular mass of 34.5 kDa. The CsSDR recombinant protein produced in Escherichia coli exhibited dehydrogenase-reductase activity towards several major VPB compounds in C. sinensis flowers with a strong preference for NADP/NADPH co-factors, and showed affinity for (R)/(S)-1-phenylethanol (1PE), phenylacetaldehyde, benzaldehyde, and benzyl alcohol, and no affinity for acetophenone (AP) and 2-phenylethanol. CsSDR showed the highest catalytic efficiency towards (R)/(S)-1PE. Furthermore, the transient expression analysis in Nicotiana benthamiana plants validated that CsSDR could convert 1PE to AP in plants. CsSDR transcript level was not significantly affected by floral development and some jasmonic acid-related environmental stress, and CsSDR transcript accumulation was detected in most floral tissues such as receptacle and anther, which were main storage locations of VPB compounds. Our results indicate that CsSDR is expressed in C. sinensis flowers and is likely to contribute to a number of floral VPB compounds including the 1PE derivative AP.}, language = {en} } @article{ShiXieQietal.2019, author = {Shi, Jiang and Xie, Dongchao and Qi, Dandan and Peng, Qunhua and Chen, Zongmao and Schreiner, Monika and Lin, Zhi and Baldermann, Susanne}, title = {Methyl jasmonate-induced changes of flavor profiles during the processing of Green, Oolong, and Black Tea}, series = {Frontiers in plant science}, volume = {10}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2019.00781}, pages = {13}, year = {2019}, abstract = {Tea aroma is one of the most important factors affecting the character and quality of tea. Here we describe the practical application of methyl jasmonate (MeJA) to improve the aroma quality of teas. The changes of selected metabolites during crucial tea processing steps, namely, withering, fixing and rolling, and fermentation, were analyzed. MeJA treatment of tea leaves (12, 24, 48, and 168 h) greatly promotes the aroma quality of green, oolong, and black tea products when comparing with untreated ones (0 h) and as confirmed by sensory evaluation. MeJA modulates the aroma profiles before, during, and after processing. Benzyl alcohol, benzaldehyde, 2-phenylethyl alcohol, phenylacetaldehyde, and trans-2-hexenal increased 1.07- to 3-fold in MeJA-treated fresh leaves and the first two maintained at a higher level in black tea and the last two in green tea. This correlates with a decrease in aromatic amino acids by more than twofold indicating a direct relation to tryptophan- and phenylalanine-derived volatiles. MeJA-treated oolong tea was characterized by a more pleasant aroma. Especially the terpenoids linalool and oxides, geraniol, and carvenol increased by more than twofold.}, language = {en} } @misc{ErrardUlrichsKuehneetal.2016, author = {Errard, Audrey and Ulrichs, Christian and K{\"u}hne, Stefan and Mewis, Inga and Mishig, Narantuya and Maul, Ronald and Drungowski, Mario and Parolin, Pia and Schreiner, Monika and Baldermann, Susanne}, title = {Metabolite profiling reveals a specific response in tomato to predaceous Chrysoperla carnea larvae and herbivore(s)-predator interactions with the generalist pests Tetranychus urticae and Myzus persicae}, series = {Frontiers in plant science}, journal = {Frontiers in plant science}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407913}, pages = {14}, year = {2016}, abstract = {The spider mite Tetranychus urticae Koch and the aphid Myzus persicae (Sulzer) both infest a number of economically significant crops, including tomato (Solanurn lycopersicum). Although used for decades to control pests, the impact of green lacewing larvae Chrysoperla carnea (Stephens) on plant biochemistry was not investigated. Here, we used profiling methods and targeted analyses to explore the impact of the predator and herbivore(s)-predator interactions on tomato biochemistry. Each pest and pest -predator combination induced a characteristic metabolite signature in the leaf and the fruit thus, the plant exhibited a systemic response. The treatments had a stronger impact on non-volatile metabolites including abscisic acid and amino acids in the leaves in comparison with the fruits. In contrast, the various biotic factors had a greater impact on the carotenoids in the fruits. We identified volatiles such as myrcene and alpha-terpinene which were induced by pest -predator interactions but not by single species, and we demonstrated the involvement of the phytohormone abscisic acid in tritrophic interactions for the first time. More importantly, C. carnea larvae alone impacted the plant metabolome, but the predator did not appear to elicit particular defense pathways on its own. Since the presence of both C. carnea larvae and pest individuals elicited volatiles which were shown to contribute to plant defense, C. carnea larvae could therefore contribute to the reduction of pest infestation, not only by its preying activity, but also by priming responses to generalist herbivores such as T urticae and M. persicae. On the other hand, the use of C. carnea larvae alone did not impact carotenoids thus, was not prejudicial to the fruit quality. The present piece of research highlights the specific impact of predator and tritrophic interactions with green lacewing larvae, spider mites, and aphids on different components of the tomato primary and secondary metabolism for the first time, and provides cues for further in-depth studies aiming to integrate entomological approaches and plant biochemistry.}, language = {en} } @article{ErrardUlrichsKuehneetal.2016, author = {Errard, Audrey and Ulrichs, Christian and K{\"u}hne, Stefan and Mewis, Inga and Mishig, Narantuya and Maul, Ronald and Drungowski, Mario and Parolin, Pia and Schreiner, Monika and Baldermann, Susanne}, title = {Metabolite Profiling Reveals a Specific Response in Tomato to Predaceous Chrysoperla carnea Larvae and Herbivore(s)-Predator Interactions with the Generalist Pests Tetranychus urticae and Myzus persicae}, series = {Frontiers in plant science}, volume = {7}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2016.01256}, pages = {456 -- +}, year = {2016}, abstract = {The spider mite Tetranychus urticae Koch and the aphid Myzus persicae (Sulzer) both infest a number of economically significant crops, including tomato (Solanurn lycopersicum). Although used for decades to control pests, the impact of green lacewing larvae Chrysoperla carnea (Stephens) on plant biochemistry was not investigated. Here, we used profiling methods and targeted analyses to explore the impact of the predator and herbivore(s)-predator interactions on tomato biochemistry. Each pest and pest -predator combination induced a characteristic metabolite signature in the leaf and the fruit thus, the plant exhibited a systemic response. The treatments had a stronger impact on non-volatile metabolites including abscisic acid and amino acids in the leaves in comparison with the fruits. In contrast, the various biotic factors had a greater impact on the carotenoids in the fruits. We identified volatiles such as myrcene and alpha-terpinene which were induced by pest -predator interactions but not by single species, and we demonstrated the involvement of the phytohormone abscisic acid in tritrophic interactions for the first time. More importantly, C. carnea larvae alone impacted the plant metabolome, but the predator did not appear to elicit particular defense pathways on its own. Since the presence of both C. carnea larvae and pest individuals elicited volatiles which were shown to contribute to plant defense, C. carnea larvae could therefore contribute to the reduction of pest infestation, not only by its preying activity, but also by priming responses to generalist herbivores such as T urticae and M. persicae. On the other hand, the use of C. carnea larvae alone did not impact carotenoids thus, was not prejudicial to the fruit quality. The present piece of research highlights the specific impact of predator and tritrophic interactions with green lacewing larvae, spider mites, and aphids on different components of the tomato primary and secondary metabolism for the first time, and provides cues for further in-depth studies aiming to integrate entomological approaches and plant biochemistry.}, language = {en} } @article{YadavDreherAthmeretal.2019, author = {Yadav, Heena and Dreher, Doroth{\´e}e and Athmer, Benedikt and Porzel, Andrea and Gavrin, Aleksandr and Baldermann, Susanne and Tissier, Alain and Hause, Bettina}, title = {Medicago TERPENE SYNTHASE 10 is involved in defense against an oomycete root pathogen}, series = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, volume = {180}, journal = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, number = {3}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {0032-0889}, doi = {10.1104/pp.19.00278}, pages = {1598 -- 1613}, year = {2019}, abstract = {In nature, plants interact with numerous beneficial or pathogenic soil-borne microorganisms. Plants have developed various defense strategies to expel pathogenic microbes, some of which function soon after pathogen infection. We used Medicago truncatula and its oomycete pathogen Aphanomyces euteiches to elucidate early responses of the infected root. A. euteiches causes root rot disease in legumes and is a limiting factor in legume production. Transcript profiling of seedlings and adult plant roots inoculated with A. euteiches zoospores for 2 h revealed specific upregulation of a gene encoding a putative sesquiterpene synthase (M. truncatula TERPENE SYNTHASE 10 [MtTPS10]) in both developmental stages. MtTPS10 was specifically expressed in roots upon oomycete infection. Heterologous expression of MtTPS10 in yeast led to production of a blend of sesquiterpenes and sesquiterpene alcohols, with NMR identifying a major peak corresponding to himalachol. Moreover, plants carrying a tobacco (Nicotiana tabacum) retrotransposon Tnt1 insertion in MtTPS10 lacked the emission of sesquiterpenes upon A. euteiches infection, supporting the assumption that the identified gene encodes a multiproduct sesquiterpene synthase. Mttps10 plants and plants with reduced MtTPS10 transcript levels created by expression of an MtTPS10-artificial microRNA in roots were more susceptible to A. euteiches infection than were the corresponding wild-type plants and roots transformed with the empty vector, respectively. Sesquiterpenes produced by expression of MtTPS10 in yeast also inhibited mycelial growth and A. euteiches zoospore germination. These data suggest that sesquiterpene production in roots by MtTPS10 plays a previously unrecognized role in the defense response of M. truncatula against A. euteiches.}, language = {en} } @misc{WiesnerReinholdSchreinerBaldermannetal.2017, author = {Wiesner-Reinhold, Melanie and Schreiner, Monika and Baldermann, Susanne and Schwarz, Dietmar and Hanschen, Franziska S. and Kipp, Anna Patricia and Rowan, Daryl D. and Bentley-Hewitt, Kerry L. and McKenzie, Marian J.}, title = {Mechanisms of Selenium Enrichment and Measurement in Brassicaceous Vegetables, and Their Application to Human Health}, series = {Frontiers in plant science}, volume = {8}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2017.01365}, pages = {20}, year = {2017}, abstract = {Selenium (Se) is an essential micronutrient for human health. Se deficiency affects hundreds of millions of people worldwide, particularly in developing countries, and there is increasing awareness that suboptimal supply of Se can also negatively affect human health. Selenium enters the diet primarily through the ingestion of plant and animal products. Although, plants are not dependent on Se they take it up from the soil through the sulphur (S) uptake and assimilation pathways. Therefore, geographic differences in the availability of soil Se and agricultural practices have a profound influence on the Se content of many foods, and there are increasing efforts to biofortify crop plants with Se. Plants from the Brassicales are of particular interest as they accumulate and synthesize Se into forms with additional health benefits, such as methylselenocysteine (MeSeCys). The Brassicaceae are also well-known to produce the glucosinolates; S-containing compounds with demonstrated human health value. Furthermore, the recent discovery of the selenoglucosinolates in the Brassicaceae raises questions regarding their potential bioefficacy. In this review we focus on Se uptake and metabolism in the Brassicaceae in the context of human health, particularly cancer prevention and immunity. We investigate the close relationship between Se and S metabolism in this plant family, with particular emphasis on the selenoglucosinolates, and consider the methodologies available for identifying and quantifying further novel Se-containing compounds in plants. Finally, we summarize the research of multiple groups investigating biofortification of the Brassicaceae and discuss which approaches might be most successful for supplying Se deficient populations in the future.}, language = {en} } @article{FredeEbertKippetal.2017, author = {Frede, Katja and Ebert, Franziska and Kipp, Anna Patricia and Schwerdtle, Tanja and Baldermann, Susanne}, title = {Lutein Activates the Transcription Factor Nrf2 in Human Retinal Pigment Epithelial Cells}, series = {Journal of agricultural and food chemistry : a publication of the American Chemical Society}, volume = {65}, journal = {Journal of agricultural and food chemistry : a publication of the American Chemical Society}, publisher = {American Chemical Society}, address = {Washington}, issn = {0021-8561}, doi = {10.1021/acs.jafc.7b01929}, pages = {5944 -- 5952}, year = {2017}, abstract = {The degeneration of the retinal pigment epithelium caused by oxidative damage is a stage of development in age related macular degeneration (AMD). The carotenoid lutein is a major macular pigment that may reduce the incidence and progression of AMD, but the underlying mechanism is currently not fully understood. Carotenoids are known to be direct antioxidants. However, carotenoids can also activate cellular pathways resulting in indirect antioxidant effects. Here, we investigate the influence of lutein on the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) target genes in human retinal pigment epithelial cells (ARPE-19 cells) using lutein-loaded Tween40 micelles. The micelles were identified as a suitable delivery system since they were nontoxic in APRE-19 cells up to 0.04\% Tween40 and led to a cellular lutein accumulation of 62 mu M +/- 14 mu M after 24 h. Lutein significantly enhanced Nrf2 translocation to the nucleus 1.5 +/- 0.4-fold compared to that of unloaded micelles after 4 h. Furthermore, lutein treatment for 24 h significantly increased the transcripts of NAD(P)H:quinone oxidoreductase 1 (NQO1) by 1.7 +/- 0.1-fold, glutamate-cysteine ligase regulatory subunit (GCLm) by 1.4 +/- 0.1-fold, and heme oxygenase-1 (HO-1) by 1.8 +/- 0.3-fold. Moreover, we observed a significant enhancement of NQO1 activity by 1.2 +/- 0.1-fold. Collectively, this study indicates that lutein not only serves as a direct antioxidant but also activates Nrf 2 in ARPE-19 cells.}, language = {en} } @article{FredeSchreinerBaldermann2019, author = {Frede, Katja and Schreiner, Monika and Baldermann, Susanne}, title = {Light quality-induced changes of carotenoid composition in pak choi Brassica rapa ssp. chinensis}, volume = {193}, publisher = {Elsevier}, address = {Lausanne}, issn = {1011-1344}, doi = {10.1016/j.jphotobiol.2019.02.001}, pages = {18 -- 30}, year = {2019}, abstract = {Carotenoids as part of the photosystems are crucial for their assembly, light-harvesting, and photoprotection. Light of different wavelengths impacts the composition and structure of photosystems, thus offering the possibility to influence the carotenoid concentrations and composition in photosystems by illumination with specific narrow-banded light spectra. Key components involved in the regulation of gene transcription are still poorly characterized, particularly in leafy vegetables as compared to model plants. In particular, the effect of different light qualities and its connection to redox control mechanisms, which also determine the photosystem composition and structure, is not yet well understood. Furthermore, light quality effects are species-dependent, and thus, increase the need to perform research on individual vegetable species such as pak choi Brassica rapa ssp. chinensis. Here, we investigated the carotenoid concentrations and composition of pak choi sprouts grown for 6 days under blue, red, or white light emitting diodes (LEDs) as light source. After 6 days, the total carotenoid content was the highest under white and slightly reduced under blue or red LEDs. Blue, red, and white light differently affected the carotenoid composition mainly due to variations of the beta-carotene content which could be correlated to changes in the transcript levels of beta-carotene hydroxylase 1 (beta-OHASE1). Further investigations implied a redox controlled gene expression of beta-OHASE1. In addition, transcription factors related to light signaling and the circadian clock differed in their transcriptional abundance after exposure to blue and red light. RNA-Seq analysis also revealed increased transcript levels of genes encoding the outer antenna complex of photosystem II under red compared to blue light, indicating an adjustment of the photosystems to the different light qualities which possibly contributed to the alternations in the carotenoid content and composition.}, language = {en} } @article{MageneyBaldermannAlbach2016, author = {Mageney, Vera and Baldermann, Susanne and Albach, Dirk C.}, title = {Intraspecific Variation in Carotenoids of Brassica oleracea var. sabellica}, series = {Journal of agricultural and food chemistry : a publication of the American Chemical Society}, volume = {64}, journal = {Journal of agricultural and food chemistry : a publication of the American Chemical Society}, publisher = {American Chemical Society}, address = {Washington}, issn = {0021-8561}, doi = {10.1021/acs.jafc.6b00268}, pages = {3251 -- 3257}, year = {2016}, abstract = {Carotenoids are best known as a source of natural antioxidants. Physiologically, carotenoids are part of the photoprotection in plants as they act as scavengers of reactive oxygen species (ROS). An important source of carotenoids in European food is Brassica oleracea. Focusing on the most abundant carotenoids, we estimated the contents of beta-carotene, (9Z)-neoxanthin, zeaxanthin, and lutein as well as those of chlorophylls a and b to assess their variability in Brassica oleracea var. sabellica. Our analyses included more than 30 cultivars categorized in five distinct sets grouped according to morphological characteristics or geographical origin. Our results demonstrated specific carotenoid patterns characteristic for American, Italian, and red-colored kale cultivars. Moreover, we demonstrated a tendency of high zeaxanthin proportions under traditional harvest conditions, which accord to low-temperature regimes. We also compared the carotenoid patterns of self-generated hybrid lines. Corresponding findings indicated that crossbreeding has a high potential for carotenoid content optimization in kale.}, language = {en} } @article{ErrardBaldermannKuehneetal.2015, author = {Errard, Audrey and Baldermann, Susanne and K{\"u}hne, Stefan and Mewis, Inga and Peterkin, John and Ulrichs, Christian}, title = {Interspecific Interactions Affect Pests Differently}, series = {Gesunde Pflanzen : Pflanzenschutz, Verbraucherschutz, Umweltschutz}, volume = {67}, journal = {Gesunde Pflanzen : Pflanzenschutz, Verbraucherschutz, Umweltschutz}, number = {4}, publisher = {Springer}, address = {New York}, issn = {0367-4223}, doi = {10.1007/s10343-015-0349-x}, pages = {183 -- 190}, year = {2015}, abstract = {Spider mites, Tetranychus urticae Koch (Acari: Tetranychidae) and aphids, Myzus persicae (Sulzer) (Pterygota: Aphididae) share many host-plants, similar abiotic conditions and are world-wide distributed therefore, they often occur simultaneously in crops. However, the effects of interspecific interactions on the biology of these pests were poorly investigated. To test if they perform differently under intra- versus inter-specific interactions, host-plant acceptance, fecundity, survival, the total number of individuals and the rate of increase in the number of individuals were studied doing non-choice bioassays under laboratory conditions with leaf discs of tomato (Solanum lycopersicum L. 'Ailsa Craig'), pak choi (Brassica rapa L. var. chinensis 'Black Behi') and bean (Phaseolus vulgaris L. 'Saxa'). Alone, the pests differently accepted the host-plants. The acceptance of pak choi by spider mites was lower under interspecific interactions and higher on tomato for aphids. In general, spider mites' performance decreased when aphids were present; the fecundity, the number of individuals and the rate of increase being significantly lower on pak choi and bean. In contrast, aphids produced more offspring in the presence of spider mites, leading to a higher rate of increase in aphids individuals on tomato and pak choi. Thus, pest' responses to interspecific interactions is species-specific.}, language = {en} } @article{NgweneNeugartBaldermannetal.2017, author = {Ngwene, Benard and Neugart, Susanne and Baldermann, Susanne and Ravi, Beena and Schreiner, Monika}, title = {Intercropping Induces Changes in Specific Secondary Metabolite Concentration in Ethiopian Kale (Brassica carinata) and African Nightshade (Solanum scabrum) under Controlled Conditions}, series = {Frontiers in plant science}, volume = {8}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2017.01700}, pages = {12}, year = {2017}, abstract = {Intercropping is widespread in small-holder farming systems in tropical regions and is also practiced in the cultivation of indigenous vegetables, to alleviate the multiple burdens of malnutrition. Due to interspecific competition and/or complementation between intercrops, intercropping may lead to changes in plants accumulation of minerals and secondary metabolites and hence, alter nutritional quality for consumers. Intercropping aims to intensify land productivity, while ensuring that nutritional quality is not compromised. This study aimed to investigate changes in minerals and secondary plant metabolites in intercropped Brassica carinata and Solanum scabrum, two important African indigenous vegetables, and evaluated the suitability of this combination for dryer areas. B. carinata and S. scabrum were grown for 6 weeks under controlled conditions in a greenhouse trial. Large rootboxes (8000 cm(3) volume) were specifically designed for this experiment. Each rootbox was planted with two plants, either of the same plant species (mono) or one of each plant species (mixed). A quartz sand/soil substrate was used and fertilized adequately for optimal plant growth. During the last 4 weeks of the experiment, the plants were either supplied with optimal (65\% WHC) or low (30\% WHC) irrigation, to test the effect of a late-season drought. Intercropping increased total glucosinolate content in B. carinata, while maintaining biomass production and the contents of other health related minerals in both B. carinata and S. scabrum. Moreover, low irrigation led to an increase in carotene accumulation in both mono and intercropped S. scabrum, but not in B. carinata, while the majority of kaempferol glycosides and hydroxycinnamic acid derivatives of both species were decreased by intercropping and drought treatment. This study indicates that some health-related phytochemicals can be modified by intercropping or late-season drought, but field validation of these results is necessary before definite recommendation can be made to stakeholders.}, language = {en} } @article{NeugartBaldermannNgweneetal.2017, author = {Neugart, Susanne and Baldermann, Susanne and Ngwene, Benard and Wesonga, John and Schreiner, Monika}, title = {Indigenous leafy vegetables of Eastern Africa - A source of extraordinary secondary plant metabolites}, series = {Food research international}, volume = {100}, journal = {Food research international}, publisher = {Elsevier}, address = {Amsterdam}, organization = {The e-ASTROGAM Collaboration}, issn = {0963-9969}, doi = {10.1016/j.foodres.2017.02.014}, pages = {411 -- 422}, year = {2017}, abstract = {Indigenous African leafy vegetables vary enormously in their secondary plant metabolites whereat genus and the species have a great impact. In African nightshade (Solanum scabrum), spiderplant (Cleome gynandra), amaranth (Amaranthus cruentus), cowpea (Vigna unguiculata), Ethiopian kale (Brassica carinata) and common kale (Brassica oleracea) the specific secondary metabolite profile was elucidated and gained detailed data about carotenoids, chlorophylls, glucosinolates and phenolic compounds all having an appropriate contribution to health beneficial properties of indigenous African leafy vegetables. Exemplarily, various quercetin glycosides such as quercetin-3-rutinoside occur in high concentrations in African nightshade, spiderplant, and amaranth between similar to 1400-3300 mu g/g DW. Additionally the extraordinary hydroxydnnamic acid derivatives such as glucaric isomers and isocitric acid isomers are found especially in amaranth (up to similar to 1250 mu g/g DW) and spiderplant (up to 120 mu g/g DW). Carotenoids concentrations are high in amaranth (up to 101.7 mu g/g DW) and spiderplants (up to 64.7 mu g/g DW) showing high concentrations of beta-carotene, the pro-vitamin A. In contrast to the ubiquitous occurring phenolics and carotenoids, glucosinolates are only present in the Brassicales species Ethiopian kale, common kale and spiderplant characterized by diverse glucosinolate profiles. Generally, the consumption of a variety of these indigenous African leafy vegetables can be recommended to contribute to different benefits such as antioxidant activity, increase pro-vitamin A and anticancerogenic compounds in a healthy diet. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{SchmiedeskampSchreinerBaldermann2022, author = {Schmiedeskamp, Amy and Schreiner, Monika and Baldermann, Susanne}, title = {Impact of cultivar selection and thermal processing by air drying, air frying, and deep frying on the carotenoid content and stability and antioxidant capacity in carrots (Daucus carota L.)}, series = {Journal of agricultural and food chemistry : a publication of the American Chemical Society}, volume = {70}, journal = {Journal of agricultural and food chemistry : a publication of the American Chemical Society}, number = {5}, publisher = {American Chemical Society}, address = {Washington}, issn = {0021-8561}, doi = {10.1021/acs.jafc.1c05718}, pages = {1629 -- 1639}, year = {2022}, abstract = {Epidemiological data suggest that consuming diets rich in carotenoids can reduce the risk of developing several non-communicable diseases. Thus, we investigated the extent to which carotenoid contents of foods can be increased by the choice of food matrices with naturally high carotenoid contents and thermal processing methods that maintain their stability. For this purpose, carotenoids of 15 carrot (Daucus carota L.) cultivars of different colors were assessed with UHPLC-DAD-ToF-MS. Additionally, the processing effects of air drying, air frying, and deep frying on carotenoid stability were applied. Cultivar selection accounted for up to 12.9-fold differences in total carotenoid content in differently colored carrots and a 2.2-fold difference between orange carrot cultivars. Air frying for 18 and 25 min and deep frying for 10 min led to a significant decrease in total carotenoid contents. TEAC assay of lipophilic extracts showed a correlation between carotenoid content and antioxidant capacity in untreated carrots.}, language = {en} } @article{OlayideLargeStridhetal.2020, author = {Olayide, Priscilla and Large, Annabel and Stridh, Linnea and Rabbi, Ismail and Baldermann, Susanne and Stavolone, Livia and Alexandersson, Erik}, title = {Gene expression and metabolite profiling of thirteen Nigerian cassava landraces to elucidate starch and carotenoid composition}, series = {Agronomy}, volume = {10}, journal = {Agronomy}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2073-4395}, doi = {10.3390/agronomy10030424}, pages = {1 -- 16}, year = {2020}, abstract = {The prevalence of vitamin A deficiency in sub-Saharan Africa necessitates effective approaches to improve provitamin A content of major staple crops. Cassava holds much promise for food security in sub-Saharan Africa, but a negative correlation between beta-carotene, a provitamin A carotenoid, and dry matter content has been reported, which poses a challenge to cassava biofortification by conventional breeding. To identify suitable material for genetic transformation in tissue culture with the overall aim to increase beta-carotene and maintain starch content as well as better understand carotenoid composition, root and leaf tissues from thirteen field-grown cassava landraces were analyzed for agronomic traits, carotenoid, chlorophyll, and starch content. The expression of five genes related to carotenoid biosynthesis were determined in selected landraces. Analysis revealed a weak negative correlation between starch and beta-carotene content, whereas there was a strong positive correlation between root yield and many carotenoids including beta-carotene. Carotenoid synthesis genes were expressed in both white and yellow cassava roots, but phytoene synthase 2 (PSY2), lycopene-epsilon-cyclase (LCY epsilon), and beta-carotenoid hydroxylase (CHY beta) expression were generally higher in yellow roots. This study identified lines with reasonably high content of starch and beta-carotene that could be candidates for biofortification by further breeding or plant biotechnological means.}, language = {en} } @misc{OlayideLargeStridhetal.2020, author = {Olayide, Priscilla and Large, Annabel and Stridh, Linnea and Rabbi, Ismail and Baldermann, Susanne and Stavolone, Livia and Alexandersson, Erik}, title = {Gene expression and metabolite profiling of thirteen Nigerian cassava landraces to elucidate starch and carotenoid composition}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {3}, issn = {1866-8372}, doi = {10.25932/publishup-51783}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-517834}, pages = {18}, year = {2020}, abstract = {The prevalence of vitamin A deficiency in sub-Saharan Africa necessitates effective approaches to improve provitamin A content of major staple crops. Cassava holds much promise for food security in sub-Saharan Africa, but a negative correlation between beta-carotene, a provitamin A carotenoid, and dry matter content has been reported, which poses a challenge to cassava biofortification by conventional breeding. To identify suitable material for genetic transformation in tissue culture with the overall aim to increase beta-carotene and maintain starch content as well as better understand carotenoid composition, root and leaf tissues from thirteen field-grown cassava landraces were analyzed for agronomic traits, carotenoid, chlorophyll, and starch content. The expression of five genes related to carotenoid biosynthesis were determined in selected landraces. Analysis revealed a weak negative correlation between starch and beta-carotene content, whereas there was a strong positive correlation between root yield and many carotenoids including beta-carotene. Carotenoid synthesis genes were expressed in both white and yellow cassava roots, but phytoene synthase 2 (PSY2), lycopene-epsilon-cyclase (LCY epsilon), and beta-carotenoid hydroxylase (CHY beta) expression were generally higher in yellow roots. This study identified lines with reasonably high content of starch and beta-carotene that could be candidates for biofortification by further breeding or plant biotechnological means.}, language = {en} } @article{MurataKaiTsutsuietal.2012, author = {Murata, Ariaki and Kai, Kenji and Tsutsui, Ken and Takeuchi, Jun and Todoroki, Yasushi and Furihata, Kazuo and Yokoyama, Mineyuki and Baldermann, Susanne and Watanabe, Naoharu}, title = {Enantio-selective reduction of the flowering related compound KODA and its analogues in Pharbitis nil cv. Violet}, series = {Tetrahedron}, volume = {68}, journal = {Tetrahedron}, number = {27-28}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2012.04.077}, pages = {5583 -- 5589}, year = {2012}, abstract = {Plant oxylipins are an important class of signaling molecules in plants. The cyclic adducts of epinephrine or norepinephrine with the naturally occurring oxylipin (12Z,15Z)-9-hydroxy-10-oxo-octadeca-12,15-dienoic acid (KODA, 1) or its synthetic analogues (2-6) have been reported to possess flower-inducing activity toward Lemna paucicostata. By in vivo and in vitro experiments with seedlings of Pharbitis nil cv. Violet carbonyl groups of the alpha-ketols (1 and 3) and the ketones (7 and 9) were enantio-selectively reduced to give their corresponding vicinal diols (2 and 4) and alcohols (8 and 10). The stereochemistry at the oxymethine carbon was determined based on the long range C H coupling constants and the modified Mosher's method. Orientation of the adjacent hydroxyl group in (1 and 3) did not affect the enantio-selectivity, whereas the conversion was slightly affected and higher yields were obtained with the R-enantiomers of the alpha-ketols.}, language = {en} } @article{HeinzeHanschenWiesnerReinholdetal.2018, author = {Heinze, Mandy and Hanschen, Franziska S. and Wiesner-Reinhold, Melanie and Baldermann, Susanne and Gr{\"a}fe, Jan and Schreiner, Monika and Neugart, Susanne}, title = {Effects of Developmental Stages and Reduced UVB and Low UV Conditions on Plant Secondary Metabolite Profiles in Pak Choi (Brassica rapa subsp chinensis)}, series = {Journal of agricultural and food chemistry : a publication of the American Chemical Society}, volume = {66}, journal = {Journal of agricultural and food chemistry : a publication of the American Chemical Society}, number = {7}, publisher = {American Chemical Society}, address = {Washington}, issn = {0021-8561}, doi = {10.1021/acs.jafc.7b03996}, pages = {1678 -- 1692}, year = {2018}, abstract = {Pak choi (Brassica rapa subsp. chinensis) is rich in secondary metabolites and contains numerous antioxidants, including flavonoids; hydroxycinnamic acids; carotenoids; chlorophylls; and glucosinolates, which can be hydrolyzed to epithionitriles, nitriles, or isothiocyanates. Here, we investigate the effect of reduced exposure to ultraviolet B (UVB) and UV (UVA and UVB) light at four different developmental stages of pak choi. We found that both the plant morphology and secondary metabolite profiles were affected by reduced exposure to UVB and UV, depending on the plant's developmental stage. In detail, mature 15- and 30-leaf plants had higher concentrations of flavonoids, hydroxycinnamic acids, carotenoids, and chlorophylls, whereas sprouts contained high concentrations of glucosinolates and their hydrolysis products. Dry weights and leaf areas increased as a result of reduced UVB and low UV. For the flavonoids and hydroxycinnamic acids in 30-leaf plants, less complex compounds were favored, for example, sinapic acid acylated kaempferol triglycoside instead of the corresponding tetraglycoside. Moreover, also in 30-leaf plants, zeaxanthin, a carotenoid linked to protection during photosynthesis, was increased under low UV conditions. Interestingly, most glucosinolates were not affected by reduced UVB and low UV conditions. However, this study underlines the importance of 4-(methylsulfinyl)butyl glucosinolate in response to UVA and UVB exposure. Further, reduced UVB and low UV conditions resulted in higher concentrations of glucosinolate-derived nitriles. In conclusion, exposure to low doses of UVB and UV from the early to late developmental stages did not result in overall lower concentrations of plant secondary metabolites.}, language = {en} } @article{OdongoSchlotzBaldermannetal.2018, author = {Odongo, Grace Akinyi and Schlotz, Nina and Baldermann, Susanne and Neugart, Susanne and Ngwene, Benard and Schreiner, Monika and Lamy, Evelyn}, title = {Effects of Amaranthus cruentus L. on aflatoxin B1- and oxidative stress-induced DNA damage in human liver (HepG2) cells}, series = {Food bioscience}, volume = {26}, journal = {Food bioscience}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2212-4292}, doi = {10.1016/j.fbio.2018.09.006}, pages = {42 -- 48}, year = {2018}, abstract = {Amaranth is presently an underutilized crop despite its high content of micronutrients/bioactive phytochemicals and its capacity to thrive in harsh environmental condition. The present study aimed at determining the health benefits of Amaranthus cruentus L. in terms of protection against DNA damage induced by the mycotoxin aflatoxin B1 (AFB1) and oxidative stress using comet assay. The antioxidant potential was further investigated using electron paramagnetic resonance spectroscopy (EPR) and an ARE/Nrf2 reporter gene assay in vitro in a human liver model using the HepG2 cell line. Ethanolic extracts from fresh leaves grown under controlled conditions were used and additionally analyzed for their phytochemical content using liquid chromatography-mass spectrometry (LC-MS). The extracts inhibited both AFB1- and oxidative stress-induced DNA damage in a concentration dependent way with a maximum effect of 57\% and 81\%, respectively. Oxidative stress triggered using ferrous sulfate was blocked by up to 38\% (EPR); the potential to induce antioxidant enzymes using ARE/Nrf2-mediated gene expression was also confirmed. Based on these in vitro findings, further studies on the health-protecting effects of A. cruentus are encouraged to fully explore its health promoting potential and provide the scientific basis for encouraging its cultivation and consumption.}, language = {en} } @article{NeugartWiesnerReinholdFredeetal.2018, author = {Neugart, Susanne and Wiesner-Reinhold, Melanie and Frede, Katja and Jander, Elisabeth and Homann, Thomas and Rawel, Harshadrai Manilal and Schreiner, Monika and Baldermann, Susanne}, title = {Effect of Solid Biological Waste Compost on the Metabolite Profile of Brassica rapa ssp chinensis}, series = {Frontiers in plant science : FPLS}, volume = {9}, journal = {Frontiers in plant science : FPLS}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2018.00305}, pages = {13}, year = {2018}, abstract = {Large quantities of biological waste are generated at various steps within the food production chain and a great utilization potential for this solid biological waste exists apart from the current main usage for the feedstuff sector. It remains unclear how the usage of biological waste as compost modulates plant metabolites. We investigated the effect of biological waste of the processing of coffee, aronia, and hop added to soil on the plant metabolite profile by means of liquid chromatography in pak choi sprouts. Here we demonstrate that the solid biological waste composts induced specific changes in the metabolite profiles and the changes are depending on the type of the organic residues and its concentration in soil. The targeted analysis of selected plant metabolites, associated with health beneficial properties of the Brassicaceae family, revealed increased concentrations of carotenoids (up to 3.2-fold) and decreased amounts of glucosinolates (up to 4.7-fold) as well as phenolic compounds (up to 1.5-fold).}, language = {en} } @article{BiermannBachKlaeringetal.2022, author = {Biermann, Robin Tim and Bach, Linh T. and Kl{\"a}ring, Hans-Peter and Baldermann, Susanne and B{\"o}rnke, Frederik and Schwarz, Dietmar}, title = {Discovering tolerance-A computational approach to assess abiotic stress tolerance in tomato under greenhouse conditions}, series = {Frontiers in sustainable food systems}, volume = {6}, journal = {Frontiers in sustainable food systems}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2571-581X}, doi = {10.3389/fsufs.2022.878013}, pages = {12}, year = {2022}, abstract = {Modern plant cultivars often possess superior growth characteristics, but within a limited range of environmental conditions. Due to climate change, crops will be exposed to distressing abiotic conditions more often in the future, out of which heat stress is used as example for this study. To support identification of tolerant germplasm and advance screening techniques by a novel multivariate evaluation method, a diversity panel of 14 tomato genotypes, comprising Mediterranean landraces of Solanum lycopersicum, the cultivar "Moneymaker" and Solanum pennellii LA0716, which served as internal references, was assessed toward their tolerance against long-term heat stress. After 5 weeks of growth, young tomato plants were exposed to either control (22/18 degrees C) or heat stress (35/25 degrees C) conditions for 2 weeks. Within this period, water consumption, leaf angles and leaf color were determined. Additionally, gas exchange and leaf temperature were investigated. Finally, biomass traits were recorded. The resulting multivariate dataset on phenotypic plasticity was evaluated to test the hypothesis, that more tolerant genotypes have less affected phenotypes upon stress adaptation. For this, a cluster-analysis-based approach was developed that involved a principal component analysis (PCA), dimension reduction and determination of Euclidean distances. These distances served as measure for the phenotypic plasticity upon heat stress. Statistical evaluation allowed the identification and classification of homogeneous groups consisting each of four putative more or less heat stress tolerant genotypes. The resulting classification of the internal references as "tolerant" highlights the applicability of our proposed tolerance assessment model. PCA factor analysis on principal components 1-3 which covered 76.7\% of variance within the phenotypic data, suggested that some laborious measure such as the gas exchange might be replaced with the determination of leaf temperature in larger heat stress screenings. Hence, the overall advantage of the presented method is rooted in its suitability of both, planning and executing screenings for abiotic stress tolerance using multivariate phenotypic data to overcome the challenge of identifying abiotic stress tolerant plants from existing germplasms and promote sustainable agriculture for the future.}, language = {en} } @article{ChenBaldermannCaoetal.2015, author = {Chen, Xiaomin and Baldermann, Susanne and Cao, Shuyan and Lu, Yao and Liu, Caixia and Hirata, Hiroshi and Watanabe, Naoharu}, title = {Developmental patterns of emission of scent compounds and related gene expression in roses of the cultivar Rosa x hybrida cv. 'Yves Piaget'}, series = {Plant physiology and biochemistry : an official journal of the Federation of European Societies of Plant Physiology}, volume = {87}, journal = {Plant physiology and biochemistry : an official journal of the Federation of European Societies of Plant Physiology}, publisher = {Elsevier}, address = {Paris}, issn = {0981-9428}, doi = {10.1016/j.plaphy.2014.12.016}, pages = {109 -- 114}, year = {2015}, abstract = {2-Phenylethanol (2PE) and 3,5-dimethoxytoluene (DMT) are characteristic scent compounds in specific roses such as Rosa x hybrida cv. 'Yves Piaget'. We analyzed the endogenous concentrations and emission of 2PE and DMT during the unfurling process in different floral organs, as well as changes in transcript levels of the two key genes, PAR and OOMT2. The emission of both 2PE and DMT increased during floral development to reach peaks at the fully unfurled stage. The relative transcripts of PAR and OOMT2 also increased during floral development. Whereas the maximum for OOMT2 was found at the fully unfurled stage (stage 4), similar expression levels of PAR were detected at stage 4 and the senescence stage (stage 6). The results demonstrate a positive correlation between the expression levels of PAR and OOMT2 and the emission of 2PE and DMT. In addition, endogenous volatiles and relative transcripts showed tissue- and development-specific patterns. (C) 2014 Elsevier Masson SAS. All rights reserved.}, language = {en} } @article{YamamotoBaldermannYoshikawaetal.2014, author = {Yamamoto, Masayoshi and Baldermann, Susanne and Yoshikawa, Keisuke and Fujita, Akira and Mase, Nobuyuki and Watanabe, Naoharu}, title = {Determination of volatile compounds in four commercial samples of japanese green algae using solid phase microextraction gas chromatography mass spectrometry}, series = {The ScientificWorld journal}, journal = {The ScientificWorld journal}, publisher = {Hindawi Publishing Corp.}, address = {New York}, issn = {1537-744X}, doi = {10.1155/2014/289780}, pages = {8}, year = {2014}, abstract = {Green algae are of great economic importance. Seaweed is consumed fresh or as seasoning in Japan. The commercial value is determined by quality, color, and flavor and is also strongly influenced by the production area. Our research, based on solid phase microextraction gas chromatography mass spectrometry (SPME-GC-MS), has revealed that volatile compounds differ intensely in the four varieties of commercial green algae. Accordingly, 41 major volatile compounds were identified. Heptadecene was the most abundant compound from Okayama (Ulva prolifera), Tokushima (Ulva prolifera), and Ehime prefecture (Ulva linza). Apocarotenoids, such as ionones, and their derivatives were prominent volatiles in algae from Okayama (Ulva prolifera) and Tokushima prefecture (Ulva prolifera). Volatile, short chained apocarotenoids are among the most potent flavor components and contribute to the flavor of fresh, processed algae, and algae-based products. Benzaldehyde was predominant in seaweed from Shizuoka prefecture (Monostroma nitidum). Multivariant statistical analysis (PCA) enabled simple discrimination of the samples based on their volatile profiles. This work shows the potential of SPME-GC-MS coupled with multivariant analysis to discriminate between samples of different geographical and botanical origins and form the basis for development of authentication methods of green algae products, including seasonings.}, language = {en} } @article{SilvaOliveiraCostaTchewonpietal.2021, author = {Silva, Bibiana and Oliveira Costa, Ana Carolina and Tchewonpi, Sorel Sagu and B{\"o}nick, Josephine and Huschek, Gerd and Gonzaga, Luciano Valdemiro and Fett, Roseane and Baldermann, Susanne and Rawel, Harshadrai Manilal}, title = {Comparative quantification and differentiation of bracatinga (Mimosa scabrella Bentham) honeydew honey proteins using targeted peptide markers identified by high-resolution mass spectrometry}, series = {Food research international}, volume = {141}, journal = {Food research international}, publisher = {Elsevier}, address = {New York, NY [u.a.]}, issn = {0963-9969}, doi = {10.1016/j.foodres.2020.109991}, pages = {10}, year = {2021}, abstract = {Honey traceability is an important topic, especially for honeydew honeys, due to the increased incidence of adulteration. This study aimed to establish specific markers to quantify proteins in honey. A proteomics strategy to identify marker peptides from bracatinga honeydew honey was therefore developed. The proteomics approach was based on initial untargeted identification of honey proteins and peptides by LC-ESI-Triple-TOF-MS/MS, which identified the major royal jelly proteins (MRJP) presence. Afterwards, the peptides were selected by the in silico digestion. The marker peptides were quantified by the developed targeted LC-QqQ-MS/MS method, which provided good linearity and specificity, besides recoveries between 92 and 100\% to quantify peptides from bracatinga honeydew honey. The uniqueness and high response in mass spectrometry were backed by further complementary protein analysis (SDS-PAGE). The selected marker peptides EALPHVPIFDR (MRJP 1), ILGANVK (MRJP 2), TFVTIER (MRJP 3), QNIDVVAR (MRJP 4), FINNDYNFNEVNFR (MRJP 5) and LLQPYPDWSWTK (MRJP 7), quantified by LC-QqQ-MS/MS, highlighted that the content of QNIDVVAR from MRJP 4 could be used to differentiate bracatinga honeydew honey from floral honeys (p < 0.05) as a potential marker for its authentication. Finally, principal components analysis highlighted the QNIDVVAR content as a good descriptor of the analyzed bracatinga honeydew honey samples.}, language = {en} } @article{KatsunoKasugaKusanoetal.2014, author = {Katsuno, Tsuyoshi and Kasuga, Hisae and Kusano, Yumi and Yaguchi, Yoshihiro and Tomomura, Miho and Cui, Jilai and Yang, Ziyin and Baldermann, Susanne and Nakamura, Yoriyuki and Ohnishi, Toshiyuki and Mase, Nobuyuki and Watanabe, Naoharu}, title = {Characterisation of odorant compounds and their biochemical formation in green tea with a low temperature storage process}, series = {Food chemistry}, volume = {148}, journal = {Food chemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0308-8146}, doi = {10.1016/j.foodchem.2013.10.069}, pages = {388 -- 395}, year = {2014}, abstract = {We produced low temperature (15 degrees C) processed green tea (LTPGT) with higher aroma contents than normal green tea (Sencha). Normal temperature processed green tea (NTPGT), involved storing at 25 degrees C, and Sencha had no storing process. Sensory evaluation showed LTPGT had higher levels of floral and sweet odorants than NTPGT and Sencha. Aroma extract dilution analysis and gas chromatography-mass spectrometry-olfactometry indicated LTPGT had 12 aroma compounds with high factor dilution values (FD). Amongst LTPGT's 12 compounds, indole, jasmine lactone, cis-jasmone, coumarin, and methyl epijasmonate contributed to floral, fruity and sweet characters. In particular, indole increased initially, peaking at 16 h, then gradually decreased; Feeding experiments suggested [N-15]indole and [N-15]oxygenated indoles (OX-indoles) were produced from [N-15]anthranilic acid. We proposed the increase in indole was due to transformation of anthranilic acid during the 16 h storage and the subsequent decline in indole level was due to its conversion to OX-indoles.}, language = {en} } @article{FredeSchreinerZrenneretal.2018, author = {Frede, Katja and Schreiner, Monika and Zrenner, R. and Graefe, Jan and Baldermann, Susanne}, title = {Carotenoid biosynthesis of pak choi (Brassica rapa ssp chinensis) sprouts grown under different light-emitting diodes during the diurnal course}, series = {Photochemical \& photobiological sciences}, volume = {17}, journal = {Photochemical \& photobiological sciences}, number = {10}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1474-905X}, doi = {10.1039/c8pp00136g}, pages = {1289 -- 1300}, year = {2018}, abstract = {Light-emitting diodes (LEDs) are considered the future of greenhouse lighting. This study investigates the carotenoid concentrations of pak choi sprouts after growth under blue, red and white LEDs at six different time points. Furthermore, the diurnal changes of RNA transcripts of key genes of the carotenoid biosynthesis pathway as well as of the carotenoid cleavage dioxygenase 4 (CCD4) gene and of the transcription factor genes elongated hypocotyl 5 (HY5) and circadian clock associated 1 (CCA1) were investigated. The carotenoid concentrations were steady throughout the day, but showed a small maximum in the afternoon. An average total carotenoid concentration of 536 +/- 29 ng mg(-1) DM produced under white LEDs was measured, which is comparable to previously described field-grown levels. The carotenoid concentrations were slightly lower under blue or red LEDs. Moreover, the diurnal RNA transcript rhythms of most of the carotenoid biosynthesis genes showed an increase during the light period, which can be correlated to the carotenoid maxima in the afternoon. Blue LEDs caused the highest transcriptional induction of biosynthetic genes as well as of CCD4, thereby indicating an increased flux through the pathway. In addition, the highest levels of HY5 transcripts and CCA1 transcripts were determined under blue LEDs.}, language = {en} } @misc{KlopschBaldermannVossetal.2018, author = {Klopsch, Rebecca and Baldermann, Susanne and Voss, Alexander and Rohn, Sascha and Schreiner, Monika and Neugart, Susanne}, title = {Bread enriched with legume microgreens and leaves}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1064}, issn = {1866-8372}, doi = {10.25932/publishup-46870}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-468707}, pages = {21}, year = {2018}, abstract = {Flavonoids, carotenoids, and chlorophylls were characterized in microgreens and leaves of pea (Pisum sativum) and lupin (Lupinus angustifolius) as these metabolites change during ontogeny. All metabolites were higher in the leaves for both species. Acylated quercetin and kaempferol sophorotrioses were predominant in pea. Genistein and malonylated chrysoeriol were predominant in lupin. Further, the impact of breadmaking on these metabolites using pea and lupin material of two ontogenetic stages as an added ingredient in wheat-based bread was assessed. In "pea microgreen bread" no decrease of quercetin was found with regard to the non-processed plant material. However kaempferol glycosides showed slight decreases induced by the breadmaking process in "pea microgreen bread" and "pea leaf bread." In "lupin microgreen bread" no decrease of genistein compared to the non-processed plant material was found. Chrysoeriol glycosides showed slight decreases induced by the breadmaking process in "lupin microgreen bread" and "lupin leaf bread." In all breads, carotenoids and chlorophylls were depleted however pheophytin formation was caused. Thus, pea and lupin microgreens and leaves are suitable, natural ingredients for enhancing health-promoting secondary plant metabolites in bread and may even be used to tailor bread for specific consumer health needs.}, language = {en} } @article{KlopschBaldermannVossetal.2018, author = {Klopsch, Rebecca and Baldermann, Susanne and Voss, Alexander and Rohn, Sascha and Schreiner, Monika and Neugart, Susanne}, title = {Bread enriched with legume microgreens and leaves}, series = {Frontiers in chemistry}, volume = {6}, journal = {Frontiers in chemistry}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2296-2646}, doi = {10.3389/fchem.2018.00322}, pages = {19}, year = {2018}, abstract = {Flavonoids, carotenoids, and chlorophylls were characterized in microgreens and leaves of pea (Pisum sativum) and lupin (Lupinus angustifolius) as these metabolites change during ontogeny. All metabolites were higher in the leaves for both species. Acylated quercetin and kaempferol sophorotrioses were predominant in pea. Genistein and malonylated chrysoeriol were predominant in lupin. Further, the impact of breadmaking on these metabolites using pea and lupin material of two ontogenetic stages as an added ingredient in wheat-based bread was assessed. In "pea microgreen bread" no decrease of quercetin was found with regard to the non-processed plant material. However kaempferol glycosides showed slight decreases induced by the breadmaking process in "pea microgreen bread" and "pea leaf bread." In "lupin microgreen bread" no decrease of genistein compared to the non-processed plant material was found. Chrysoeriol glycosides showed slight decreases induced by the breadmaking process in "lupin microgreen bread" and "lupin leaf bread." In all breads, carotenoids and chlorophylls were depleted however pheophytin formation was caused. Thus, pea and lupin microgreens and leaves are suitable, natural ingredients for enhancing health-promoting secondary plant metabolites in bread and may even be used to tailor bread for specific consumer health needs.}, language = {en} } @article{KlopschBaldermannHanschenetal.2019, author = {Klopsch, Rebecca and Baldermann, Susanne and Hanschen, Franziska S. and Voss, Alexander and Rohn, Sascha and Schreiner, Monika and Neugart, Susanne}, title = {Brassica-enriched wheat bread: Unraveling the impact of ontogeny and breadmaking on bioactive secondary plant metabolites of pak choi and kale}, series = {Food chemistry}, volume = {295}, journal = {Food chemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0308-8146}, doi = {10.1016/j.foodchem.2019.05.113}, pages = {412 -- 422}, year = {2019}, abstract = {Consumption of Brassica vegetables is linked to health benefits, as they contain high concentrations of the following secondary plant metabolites (SPMs): glucosinolate breakdown products, carotenoids, chlorophylls, and phenolic compounds. Especially Brassica vegetables are consumed as microgreens (developed cotyledons). It was investigated how different ontogenetic stages (microgreens or leaves) of pak choi (Brassica rapa subsp. chinensis) and kale (Brassica oleracea var. sabellica) differ in their SPM concentration. The impact of breadmaking on SPMs in microgreens (7 days) and leaves (14 days) in pak choi and kale as a supplement in mixed wheat bread was assessed. In leaves, carotenoids, chlorophylls, and phenolic compounds were higher compared to those of microgreens. Breadmaking caused a decrease of SPMs. Chlorophyll degradation was observed, leading to pheophytin and pyropheophytin formation. In kale, sinapoylgentiobiose, a hydroxycinnamic acid derivative, concentration increased. Thus, leaves of Brassica species are suitable as natural ingredients for enhancing bioactive SPM concentrations in bread.}, language = {en} } @article{ChenHanschenNeugartetal.2019, author = {Chen, Xiaomin and Hanschen, Franziska S. and Neugart, Susanne and Schreiner, Monika and Vargas, Sara A. and Gutschmann, Bj{\"o}rn and Baldermann, Susanne}, title = {Boiling and steaming induced changes in secondary metabolites in three different cultivars of pak choi (Brassica rapa subsp. chinensis)}, series = {Journal of Food Composition and Analysis}, volume = {82}, journal = {Journal of Food Composition and Analysis}, publisher = {Elsevier}, address = {San Diego}, issn = {0889-1575}, doi = {10.1016/j.jfca.2019.06.004}, pages = {9}, year = {2019}, abstract = {Pak choi (Brassica rapa subsp. chinensis) is a leafy vegetable that is widely available in Asia and consumed in rising quantities in Europe. Pak choi contains high levels of secondary plant metabolites, such as carotenoids, chlorophylls, glucosinolates, phenolic compounds, and vitamin K, which are beneficial for humans if consumed on a regular basis. The evaluation of the genotype-induced variation of secondary plant metabolites revealed that the cultivar 'Amur' contained the highest concentration of secondary plant metabolites. Furthermore, steaming retained more chlorophylls, glucosinolates, phenolic acids and flavonoid compounds than boiling. In contrast, both domestic cooking methods - boiling, and steaming - reduced the formation of glucosinolate breakdown products, especially the undesired epithionitriles and nitriles but less of the health-beneficial isothiocyanates.}, language = {en} } @misc{BaldermannBlagojevicFredeetal.2016, author = {Baldermann, Susanne and Blagojevic, Lara and Frede, Katja and Klopsch, R. and Neugart, Susanne and Neumann, A. and Ngwene, Benard and Norkeweit, Jessica and Schroeter, D. and Schroeter, A. and Schweigert, Florian J. and Wiesner, M. and Schreiner, Monika}, title = {Are Neglected Plants the Food for the Future?}, series = {Critical reviews in plant sciences}, volume = {35}, journal = {Critical reviews in plant sciences}, publisher = {Institut d'Estudis Catalans}, address = {Philadelphia}, issn = {0735-2689}, doi = {10.1080/07352689.2016.1201399}, pages = {106 -- 119}, year = {2016}, abstract = {Malnutrition, poor health, hunger, and even starvation are still the world's greatest challenges. Malnutrition is defined as deficiency of nutrition due to not ingesting the proper amounts of nutrients by simply not eating enough food and/or by consuming nutrient-poor food in respect to the daily nutritional requirements. Moreover, malnutrition and disease are closely associated and incidences of such diet-related diseases increase particularly in low- and middle-income states. While foods of animal origin are often unaffordable to low-income families, various neglected crops can offer an alternative source of micronutrients, vitamins, as well as health-promoting secondary plant metabolites. Therefore, agricultural and horticultural research should develop strategies not only to produce more food, but also to improve access to more nutritious food. In this context, one promising approach is to promote biodiversity in the dietary pattern of low-income people by getting access to nutritional as well as affordable food and providing recommendations for food selection and preparation. Worldwide, a multitude of various plant species are assigned to be consumed as grains, vegetables, and fruits, but only a limited number of these species are used as commercial cash crops. Consequently, numerous neglected and underutilized species offer the potential to diversify not only the human diet, but also increase food production levels, and, thus, enable more sustainable and resilient agro- and horti-food systems. To exploit the potential of neglected plant (NP) species, coordinated approaches on the local, regional, and international level have to be integrated that consequently demand the involvement of numerous multi-stakeholders. Thus, the objective of the present review is to evaluate whether NP species are important as "Future Food" for improving the nutritional status of humans as well as increasing resilience of agro- and horti-food systems.}, language = {en} } @article{CosmeFrankenMewisetal.2014, author = {Cosme, Marco and Franken, Philipp and Mewis, Inga and Baldermann, Susanne and Wurst, Susanne}, title = {Arbuscular mycorrhizal fungi affect glucosinolate and mineral element composition in leaves of Moringa oleifera}, series = {Mycorrhiza}, volume = {24}, journal = {Mycorrhiza}, number = {7}, publisher = {Springer}, address = {New York}, issn = {0940-6360}, doi = {10.1007/s00572-014-0574-7}, pages = {565 -- 570}, year = {2014}, abstract = {Moringa is a mycorrhizal crop cultivated in the tropics and subtropics and appreciated for its nutritive and health-promoting value. As well as improving plant mineral nutrition, arbuscular mycorrhizal fungi (AMF) can affect plant synthesis of compounds bioactive against chronic diseases in humans. Rhizophagus intraradices and Funneliformis mosseae were used in a full factorial experiment to investigate the impact of AMF on the accumulation of glucosinolates, flavonoids, phenolic acids, carotenoids, and mineral elements in moringa leaves. Levels of glucosinolates were enhanced, flavonoids and phenolic acids were not affected, levels of carotenoids (including provitamin A) were species-specifically reduced, and mineral elements were affected differently, with only Cu and Zn being increased by the AMF. This study presents novel results on AMF effects on glucosinolates in leaves and supports conclusions that the impacts of these fungi on microelement concentrations in edible plants are species dependent. The nonspecific positive effects on glucosinolates and the species-specific negative effects on carotenoids encourage research on other AMF species to achieve general benefits on bioactive compounds in moringa.}, language = {en} } @article{WitzelStrehmelBaldermannetal.2017, author = {Witzel, Katja and Strehmel, Nadine and Baldermann, Susanne and Neugart, Susanne and Becker, Yvonne and Becker, Matthias and Berger, Beatrice and Scheel, Dierk and Grosch, Rita and Schreiner, Monika and Ruppel, Silke}, title = {Arabidopsis thaliana root and root exudate metabolism is altered by the growth-promoting bacterium Kosakonia radicincitans DSM 16656(T)}, series = {Plant and soil}, volume = {419}, journal = {Plant and soil}, publisher = {Springer}, address = {Dordrecht}, issn = {0032-079X}, doi = {10.1007/s11104-017-3371-1}, pages = {557 -- 573}, year = {2017}, abstract = {Plant growth-promoting bacteria (PGPB) affect host physiological processes in various ways. This study aims at elucidating the dependence of bacterial-induced growth promotion on the plant genotype and characterizing plant metabolic adaptations to PGPB. Eighteen Arabidopsis thaliana accessions were inoculated with the PGPB strain Kosakonia radicincitans DSM 16656(T). Colonisation pattern was assessed by enhanced green fluorescent protein (eGFP)-tagged K. radicincitans in three A. thaliana accessions differing in their growth response. Metabolic impact of bacterial colonisation was determined for the best responding accession by profiling distinct classes of plant secondary metabolites and root exudates. Inoculation of 18 A. thaliana accessions resulted in a wide range of growth responses, from repression to enhancement. Testing the bacterial colonisation of three accessions did not reveal a differential pattern. Profiling of plant secondary metabolites showed a differential accumulation of glucosinolates, phenylpropanoids and carotenoids in roots. Analysis of root exudates demonstrated that primary and secondary metabolites were predominantly differentially depleted by bacterial inoculation. The plant genotype controls the bacterial growth promoting traits. Levels of lutein and beta-carotene were elevated in inoculated roots. Supplementing a bacterial suspension with beta-carotene increased bacterial growth, while this was not the case when lutein was applied, indicating that beta-carotene could be a positive regulator of plant growth promotion.}, language = {en} } @article{DreherBaldermannSchreineretal.2019, author = {Dreher, Dorothee and Baldermann, Susanne and Schreiner, Monika and Hause, Bettina}, title = {An arbuscular mycorrhizal fungus and a root pathogen induce different volatiles emitted by Medicago truncatula roots}, series = {Journal of Advanced Research}, volume = {19}, journal = {Journal of Advanced Research}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2090-1232}, doi = {10.1016/j.jare.2019.03.002}, pages = {85 -- 90}, year = {2019}, abstract = {Plants are in permanent contact with various microorganisms and are always impacted by them. To better understand the first steps of a plant's recognition of soil-borne microorganisms, the early release of volatile organic compounds (VOCs) emitted from roots of Medicago truncatula in response to the symbiont Rhizophagus irregularis or the pathogenic oomycete Aphanomyces euteiches was analysed. More than 90 compounds were released from roots as detected by an untargeted gas chromatography-mass spectrometry approach. Principal component analyses clearly distinguished untreated roots from roots treated with either R. irregularis or A. euteiches. Several VOCs were found to be emitted specifically in response to each of the microorganisms. Limonene was specifically emitted from wild-type roots after contact with R. irregularis spores but not from roots of the mycorrhiza-deficient mutant does not make infections3. The application of limonene to mycorrhizal roots, however, did not affect the mycorrhization rate. Inoculation of roots with A. euteiches zoospores resulted in the specific emission of several sesquiterpenes, such as nerolidol, viridiflorol and nerolidol-epoxyacetate but application of nerolidol to zoospores of A. euteiches did not affect their vitality. Therefore, plants discriminate between different microorganisms at early stages of their interaction and respond differently to the level of root-emitted volatiles.}, language = {en} } @misc{OdongoSchlotzBaldermannetal.2018, author = {Odongo, Grace Akinyi and Schlotz, Nina and Baldermann, Susanne and Neugart, Susanne and Huyskens-Keil, Susanne and Ngwene, Benard and Trierweiler, Bernhard and Schreiner, Monika and Lamy, Evelyn}, title = {African nightshade (Solanum scabrum Mill.)}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1133}, issn = {1866-8372}, doi = {10.25932/publishup-45911}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459114}, pages = {22}, year = {2018}, abstract = {Plant cultivation and processing may impact nutrient and phytochemical content of vegetables. The present study aimed at determining the influence of cultivation and processing on the health promoting capacity of African nightshade (Solanum scabrum Mill.) leaves, an indigenous vegetable, rich in nutrients and phytochemicals. Anti-genotoxicity against the human liver carcinogen aflatoxin B1 (AFB1) as determined by the comet assay and radical oxygen species (ROS) scavenging capacity of ethanolic and aqueous extracts were investigated in human derived liver (HepG2) cells. ROS scavenging activity was assessed using electron paramagnetic spin resonance and quantification of ARE/Nrf2 mediated gene expression. The cultivation was done under different environmental conditions. The processing included fermentation and cooking; postharvest ultraviolet irradiation (UV-C) treatment was also investigated. Overall, S. scabrum extracts showed strong health promoting potential, the highest potential was observed with the fermented extract, which showed a 60\% reduction of AFB1 induced DNA damage and a 38\% reduction in FeSO4 induced oxidative stress. The content of total polyphenols, carotenoids and chlorophylls was indeed affected by cultivation and processing. Based on the present in vitro findings consumption of S. scabrum leaves could be further encouraged, preferentially after cooking or fermentation of the plant.}, language = {en} } @article{OdongoSchlotzBaldermannetal.2018, author = {Odongo, Grace Akinyi and Schlotz, Nina and Baldermann, Susanne and Neugart, Susanne and Huyskens-Keil, Susanne and Ngwene, Benard and Trierweiler, Bernhard and Schreiner, Monika and Lamy, Evelyn}, title = {African Nightshade (Solanum scabrum Mill.)}, series = {Nutrients}, volume = {10}, journal = {Nutrients}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {2072-6643}, doi = {10.3390/nu10101532}, pages = {20}, year = {2018}, abstract = {Plant cultivation and processing may impact nutrient and phytochemical content of vegetables. The present study aimed at determining the influence of cultivation and processing on the health promoting capacity of African nightshade (Solanum scabrum Mill.) leaves, an indigenous vegetable, rich in nutrients and phytochemicals. Anti-genotoxicity against the human liver carcinogen aflatoxin B1 (AFB(1)) as determined by the comet assay and radical oxygen species (ROS) scavenging capacity of ethanolic and aqueous extracts were investigated in human derived liver (HepG2) cells. ROS scavenging activity was assessed using electron paramagnetic spin resonance and quantification of ARE/Nrf2 mediated gene expression. The cultivation was done under different environmental conditions. The processing included fermentation and cooking; postharvest ultraviolet irradiation (UV-C) treatment was also investigated. Overall, S. scabrum extracts showed strong health promoting potential, the highest potential was observed with the fermented extract, which showed a 60\% reduction of AFB(1) induced DNA damage and a 38\% reduction in FeSO4 induced oxidative stress. The content of total polyphenols, carotenoids and chlorophylls was indeed affected by cultivation and processing. Based on the present in vitro findings consumption of S. scabrum leaves could be further encouraged, preferentially after cooking or fermentation of the plant.}, language = {en} } @article{ChmielewskiBaldermannGoetzetal.2018, author = {Chmielewski, Frank M. and Baldermann, Susanne and G{\"o}tz, Klaus Peter and Homann, Thomas and G{\"o}deke, Kristin and Schumacher, Fabian and Huschek, Gerd and Rawel, Harshadrai Manilal}, title = {Abscisic acid related metabolites in sweet cherry buds (Prunus avium L.)}, series = {Journal of Horticulture}, volume = {5}, journal = {Journal of Horticulture}, number = {1}, issn = {2376-0354}, doi = {10.4172/2376-0354.1000221}, pages = {221}, year = {2018}, abstract = {As our climate changes, plant mechanisms involved for dormancy release become increasingly important for commercial orchards. It is generally believed that abscisic acid (ABA) is a key hormone that responds to various environmental stresses which affects bud dormancy. For this reason, a multi-year study was initiated to obtain data on plant metabolites during winter rest and ontogenetic development in sweet cherry buds (Prunus avium L.). In this paper, we report on metabolites involved in ABA synthesis and catabolism and its effect on bud dormancy in the years 2014/15-2016/17. In previous work, the timings of the different phases of para-, endo-, ecodormancy and ontogenetic development for cherry flower buds of the cultivar 'Summit' were determined, based on classical climate chamber experiments and changes in the bud's water content. Based on these time phases, we focused now on the different aspects of the ABA-metabolism. The results show that there is a continual synthesis of ABA about 5 weeks before leaf fall, and a degradation of ABA during ecodormancy and bud development until the phenological stage 'open cluster'. This is confirmed by relating the ABA content to that of the total precursor carotenoids, neoxanthin and violaxanthin. The tentative monitoring of individual intermediate metabolites revealed that dihydroxyphaseic acid is the most abundant catabolite of ABA and ABA glucosyl ester is in terms of mass intensity, the most abundant ABA metabolite observed in this study. The results suggest that the direct route for ABA biosynthesis from farnesyl pyrophosphate may also be relevant in cherry flower buds.}, language = {de} }