@article{WojcikDonhauserFreyetal.2018, author = {Wojcik, Robin and Donhauser, Johanna and Frey, Beat W. and Holm, Stine and Holland, Alexandra and Anesio, Alexandre M. and Pearce, David A. and Malard, Lucie and Wagner, Dirk and Benning, Liane G.}, title = {Linkages between geochemistry and microbiology in a proglacial terrain in the High Arctic}, series = {Annals of glaciology}, volume = {59}, journal = {Annals of glaciology}, number = {77}, publisher = {Cambridge Univ. Press}, address = {Cambridge}, issn = {0260-3055}, doi = {10.1017/aog.2019.1}, pages = {95 -- 110}, year = {2018}, abstract = {Proglacial environments are ideal for studying the development of soils through the changes of rocks exposed by glacier retreat to weathering and microbial processes. Carbon (C) and nitrogen (N) contents as well as soil pH and soil elemental compositions are thought to be dominant factors structuring the bacterial, archaeal and fungal communities in the early stages of soil ecosystem formation. However, the functional linkages between C and N contents, soil composition and microbial community structures remain poorly understood. Here, we describe a multivariate analysis of geochemical properties and associated microbial community structures between a moraine and a glaciofluvial outwash in the proglacial area of a High Arctic glacier (Longyearbreen, Svalbard). Our results reveal distinct differences in developmental stages and heterogeneity between the moraine and the glaciofluvial outwash. We observed significant relationships between C and N contents, delta C-13(org) and delta N-15 isotopic ratios, weathering and microbial abundance and community structures. We suggest that the observed differences in microbial and geochemical parameters between the moraine and the glaciofluvial outwash are primarily a result of geomorphological variations of the proglacial terrain.}, language = {en} } @misc{LemaireInfossiChaoucheetal.2018, author = {Lemaire, Olivier N. and Infossi, Pascale and Chaouche, Amine Ali and Espinosa, Leon and Leimk{\"u}hler, Silke and Giudici-Orticoni, Marie-Th{\´e}r{\`e}se and M{\´e}jean, Vincent and Iobbi-Nivol, Chantal}, title = {Small membranous proteins of the TorE/NapE family, crutches for cognate respiratory systems in Proteobacteria}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {933}, issn = {1866-8372}, doi = {10.25932/publishup-45920}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459208}, pages = {15}, year = {2018}, abstract = {In this report, we investigate small proteins involved in bacterial alternative respiratory systems that improve the enzymatic efficiency through better anchorage and multimerization of membrane components. Using the small protein TorE of the respiratory TMAO reductase system as a model, we discovered that TorE is part of a subfamily of small proteins that are present in proteobacteria in which they play a similar role for bacterial respiratory systems. We reveal by microscopy that, in Shewanella oneidensis MR1, alternative respiratory systems are evenly distributed in the membrane contrary to what has been described for Escherichia coli. Thus, the better efficiency of the respiratory systems observed in the presence of the small proteins is not due to a specific localization in the membrane, but rather to the formation of membranous complexes formed by TorE homologs with their c-type cytochrome partner protein. By an in vivo approach combining Clear Native electrophoresis and fluorescent translational fusions, we determined the 4: 4 stoichiometry of the complexes. In addition, mild solubilization of the cytochrome indicates that the presence of the small protein reinforces its anchoring to the membrane. Therefore, assembly of the complex induced by this small protein improves the efficiency of the respiratory system.}, language = {en} }