@article{ThorpeBarlowSurgetGrobaetal.2018, author = {Thorpe, Roger and Barlow, Axel and Surget-Groba, Yann and Malhotra, Anita}, title = {Multilocus phylogeny, species age and biogeography of the Lesser Antillean anoles}, series = {Molecular phylogenetics and evolution}, volume = {127}, journal = {Molecular phylogenetics and evolution}, publisher = {Elsevier}, address = {San Diego}, issn = {1055-7903}, doi = {10.1016/j.ympev.2018.06.014}, pages = {682 -- 695}, year = {2018}, abstract = {Lesser Antillean anoles provide classic examples of island radiations. A detailed knowledge of their phylogeny and biogeography, in particular how the age of species relate to the ages of their respective islands and the age of their radiation, is essential to elucidate the tempo and mechanisms of these radiations. We conduct a large-scale phylogenetic and phylogeographic investigation of the Lesser Antillean anoles using multiple genetic markers and comprehensive geographic sampling of most species. The multilocus phylogeny gives the first well-supported reconstruction of the interspecific relationships, and the densely sampled phylogeography reveals a highly dynamic system, driven by overseas dispersal, with several alternative post-dispersal colonisation trajectories. These radiations currently occupy both the outer-older (Eocene to Miocene), and the inner-younger (< 8mybp), Lesser Antillean arcs. The origin of these radiations corresponds with the age of the ancient outer arc. However, the ages of extant species (compatible with the age of other small terrestrial amniotes) are much younger, about the age of the emergence of the younger arc, or less. The difference between the age of the radiation and the age of the extant species suggests substantial species turnover on older arc islands, most likely through competitive replacement. Although extant anoles are extremely speciose, this may represent only a fraction of their biodiversity over time. While paraphyly enables us to infer several recent colonization events, the absence of the younger arc islands and extant species at the earlier and middle stages of the radiation, does not allow the earlier inter-island colonization to be reliably inferred. Reproductive isolation in allopatry takes a very considerable time (in excess of 8my) and sympatry appears to occur only late in the radiation. The resolved multilocus phylogeny, and relative species age, raise difficulties for some earlier hypotheses regarding size evolution, and provide no evidence for within-island speciation.}, language = {en} } @article{HorreoPelaezSuarezetal.2018, author = {Horreo, Jose L. and Pelaez, Maria L. and Suarez, Teresa and Breedveld, Merel Cathelijne and Heulin, Benoit and Surget-Groba, Yann and Oksanen, Tuula A. and Fitze, Patrick S.}, title = {Phylogeography, evolutionary history and effects of glaciations in a species (Zootoca vivipara) inhabiting multiple biogeographic regions}, series = {Journal of biogeography}, volume = {45}, journal = {Journal of biogeography}, number = {7}, publisher = {Wiley}, address = {Hoboken}, issn = {0305-0270}, doi = {10.1111/jbi.13349}, pages = {1616 -- 1627}, year = {2018}, abstract = {Location Eurasia. Methods We generated the largest molecular dataset to date of Z. vivipara, ran phylogenetic analyses, reconstructed its evolutionary history, determined the location of glacial refuges and reconstructed ancestral biogeographic regions. Results The phylogenetic analyses revealed a complex evolutionary history, driven by expansions and contractions of the distribution due to glacials and interglacials, and the colonization of new biogeographic regions by all lineages of Z. vivipara. Many glacial refugia were detected, most were located close to the southern limit of the Last Glacial Maximum. Two subclades recolonized large areas covered by permafrost during the last glaciation: namely, Western and Northern Europe and North-Eastern Europe and Asia.}, language = {en} }