@article{FohlmeisterArpsSpoetletal.2018, author = {Fohlmeister, Jens Bernd and Arps, Jennifer and Spoetl, Christoph and Schroeder-Ritzrau, Andrea and Plessen, Birgit and G{\"u}nter, Christina and Frank, Norbert and Tr{\"u}ssel, Martin}, title = {Carbon and oxygen isotope fractionation in the water-calcite-aragonite system}, series = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, volume = {235}, journal = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, publisher = {Elsevier}, address = {Oxford}, issn = {0016-7037}, doi = {10.1016/j.gca.2018.05.022}, pages = {127 -- 139}, year = {2018}, abstract = {The precise determination of the stable C and O isotope fractionation between water and calcite (CC) and water and aragonite (AR) is of special interest for climate reconstructions, e.g. paleotemperatures. Previous studies reported results from both laboratory and field experiments, but their results are only partly consistent. Here we present C and O isotope data of a stalagmite from the Swiss Alps, which shows CC-AR transitions along individual growth layers. Using detailed analyses both laterally and perpendicular to such layers we examined the difference in the C and O isotope fractionation factor of the HCO3- - CC and the HCO3- - AR system. For O this difference is similar to the water-CC and water-AR offset provided in experimental studies. The O isotope fractionation difference in the water-CC and water-AR system is comparable to those determined in laboratory studies but shows a statistically significant correlation with the CaCO3 precipitation rate. For C we found a fractionation difference, which is independent of CaCO3 precipitation rate and with slightly smaller values for the fractionation offset between HCO3- - CC and HCO3- - AR compared to literature values. However, we also found an unexpected decrease in delta C-13 along growth layers, which contradicts the widely used concept of Rayleigh fractionation during CO2 degassing and CaCO3 precipitation. The results of this study can be used e.g., to correct stable isotope time series of stalagmites showing CC-AR transitions along their growth axes. (C) 2018 Elsevier Ltd. All rights reserved.}, language = {en} } @article{WarkenFohlmeisterSchroederRitzrauhetal.2018, author = {Warken, Sophie Friederike and Fohlmeister, Jens Bernd and Schr{\"o}der-Ritzrauh, Andrea and Constantin, Silviu and Sp{\"o}tl, Christoph and Gerdes, Axel and Esper, Jan and Frank, Norbert and Arps, Jennifer and Terente, Mihai and Riechelmann, Dana Felicitas Christine and Mangini, Augusto and Scholz, Denis}, title = {Reconstruction of late Holocene autumn/winter precipitation variability in SW Romania from a high-resolution speleothem trace element record}, series = {Earth \& planetary science letters}, volume = {499}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2018.07.027}, pages = {122 -- 133}, year = {2018}, abstract = {We present the first high-resolution trace element (Mg/Ca, Sr/Ca, Ba/Ca) record from a stalagmite in southwestern Romania covering the last 3.6 ka, which provides the potential for quantitative climate reconstruction. Precise age control is based on three independent dating methods, in particular for the last 250 yr, where chemical lamina counting is combined with the identification of the 20th century radiocarbon bomb peak and Th-230/U dating. Long-term cave monitoring and model simulations of drip water and speleothem elemental variability indicate that precipitation-related processes are the main drivers of speleothem Mg/Ca ratios. Calibration against instrumental climate data shows a significant anti-correlation of speleothem Mg/Ca ratios with autumn/winter (October to March) precipitation (r = -0.61, p < 0.01), which is statistically robust when considering age uncertainties and auto-correlation. This relationship is used to develop a quantitative reconstruction of autumn/winter precipitation. During the late Holocene, our data suggest a heterogeneous pattern of past regional winter hydroclimate in the Carpathian/Balkan realm, along with intermittent weakening of the dominant influence of North Atlantic forcing. In agreement with other regional paleo-hydrological reconstructions, the observed variability reveals periodically occurring strong NW-SE hydro-climate gradients. We hypothesize, that this pattern is caused by shifts of the eastern edge of the area of influence of the NAO across central eastern Europe due to the confluence of North Atlantic forcing, and other climatic features such as the East Atlantic/Western Russia (EAWR) pattern. (C) 2018 Elsevier B.V. All rights reserved.}, language = {en} } @article{HeringStinnesbeckFolmeisteretal.2018, author = {Hering, Fabio and Stinnesbeck, Wolfgang and Folmeister, Jens and Frey, Eberhard and Stinnesbeck, Sarah and Aviles, Jeronimo and Nunez, Eugenio Aceves and Gonzalez, Arturo and Mata, Alejandro Terrazas and Benavente, Martha Elena and Rojas, Carmen and Morlet, Adriana Velazquez and Frank, Norbert and Zell, Patrick and Becker, Julia}, title = {The Chan Hol cave near Tulum (Quintana Roo, Mexico)}, series = {Journal of quaternary science}, volume = {33}, journal = {Journal of quaternary science}, number = {4}, publisher = {Wiley}, address = {Hoboken}, issn = {0267-8179}, doi = {10.1002/jqs.3025}, pages = {444 -- 454}, year = {2018}, abstract = {Numerous charcoal accumulations discovered in the submerged Chan Hol cave near Tulum, Quintana Roo, Mexico, have been C-14-dated revealing ages between 8110 +/- 28 C-14 a BP (9122-8999 cal a BP) and 7177 +/- 27 C-14 a BP (8027-7951 cal a BP). These charcoal concentrations, interpreted here as ancient illumination sites, provide strong evidence that the Chan Hol cave was dry and accessible during that time interval. Humans used the cave for at least 1200 years during the early and middle Holocene, before access was successively interrupted by global sea level rise and flooding of the cave system. Our data thus narrow the gap between an early settlement in the Tulum area reaching from the late Pleistocene (similar to 13 000 a) to middle Holocene (e.g. 7177 C-14 a BP), and the Maya Formative period at approximately 3000 a bp. Yet, no evidence has been presented to date for human settlement during the similar to 4000-year interval between 7000 and 3000 a. This is remarkable as settlement in other areas of south-eastern Mexico (e.g. Chiapas, Tabasco) and in Guatemala was apparently continuous.}, language = {en} }