@article{MoskalikAstakhovaSchildeetal.2014, author = {Moskalik, Mikhail Yu. and Astakhova, Vera V. and Schilde, Uwe and Sterkhova, Irina V. and Shainyan, Bagrat A.}, title = {Assembling of 3,6-diazabicyclo[3.1.0]hexane framework in oxidative triflamidation of substituted buta-1,3-dienes}, series = {Tetrahedron}, volume = {70}, journal = {Tetrahedron}, number = {45}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2014.09.050}, pages = {8636 -- 8641}, year = {2014}, language = {en} } @article{RiebeEderRitscheletal.2016, author = {Riebe, Daniel and Eder, Alexander and Ritschel, Thomas and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Beil, Andreas and Blaschke, Michael and Ludwig, Thomas}, title = {Atmospheric pressure chemical ionization of explosives induced by soft X-radiation in ion mobility spectrometry: mass spectrometric investigation of the ionization reactions of drift gasses, dopants and alkyl nitrates}, series = {Journal of mass spectrometr}, volume = {51}, journal = {Journal of mass spectrometr}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1076-5174}, doi = {10.1002/jms.3784}, pages = {566 -- 577}, year = {2016}, abstract = {A promising replacement for the radioactive sources commonly encountered in ion mobility spectrometers is a miniaturized, energy-efficient photoionization source that produce the reactant ions via soft X-radiation (2.8 keV). In order to successfully apply the photoionization source, it is imperative to know the spectrum of reactant ions and the subsequent ionization reactions leading to the detection of analytes. To that end, an ionization chamber based on the photoionization source that reproduces the ionization processes in the ion mobility spectrometer and facilitates efficient transfer of the product ions into a mass spectrometer was developed. Photoionization of pure gasses and gas mixtures containing air, N-2, CO2 and N2O and the dopant CH2Cl2 is discussed. The main product ions of photoionization are identified and compared with the spectrum of reactant ions formed by radioactive and corona discharge sources on the basis of literature data. The results suggest that photoionization by soft X-radiation in the negative mode is more selective than the other sources. In air, adduct ions of O-2 - with H2O and CO2 were exclusively detected. Traces of CO2 impact the formation of adduct ions of O-2 - and Cl -(upon addition of dopant) and are capable of suppressing them almost completely at high CO2 concentrations. Additionally, the ionization products of four alkyl nitrates (ethylene glycol dinitrate, nitroglycerin, erythritol tetranitrate and pentaerythritol tetranitrate) formed by atmospheric pressure chemical ionization induced by X-ray photoionization in different gasses (air, N-2 and N2O) and dopants (CH2Cl2, C2H5Br and CH3I) are investigated. The experimental studies are complemented by density functional theory calculations of the most important adduct ions of the alkyl nitrates (M) used for their spectrometric identification. In addition to the adduct ions [M + NO3](-) and [M + Cl](-), adduct ions such as [M + N2O2](-), [M + Br](-) and [M+ I](-) were detected, and their gas-phase structures and energetics are investigated by density functional theory calculations. Copyright (C) 2016 John Wiley \& Sons, Ltd.}, language = {en} } @article{SchulzLieutenantXiaoetal.2020, author = {Schulz, Christian and Lieutenant, Klaus and Xiao, Jie and Hofmann, Tommy and Wong, Deniz and Habicht, Klaus}, title = {Characterization of the soft X-ray spectrometer PEAXIS at BESSY II}, series = {Journal of synchrotron radiation}, volume = {27}, journal = {Journal of synchrotron radiation}, publisher = {International Union of Crystallography}, address = {Chester}, issn = {1600-5775}, doi = {10.1107/S1600577519014887}, pages = {238 -- 249}, year = {2020}, abstract = {The performance of the recently commissioned spectrometer PEAXIS for resonant inelastic soft X-ray scattering (RIXS) and X-ray photoelectron spectroscopy and its hosting beamline U41-PEAXIS at the BESSY II synchrotron are characterized. The beamline provides linearly polarized light from 180 eV to 1600 eV allowing for RIXS measurements in the range 200-1200 eV. The monochromator optics can be operated in different configurations to provide either high flux with up to 10(12) photons s(-1) within the focal spot at the sample or high energy resolution with a full width at half maximum of <40 meV at an incident photon energy of similar to 400 eV. The measured total energy resolution of the RIXS spectrometer is in very good agreement with theoretically predicted values obtained by ray-tracing simulations. PEAXIS features a 5 m-long RIXS spectrometer arm that can be continuously rotated about the sample position by 106 degrees within the horizontal photon scattering plane, thus enabling the study of momentum-transfer-dependent excitations. Selected scientific examples are presented to demonstrate the instrument capabilities, including measurements of excitations in single-crystalline NiO and in liquid acetone employing a fluid cell sample manipulator. Planned upgrades of the beamline and the RIXS spectrometer to further increase the energy resolution to similar to 100 meV at 1000 eV incident photon energy are discussed.}, language = {en} } @article{LeverMayerMetjeetal.2021, author = {Lever, Fabiano and Mayer, Dennis and Metje, Jan and Alisauskas, Skirmantas and Calegari, Francesca and D{\"u}sterer, Stefan and Feifel, Raimund and Niebuhr, Mario and Manschwetus, Bastian and Kuhlmann, Marion and Mazza, Tommaso and Robinson, Matthew Scott and Squibb, Richard J. and Trabattoni, Andrea and Wallner, M{\aa}ns and Wolf, Thomas J. A. and G{\"u}hr, Markus}, title = {Core-level spectroscopy of 2-thiouracil at the sulfur L1 and L2,3 edges utilizing a SASE free-electron-laser}, series = {Molecules}, volume = {26}, journal = {Molecules}, number = {21}, publisher = {MDPI}, address = {Basel}, issn = {1420-3049}, pages = {11}, year = {2021}, abstract = {In this paper, we report X-ray absorption and core-level electron spectra of the nucleobase derivative 2-thiouracil at the sulfur L1- and L2,3-edges. We used soft X-rays from the free-electron laser FLASH2 for the excitation of isolated molecules and dispersed the outgoing electrons with a magnetic bottle spectrometer. We identified photoelectrons from the 2p core orbital, accompanied by an electron correlation satellite, as well as resonant and non-resonant Coster-Kronig and Auger-Meitner emission at the L1- and L2,3-edges, respectively. We used the electron yield to construct X-ray absorption spectra at the two edges. The experimental data obtained are put in the context of the literature currently available on sulfur core-level and 2-thiouracil spectroscopy.}, language = {en} } @article{ZieglerPfitznerSchulzetal.2022, author = {Ziegler, Joceline and Pfitzner, Bjarne and Schulz, Heinrich and Saalbach, Axel and Arnrich, Bert}, title = {Defending against Reconstruction Attacks through Differentially Private Federated Learning for Classification of Heterogeneous Chest X-ray Data}, series = {Sensors}, volume = {22}, journal = {Sensors}, edition = {14}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {1424-8220}, doi = {10.3390/s22145195}, pages = {25}, year = {2022}, abstract = {Privacy regulations and the physical distribution of heterogeneous data are often primary concerns for the development of deep learning models in a medical context. This paper evaluates the feasibility of differentially private federated learning for chest X-ray classification as a defense against data privacy attacks. To the best of our knowledge, we are the first to directly compare the impact of differentially private training on two different neural network architectures, DenseNet121 and ResNet50. Extending the federated learning environments previously analyzed in terms of privacy, we simulated a heterogeneous and imbalanced federated setting by distributing images from the public CheXpert and Mendeley chest X-ray datasets unevenly among 36 clients. Both non-private baseline models achieved an area under the receiver operating characteristic curve (AUC) of 0.940.94 on the binary classification task of detecting the presence of a medical finding. We demonstrate that both model architectures are vulnerable to privacy violation by applying image reconstruction attacks to local model updates from individual clients. The attack was particularly successful during later training stages. To mitigate the risk of a privacy breach, we integrated R{\´e}nyi differential privacy with a Gaussian noise mechanism into local model training. We evaluate model performance and attack vulnerability for privacy budgets ε∈{1,3,6,10}�∈{1,3,6,10}. The DenseNet121 achieved the best utility-privacy trade-off with an AUC of 0.940.94 for ε=6�=6. Model performance deteriorated slightly for individual clients compared to the non-private baseline. The ResNet50 only reached an AUC of 0.760.76 in the same privacy setting. Its performance was inferior to that of the DenseNet121 for all considered privacy constraints, suggesting that the DenseNet121 architecture is more robust to differentially private training.}, language = {en} } @article{ShainyanMoskalikAstakhovaetal.2014, author = {Shainyan, Bagrat A. and Moskalik, Mikhail Yu and Astakhova, Vera V. and Schilde, Uwe}, title = {Novel design of 3,8-diazabicyclo[3.2.1]octane framework in oxidative sulfonamidation of 1,5-hexadiene}, series = {Tetrahedron}, volume = {70}, journal = {Tetrahedron}, number = {30}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2014.04.095}, pages = {4547 -- 4551}, year = {2014}, abstract = {1,5-Hexadiene reacts with trifluoromethanesulfonamide in the oxidative system (t-BuOCl+Nal) to give trans-2,5-bis(iodomethyl)-1-(trifluoromethylsulfonyl)pyrrolidine 5 and 3,8-bis(trifluoromethylsulfonyl)-3,8-diazabicyclo[3.2.1]octane 6. With arenesulfonamides ArSO2NH2 (Ar=Ph, Tol), the reaction stops at the formation of the trans and cis isomers of 2,5-bis(iodomethyl)-1-(arenesulfonyl)pyrrolidine 7 and 8 (1:1). The cis isomers of 7 and 8 do not undergo cyclization to the corresponding 3,8-disubstituted 3,8-diazabicyclo[3.2.1]octanes. The reaction with triflamide represents the first example of one-pot two-step route to 3,8-diazabicyclo[3.2.1]octane system. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} } @article{OsterFritschUlbrichtetal.2022, author = {Oster, Simon and Fritsch, Tobias and Ulbricht, Alexander and Mohr, Gunther and Bruno, Giovanni and Maierhofer, Christiane and Altenburg, Simon}, title = {On the registration of thermographic in situ monitoring data and computed tomography reference data in the scope of defect prediction in laser powder bed fusion}, series = {Metals : open access journal}, volume = {12}, journal = {Metals : open access journal}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2075-4701}, doi = {10.3390/met12060947}, pages = {21}, year = {2022}, abstract = {The detection of internal irregularities is crucial for quality assessment in metal-based additive manufacturing (AM) technologies such as laser powder bed fusion (L-PBF). The utilization of in-process thermography as an in situ monitoring tool in combination with post-process X-ray micro computed tomography (XCT) as a reference technique has shown great potential for this aim. Due to the small irregularity dimensions, a precise registration of the datasets is necessary as a requirement for correlation. In this study, the registration of thermography and XCT reference datasets of a cylindric specimen containing keyhole pores is carried out for the development of a porosity prediction model. The considered datasets show variations in shape, data type and dimensionality, especially due to shrinkage and material elevation effects present in the manufactured part. Since the resulting deformations are challenging for registration, a novel preprocessing methodology is introduced that involves an adaptive volume adjustment algorithm which is based on the porosity distribution in the specimen. Thus, the implementation of a simple three-dimensional image-to-image registration is enabled. The results demonstrate the influence of the part deformation on the resulting porosity location and the importance of registration in terms of irregularity prediction.}, language = {en} } @article{MoskalikShainyanAstakhovaetal.2013, author = {Moskalik, Mikhail Yu and Shainyan, Bagrat A. and Astakhova, Vera V. and Schilde, Uwe}, title = {Oxidative addition of trifluoromethanesulfonamide to cycloalkadienes}, series = {Tetrahedron}, volume = {69}, journal = {Tetrahedron}, number = {2}, publisher = {Elsevier}, address = {Oxford}, issn = {0040-4020}, doi = {10.1016/j.tet.2012.10.099}, pages = {705 -- 711}, year = {2013}, abstract = {In the oxidative system (t-BuOCl+NaI) trifluoromethanesulfonamide is regio- and stereoselectively added to only one double bond of cyclopentadiene and 1,3-cyclohexadiene giving rise to 1,1,1-trifluoro-N-(5-iodocyclopent-2-en-1-yl)methanesulfonamide 7 and trans-N,N'-cyclohex-3-en-1,2-diylbis(1,1,1-trifluoromethanesulfonamide) 8. The structure of 7 and 8 was determined by X-ray, NMR, and MS. With 1,4-cyclohexadiene, addition to both double bonds occurs with the formation of N,N'-(4-chloro-5-iodocyclohexan-1,2-diyl)bis(1,1,1-trifluoromethanesulfonamide) 9. Under the action of sodium iodide in acetone, the latter product undergoes halogenophilic attack with the reduction of the CHI group and elimination of HCl to give trans-N,N'-cyclohex-4-en-1,2-diylbis(1,1,1-trifluoromethanesulfonamide) 10, whose structure was also determined by X-ray analysis. 1,3,5-Cycloheptatriene under these conditions is oxidized to benzaldehyde and does not react with trifluoromethanesulfonamide.}, language = {en} } @article{ShainyanTolstikovaSchilde2012, author = {Shainyan, Bagrat A. and Tolstikova, Ljudmila L. and Schilde, Uwe}, title = {Simple methods for the preparation of N-triflyl guanidines and the structure of compounds with the CF3SO2N=C-N fragment}, series = {Journal of fluorine chemistry}, volume = {135}, journal = {Journal of fluorine chemistry}, number = {1}, publisher = {Elsevier}, address = {Lausanne}, issn = {0022-1139}, doi = {10.1016/j.fluchem.2011.12.004}, pages = {261 -- 264}, year = {2012}, abstract = {Two novel and simple approaches to N-triflyl guanidines are elaborated. Owing to very strong conjugation the formally double C=N bond of TIN=C(NHR)(2) is longer than the formally single N-C bonds. Energetic effect of the triflylgroup on the conjugation in the N-C=N moiety is estimated to be >= 150 kcal/mol.}, language = {en} }