@article{WalterCastroVossetal.2009, author = {Walter, Juliane K. and Castro, Victor Manuel and Voss, Martin and Gast, Klaus and Rueckert, Christine and Piontek, J{\"o}rg and Blasig, Ingolf E.}, title = {Redox-sensitivity of the dimerization of occludin}, issn = {1420-682X}, doi = {10.1007/s00018-009-0150-z}, year = {2009}, abstract = {Occludin is a self-associating transmembrane tight junction protein affected in oxidative stress. However, its function is unknown. The cytosolic C-terminal tail contains a coiled coil-domain forming dimers contributing to the self- association. Studying the hypothesis that the self-association is redox-sensitive, we found that the dimerization of the domain depended on the sulfhydryl concentration of the environment in low-millimolar range. Under physiological conditions, monomers and dimers were detected. Masking the sulfhydryl residues in the domain prevented the dimerization but affected neither its helical structure nor cylindric shape. Incubation of cell extracts containing full-length occludin with sulfhydryl reagents prevented the dimerization; a cysteine/alanine exchange mutant also did not show dimer formation. This demonstrates, for the first time, that disulfide bridge formation of the domain is involved in the occludin dimerization. It is concluded that the redox-dependent dimerization of occludin may play a regulatory role in the tight junction assembly under physiological and pathological conditions.}, language = {en} } @article{VossSchmidtWalzetal.2009, author = {Voss, Martin and Schmidt, Ruth and Walz, Bernd and Baumann, Otto}, title = {Stimulus-induced translocation of the protein kinase A catalytic subunit to the apical membrane in blowfly salivary glands}, issn = {0302-766X}, doi = {10.1007/s00441-008-0673-x}, year = {2009}, abstract = {Secretion in blowfly (Calliphora vicina) salivary glands is regulated by the neurohormone serotonin (5-HT), which activates the InsP(3)/Ca2+ pathway and the cAMP/protein kinase A (PKA) pathway in the secretory cells. The latter signaling cascade induces the activation of a vacuolar H+-ATPase on the apical membrane. Here, we have determined the distribution of PKA by using antibodies against the PKA regulatory subunit-II (PKA-RII) and the PKA catalytic subunit (PKA-C) of Drosophila. PKA is present in high concentrations within the secretory cells. PKA-RII and PKA-C co-distribute in non-stimulated glands, being enriched in the basal portion of the secretory cells. Exposure to 8-CPT-cAMP or 5-HT induces the translocation of PKA-C to the apical membrane, whereas the PKA-RII distribution remains unchanged. The recruitment of PKA-C to the apical membrane corroborates our hypothesis that vacuolar H+-ATPase, which is enriched in this membrane domain, is a target protein for PKA.}, language = {en} } @article{WalterRueckertVossetal.2009, author = {Walter, Juliane K. and R{\"u}ckert, Christine and Voss, Martin and M{\"u}ller, Sebastian L. and Piontek, Joerg and Gast, Klaus and Blasig, Ingolf E.}, title = {The oligomerization of the coiled coil-domain of occluddin is redox sensitive}, issn = {0077-8923}, doi = {10.1111/j.1749-6632.2009.04058.x}, year = {2009}, abstract = {The transmembrane tight junction protein occludin is sensitive to oxidative stress. Occludin oligomerizes; however, its function in the tight junction is unknown. The cytosolic C-terminal tail contains a coiled coil-domain and forms dimers contributing to the oligomerization. The regulation of the oligomerization remains unclear. As the domain area contains sulfhydryl residues, we tested the hypothesis that the dimerization of the coiled coil-domain depends on these residues. We showed that the dimerization is modulated by the thiol concentration in the low-millimolar range, which is relevant both for physiological and pathophysiological conditions. Masking the sulfhydryl residues in the fragment by covalent binding of 4-vinyl pyridine prevented the dimerization but did not affect its helical structure and cylindric shape. The data demonstrate, for the first time, that disulfide bridge formation of murine cystein 408 is involved in the dimerization. This process is redox-sensitive but the secondary structure of the domain is not. It is concluded that the dimerization of occludin may play a regulatory role in the tight junction assembly under physiological and pathological conditions.}, language = {en} } @misc{VossBlenauWalzetal.2009, author = {Voss, Martin and Blenau, Wolfgang and Walz, Bernd and Baumann, Otto}, title = {V-ATPase deactivation in blowfly salivary glands is mediated by protein phosphatase 2C}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-44360}, year = {2009}, abstract = {The activity of vacuolar H+-ATPase (V-ATPase) in the apical membrane of blowfly (Calliphora vicina) salivary glands is regulated by the neurohormone serotonin (5-HT). 5-HT induces, via protein kinase A, the phosphorylation of V-ATPase subunit C and the assembly of V-ATPase holoenzymes. The protein phosphatase responsible for the dephosphorylation of subunit C and V-ATPase inactivation is not as yet known. We show here that inhibitors of protein phosphatases PP1 and PP2A (tautomycin, ocadaic acid) and PP2B (cyclosporin A, FK-506) do not prevent V-ATPase deactivation and dephosphorylation of subunit C. A decrease in the intracellular Mg2+ level caused by loading secretory cells with EDTA-AM leads to the activation of proton pumping in the absence of 5-HT, prolongs the 5-HT-induced response in proton pumping, and inhibits the dephosphorylation of subunit C. Thus, the deactivation of V-ATPase is most probably mediated by a protein phosphatase that is insensitive to okadaic acid and that requires Mg2+, namely, a member of the PP2C protein family. By molecular biological techniques, we demonstrate the expression of at least two PP2C protein family members in blowfly salivary glands. © 2009 Wiley Periodicals, Inc.}, language = {en} }