@article{ZhangMischkeZhangetal.2013, author = {Zhang, Wanyi and Mischke, Steffen and Zhang, Chengjun and Gao, Dou and Fan, Rong}, title = {Ostracod distribution and habitat relationships in the Kunlun Mountains, northern Tibetan Plateau}, series = {Quaternary international : the journal of the International Union for Quaternary Research}, volume = {313}, journal = {Quaternary international : the journal of the International Union for Quaternary Research}, publisher = {Elsevier}, address = {Oxford}, issn = {1040-6182}, doi = {10.1016/j.quaint.2013.06.020}, pages = {38 -- 46}, year = {2013}, abstract = {Surface sediment samples were collected from the lakes Heihai, Kusai, Haiding Nuur and Yan Hu, and from streams and ponds in the Kunlun Mountains at the northern margin of the Tibetan Plateau to investigate the sub-fossil ostracod (micro-crustacean) fauna of the region. Among 65 collected samples, 46 ostracod shell-rich samples were used to study the relationship between the ostracod distribution and specific conductivity (SC) of the water, which ranged from 0.6 to 53.0 mS cm(-1). A total of eleven ostracod species was identified from this region, with about half of the species restricted to the Tibetan Plateau and its adjacent mountain areas, and the other half representing Holarctic taxa. Tonnacypris cf. estonica and Tonnacypris tonnensis are reported from the Tibetan Plateau for the first time. Leucocythere sp. is the dominant species and Ilyocypris cf. bradyi is also relatively abundant. The other seven species were recorded with limited abundances apparently due to lower SC tolerances. Leucocythere sp. was recorded over the full SC range from 0.6 to 53 mS cm(-1). Eucypris mareotica is a typical brackish and saline water species, which was found at sample sites with high SC (2.8-53.0 mS cm(-1)). In contrast, Leucocythere dorsotuberosa, Candona candida and Eucypris afghanistanensis prefer freshwater to slightly oli-gohaline waters with SC < 1.8 mS cm(-1). The SC optimum and tolerance range for each species were determined and compared to earlier reported data from other regions of Central Asia. The results indicate that species assemblage data from fossil ostracod shells have a large potential to provide information on past SC levels and more general climate-determined moisture conditions. (C) 2013 Elsevier Ltd and INQUA. All rights reserved.}, language = {en} } @article{MischkeWeynellZhangetal.2013, author = {Mischke, Steffen and Weynell, Marc and Zhang, Chengjun and Wiechert, Uwe}, title = {Spatial variability of C-14 reservoir effects in Tibetan Plateau lakes}, series = {Quaternary international : the journal of the International Union for Quaternary Research}, volume = {313}, journal = {Quaternary international : the journal of the International Union for Quaternary Research}, number = {45}, publisher = {Elsevier}, address = {Oxford}, issn = {1040-6182}, doi = {10.1016/j.quaint.2013.01.030}, pages = {147 -- 155}, year = {2013}, abstract = {Radiocarbon dating of lake sediments is often hampered by the presence of a lake reservoir effect (LRE, also 'dead carbon' or 'old carbon' effect) especially in dry and cold regions with a sparse plant cover in the catchment. The Tibetan Plateau became a hotspot of the palaeoenvironmental and climate research community in recent years and the assessment of present-day LREs is a crucial prerequisite for the establishment of reliable radiocarbon age depth relationships for lake sediment cores. This paper examines the spatial variability of LREs within individual lakes, through a discussion of new data for Lake Donggi Cona and a compilation of previously published data for five additional lakes where LRE data are available for different sites. Lake reservoir effects for Lake Donggi Cona on the northeastern Tibetan Plateau were determined for shells of aquatic snails collected alive close to the lake's shore. The largest determined LRE of 20,000 C-14 years is significantly larger than previously reported LREs from the central part of the lake, and larger than any previously published LRE for the Tibetan Plateau. Relatively low LREs in the central regions of lakes, higher LREs towards the margins, and high LREs in tributaries and spring waters are apparently a common pattern of Tibetan Plateau lakes. The differences in LREs within individual lakes or catchment areas are attributed to the more prolonged exchange of the lake water's dissolved inorganic carbon with the atmospheric CO2 in central lake regions on the one hand and the increasing influence of C-14 free or poor stream and groundwater due to the dissolution of carbonaceous basement rocks towards its margins. Generally higher LREs were recorded in the three tectonically active lake regions of the six examined catchments, and it is speculated that rising crustal CO2 further contributes to the LREs in these catchments. In addition to these observations and inferences, elevated C-14 levels of the atmosphere as a result of nuclear bomb testing are often ignored if LREs for modern materials are reported by convention relative to the atmospheric C-14 activity of the year 1950. LRE data reported in this way represent unrealistic minimum estimates. (C) 2013 Elsevier Ltd and INQUA.}, language = {en} }