@misc{YarmanJetzschmannNeumannetal.2017, author = {Yarman, Aysu and Jetzschmann, Katharina J. and Neumann, Bettina and Zhang, Xiaorong and Wollenberger, Ulla and Cordin, Aude and Haupt, Karsten and Scheller, Frieder W.}, title = {Enzymes as tools in MIP-sensors}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1098}, issn = {1866-8372}, doi = {10.25932/publishup-47464}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-474642}, pages = {18}, year = {2017}, abstract = {Molecularly imprinted polymers (MIPs) have the potential to complement antibodies in bioanalysis, are more stable under harsh conditions, and are potentially cheaper to produce. However, the affinity and especially the selectivity of MIPs are in general lower than those of their biological pendants. Enzymes are useful tools for the preparation of MIPs for both low and high-molecular weight targets: As a green alternative to the well-established methods of chemical polymerization, enzyme-initiated polymerization has been introduced and the removal of protein templates by proteases has been successfully applied. Furthermore, MIPs have been coupled with enzymes in order to enhance the analytical performance of biomimetic sensors: Enzymes have been used in MIP-sensors as tracers for the generation and amplification of the measuring signal. In addition, enzymatic pretreatment of an analyte can extend the analyte spectrum and eliminate interferences.}, language = {en} } @misc{YarmanJetzschmannNeumannetal.2017, author = {Yarman, Aysu and Jetzschmann, Katharina J. and Neumann, Bettina and Zhang, Xiaorong and Wollenberger, Ulla and Cordin, Aude and Haupt, Karsten and Scheller, Frieder W.}, title = {Enzymes as Tools in MIP-Sensors}, series = {Chemosensors}, volume = {5}, journal = {Chemosensors}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors5020011}, pages = {16}, year = {2017}, abstract = {Molecularly imprinted polymers (MIPs) have the potential to complement antibodies in bioanalysis, are more stable under harsh conditions, and are potentially cheaper to produce. However, the affinity and especially the selectivity of MIPs are in general lower than those of their biological pendants. Enzymes are useful tools for the preparation of MIPs for both low and high-molecular weight targets: As a green alternative to the well-established methods of chemical polymerization, enzyme-initiated polymerization has been introduced and the removal of protein templates by proteases has been successfully applied. Furthermore, MIPs have been coupled with enzymes in order to enhance the analytical performance of biomimetic sensors: Enzymes have been used in MIP-sensors as tracers for the generation and amplification of the measuring signal. In addition, enzymatic pretreatment of an analyte can extend the analyte spectrum and eliminate interferences.}, language = {en} } @article{Yarman2017, author = {Yarman, Aysu}, title = {Development of a molecularly imprinted polymer-based electrochemical sensor for tyrosinase}, series = {Turkish journal of chemistry}, volume = {42}, journal = {Turkish journal of chemistry}, number = {2}, publisher = {T{\"u}rkiye Bilimsel ve Teknik Ara{\c{s}}t{\i}rma Kurumu}, address = {Ankara}, issn = {1300-0527}, doi = {10.3906/kim-1708-68}, pages = {346 -- 354}, year = {2017}, abstract = {For the first time a molecularly imprinted polymer (MIP)-based sensor for tyrosinase is described. This sensor is based on the electropolymerization of scopoletin or o-phenylenediamine in the presence of tyrosinase from mushrooms, which has a high homology to the human enzyme. The template was removed either by treatment with proteinase Kor by alkaline treatment. The measuring signal was generated either by measuring the formation of a product by the target enzyme or by evaluation of the permeability of the redox marker ferricyanide. The o-phenylenediamine-based MIP sensor has a linear measuring range up to 50 nM of tyrosinase with a limit of detection of 3.97 nM (R 2 = 0.994) and shows good discrimination towards other proteins, e.g., bovine serum albumin and cytochrome c.}, language = {en} } @phdthesis{Yang2017, author = {Yang, Lei}, title = {Verification of systemic mRNAs mobility and mobile functions}, school = {Universit{\"a}t Potsdam}, pages = {125}, year = {2017}, language = {en} } @misc{WurzbacherFuchsAttermeyeretal.2017, author = {Wurzbacher, Christian and Fuchs, Andrea and Attermeyer, Katrin and Frindte, Katharina and Grossart, Hans-Peter and Hupfer, Michael and Casper, Peter and Monaghan, Michael T.}, title = {Shifts among Eukaryota, Bacteria, and Archaea define the vertical organization of a lake sediment}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1111}, issn = {1866-8372}, doi = {10.25932/publishup-43196}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431965}, pages = {18}, year = {2017}, abstract = {Background Lake sediments harbor diverse microbial communities that cycle carbon and nutrients while being constantly colonized and potentially buried by organic matter sinking from the water column. The interaction of activity and burial remained largely unexplored in aquatic sediments. We aimed to relate taxonomic composition to sediment biogeochemical parameters, test whether community turnover with depth resulted from taxonomic replacement or from richness effects, and to provide a basic model for the vertical community structure in sediments. Methods We analyzed four replicate sediment cores taken from 30-m depth in oligo-mesotrophic Lake Stechlin in northern Germany. Each 30-cm core spanned ca. 170 years of sediment accumulation according to 137Cs dating and was sectioned into layers 1-4 cm thick. We examined a full suite of biogeochemical parameters and used DNA metabarcoding to examine community composition of microbial Archaea, Bacteria, and Eukaryota. Results Community β-diversity indicated nearly complete turnover within the uppermost 30 cm. We observed a pronounced shift from Eukaryota- and Bacteria-dominated upper layers (<5 cm) to Bacteria-dominated intermediate layers (5-14 cm) and to deep layers (>14 cm) dominated by enigmatic Archaea that typically occur in deep-sea sediments. Taxonomic replacement was the prevalent mechanism in structuring the community composition and was linked to parameters indicative of microbial activity (e.g., CO2 and CH4 concentration, bacterial protein production). Richness loss played a lesser role but was linked to conservative parameters (e.g., C, N, P) indicative of past conditions. Conclusions By including all three domains, we were able to directly link the exponential decay of eukaryotes with the active sediment microbial community. The dominance of Archaea in deeper layers confirms earlier findings from marine systems and establishes freshwater sediments as a potential low-energy environment, similar to deep sea sediments. We propose a general model of sediment structure and function based on microbial characteristics and burial processes. An upper "replacement horizon" is dominated by rapid taxonomic turnover with depth, high microbial activity, and biotic interactions. A lower "depauperate horizon" is characterized by low taxonomic richness, more stable "low-energy" conditions, and a dominance of enigmatic Archaea.}, language = {en} } @article{WurzbacherFuchsAttermeyeretal.2017, author = {Wurzbacher, Christian and Fuchs, Andrea and Attermeyer, Katrin and Frindte, Katharina and Grossart, Hans-Peter and Hupfer, Michael and Casper, Peter and Monaghan, Michael T.}, title = {Shifts among Eukaryota, Bacteria, and Archaea define the vertical organization of a lake sediment}, series = {Microbiome}, volume = {5}, journal = {Microbiome}, publisher = {BioMed Central}, address = {London}, issn = {2049-2618}, doi = {10.1186/s40168-017-0255-9}, pages = {16}, year = {2017}, abstract = {Background: Lake sediments harbor diverse microbial communities that cycle carbon and nutrients while being constantly colonized and potentially buried by organic matter sinking from the water column. The interaction of activity and burial remained largely unexplored in aquatic sediments. We aimed to relate taxonomic composition to sediment biogeochemical parameters, test whether community turnover with depth resulted from taxonomic replacement or from richness effects, and to provide a basic model for the vertical community structure in sediments. Methods: We analyzed four replicate sediment cores taken from 30-m depth in oligo-mesotrophic Lake Stechlin in northern Germany. Each 30-cm core spanned ca. 170 years of sediment accumulation according to Cs-137 dating and was sectioned into layers 1-4 cm thick. We examined a full suite of biogeochemical parameters and used DNA metabarcoding to examine community composition of microbial Archaea, Bacteria, and Eukaryota. Results: Community beta-diversity indicated nearly complete turnover within the uppermost 30 cm. We observed a pronounced shift from Eukaryota- and Bacteria-dominated upper layers (<5 cm) to Bacteria-dominated intermediate layers (5-14 cm) and to deep layers (>14 cm) dominated by enigmatic Archaea that typically occur in deep-sea sediments. Taxonomic replacement was the prevalent mechanism in structuring the community composition and was linked to parameters indicative of microbial activity (e.g., CO2 and CH4 concentration, bacterial protein production). Richness loss played a lesser role but was linked to conservative parameters (e.g., C, N, P) indicative of past conditions. Conclusions: By including all three domains, we were able to directly link the exponential decay of eukaryotes with the active sediment microbial community. The dominance of Archaea in deeper layers confirms earlier findings from marine systems and establishes freshwater sediments as a potential low-energy environment, similar to deep sea sediments. We propose a general model of sediment structure and function based on microbial characteristics and burial processes. An upper "replacement horizon" is dominated by rapid taxonomic turnover with depth, high microbial activity, and biotic interactions. A lower "depauperate horizon" is characterized by low taxonomic richness, more stable "low-energy" conditions, and a dominance of enigmatic Archaea.}, language = {en} } @article{WurzbacherAttermeyerKettneretal.2017, author = {Wurzbacher, Christian and Attermeyer, Katrin and Kettner, Marie Therese and Flintrop, Clara and Warthmann, Norman and Hilt, Sabine and Grossart, Hans-Peter and Monaghan, Michael T.}, title = {DNA metabarcoding of unfractionated water samples relates phyto-, zoo- and bacterioplankton dynamics and reveals a single-taxon bacterial bloom}, series = {Environmental microbiology reports}, volume = {9}, journal = {Environmental microbiology reports}, publisher = {Wiley}, address = {Hoboken}, issn = {1758-2229}, doi = {10.1111/1758-2229.12540}, pages = {383 -- 388}, year = {2017}, abstract = {Most studies of aquatic plankton focus on either macroscopic or microbial communities, and on either eukaryotes or prokaryotes. This separation is primarily for methodological reasons, but can overlook potential interactions among groups. Here we tested whether DNA metabarcoding of unfractionated water samples with universal primers could be used to qualitatively and quantitatively study the temporal dynamics of the total plankton community in a shallow temperate lake. Significant changes in the relative proportions of normalized sequence reads of eukaryotic and prokaryotic plankton communities over a 3-month period in spring were found. Patterns followed the same trend as plankton estimates measured using traditional microscopic methods. The bloom of a conditionally rare bacterial taxon belonging to Arcicella was characterized, which rapidly came to dominate the whole lake ecosystem and would have remained unnoticed without metabarcoding. The data demonstrate the potential of universal DNA metabarcoding applied to unfractionated samples for providing a more holistic view of plankton communities.}, language = {en} } @article{WuStoddartWuertzKozaketal.2017, author = {Wu, Yabin and Stoddart, Martin J. and Wuertz-Kozak, Karin and Grad, Sibylle and Alini, Mauro and Ferguson, Stephen J.}, title = {Hyaluronan supplementation as a mechanical regulator of cartilage tissue development under joint-kinematic-mimicking loading}, series = {Interface : journal of the Royal Society}, volume = {14}, journal = {Interface : journal of the Royal Society}, publisher = {Royal Society}, address = {London}, issn = {1742-5689}, doi = {10.1098/rsif.2017.0255}, pages = {9}, year = {2017}, language = {en} } @phdthesis{Wu2017, author = {Wu, Si}, title = {Exploring the Arabidopsis metabolic landscape by genetic mapping integrated with network analysis}, school = {Universit{\"a}t Potsdam}, pages = {121}, year = {2017}, language = {en} } @article{WolffZhangHaagenDeckeretal.2017, author = {Wolff, Martin and Zhang-Haagen, Bo and Decker, Christina and Barz, Bogdan and Schneider, Mario and Biehl, Ralf and Radulescu, Aurel and Strodel, Birgit and Willbold, Dieter and Nagel-Steger, Luitgard}, title = {A beta 42 pentamers/hexamers are the smallest detectable oligomers in solution}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-017-02370-3}, pages = {13}, year = {2017}, language = {en} } @article{WittBornhorstMitzeetal.2017, author = {Witt, B. and Bornhorst, Julia and Mitze, H. and Ebert, Franziska and Meyer, S. and Francesconi, Kevin A. and Schwerdtle, Tanja}, title = {Arsenolipids exert less toxicity in a human neuron astrocyte co-culture as compared to the respective monocultures}, series = {Metallomics : integrated biometal science}, volume = {9}, journal = {Metallomics : integrated biometal science}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1756-5901}, doi = {10.1039/c7mt00036g}, pages = {442 -- 446}, year = {2017}, abstract = {Arsenic-containing hydrocarbons (AsHCs), natural products found in seafood, have recently been shown to exert toxic effects in human neurons. In this study we assessed the toxicity of three AsHCs in cultured human astrocytes. Due to the high cellular accessibility and substantial toxicity observed astrocytes were identified as further potential brain target cells for arsenolipids. Thereby, the AsHCs exerted a 5-19-fold higher cytotoxicity in astrocytes as compared to arsenite. Next we compared the toxicity of the arsenicals in a co-culture model of the respective human astrocytes and neurons. Notably the AsHCs did not show any substantial toxic effects in the co-culture, while arsenite did. The arsenic accessibility studies indicated that in the co-culture astrocytes protect neurons against cellular arsenic accumulation especially after incubation with arsenolipids. In summary, these data underline the importance of the glial-neuron interaction when assessing the in vitro neurotoxicity of new unclassified metal species.}, language = {en} } @article{WiegmannRutschmannWillemsen2017, author = {Wiegmann, Alex and Rutschmann, Ronja and Willemsen, Pascale}, title = {Empirically investigating the concept of lying}, series = {Journal of Indian Council of Philosophical Research}, volume = {34}, journal = {Journal of Indian Council of Philosophical Research}, publisher = {Springer}, address = {New Dehli}, issn = {0970-7794}, doi = {10.1007/s40961-017-0112-z}, pages = {591 -- 609}, year = {2017}, abstract = {Lying is an everyday moral phenomenon about which philosophers have written a lot. Not only the moral status of lying has been intensively discussed but also what it means to lie in the first place. Perhaps the most important criterion for an adequate definition of lying is that it fits with people's understanding and use of this concept. In this light, it comes as a surprise that researchers only recently started to empirically investigate the folk concept of lying. In this paper, we describe three experimental studies which address the following questions: Does a statement need to be objectively false in order to constitute lying? Does lying necessarily include the intention to deceive? Can one lie by omitting relevant facts?}, language = {en} } @article{WieczorekKruseEppetal.2017, author = {Wieczorek, Mareike and Kruse, Stefan and Epp, Laura Saskia and Kolmogorov, Alexei and Nikolaev, Anatoly N. and Heinrich, Ingo and Jeltsch, Florian and Pestryakova, Luidmila Agafyevna and Zibulski, Romy and Herzschuh, Ulrike}, title = {Dissimilar responses of larch stands in northern Siberia to increasing temperatures-a field and simulation based study}, series = {Ecology : a publication of the Ecological Society of America}, volume = {98}, journal = {Ecology : a publication of the Ecological Society of America}, publisher = {Wiley}, address = {Hoboken}, issn = {0012-9658}, doi = {10.1002/ecy.1887}, pages = {2343 -- 2355}, year = {2017}, abstract = {Arctic and alpine treelines worldwide differ in their reactions to climate change. A northward advance of or densification within the treeline ecotone will likely influence climate-vegetation feedback mechanisms. In our study, which was conducted in the Taimyr Depression in the North Siberian Lowlands, w present a combined field-and model-based approach helping us to better understand the population processes involved in the responses of the whole treeline ecotone, spanning from closed forest to single-tree tundra, to climate warming. Using information on stand structure, tree age, and seed quality and quantity from seven sites, we investigate effects of intra-specific competition and seed availability on the specific impact of recent climate warming on larch stands. Field data show that tree density is highest in the forest-tundra, and average tree size decreases from closed forest to single-tree tundra. Age-structure analyses indicate that the trees in the closed forest and forest-tundra have been present for at least similar to 240 yr. At all sites except the most southerly ones, past establishment is positively correlated with regional temperature increase. In the single-tree tundra, however, a change in growth form from krummholz to erect trees, beginning similar to 130 yr ago, rather than establishment date has been recorded. Seed mass decreases from south to north, while seed quantity increases. Simulations with LAVESI (Larix Vegetation Simulator) further suggest that relative density changes strongly in response to a warming signal in the forest-tundra while intra-specific competition limits densification in the closed forest and seed limitation hinders densification in the single-tree tundra. We find striking differences in strength and timing of responses to recent climate warming. While forest-tundra stands recently densified, recruitment is almost non-existent at the southern and northern end of the ecotone due to autecological processes. Palaeo-treelines may therefore be inappropriate to infer past temperature changes at a fine scale. Moreover, a lagged treeline response to past warming will, via feedback mechanisms, influence climate change in the future.}, language = {en} } @article{WhiteleyHaugKleinetal.2017, author = {Whiteley, Liam and Haug, Maria and Klein, Kristina and Willmann, Matthias and Bohn, Erwin and Chiantia, Salvatore and Schwarz, Sandra}, title = {Cholesterol and host cell surface proteins contribute to cell-cell fusion induced by the Burkholderia type VI secretion system 5}, series = {PLoS one}, volume = {12}, journal = {PLoS one}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0185715}, pages = {16}, year = {2017}, abstract = {Following escape into the cytoplasm of host cells, Burkholderia pseudomallei and the related species Burkholderia thailandensis employ the type VI secretion system 5 ( T6SS-5) to induce plasma membrane fusion with an adjacent host cell. This process leads to the formation of multinucleated giant cells and facilitates bacterial access to an uninfected host cell in a direct manner. Despite its importance in virulence, the mechanism of the T6SS-5 and the role of host cell factors in cell-cell fusion remain elusive. To date, the T6SS-5 is the only system of bacterial origin known to induce host-cell fusion. To gain insight into the nature of T6SS-5-stimulated membrane fusion, we investigated the contribution of cholesterol and proteins exposed on the host cell surface, which were shown to be critically involved in virus-mediated giant cell formation. In particular, we analyzed the effect of host cell surface protein and cholesterol depletion on the formation of multinucleated giant cells induced by B. thailandensis. Acute protease treatment of RAW264.7 macrophages during infection with B. thailandensis followed by agarose overlay assays revealed a strong reduction in the number of cell-cell fusions compared with EDTA treated cells. Similarly, proteolytic treatment of specifically infected donor cells or uninfected recipient cells significantly decreased multinucleated giant cell formation. Furthermore, modulating host cell cholesterol content by acute cholesterol depletion from cellular membranes by methyl-beta-cyclodextrin treatment or exogenous addition of cholesterol impaired the ability of B. thailandensis to induce cell-cell fusions. The requirement of physiological cholesterol levels suggests that the membrane organization or mechanical properties of the lipid bilayer influence the fusion process. Altogether, our data suggest that membrane fusion induced by B. pseudomallei and B. thailandensis involves a complex interplay between the T6SS-5 and the host cell.}, language = {en} } @article{WeyhenmeyerMackayStockwelletal.2017, author = {Weyhenmeyer, Gesa A. and Mackay, Murray and Stockwell, Jason D. and Thiery, Wim and Grossart, Hans-Peter and Augusto-Silva, Petala B. and Baulch, Helen M. and de Eyto, Elvira and Hejzlar, Josef and Kangur, Kuelli and Kirillin, Georgiy and Pierson, Don C. and Rusak, James A. and Sadro, Steven and Woolway, R. Iestyn}, title = {Citizen science shows systematic changes in the temperature difference between air and inland waters with global warming}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep43890}, pages = {9}, year = {2017}, abstract = {Citizen science projects have a long history in ecological studies. The research usefulness of such projects is dependent on applying simple and standardized methods. Here, we conducted a citizen science project that involved more than 3500 Swedish high school students to examine the temperature difference between surface water and the overlying air (T-w-T-a) as a proxy for sensible heat flux (Q(H)). If Q(H) is directed upward, corresponding to positive T-w-T-a, it can enhance CO2 and CH4 emissions from inland waters, thereby contributing to increased greenhouse gas concentrations in the atmosphere. The students found mostly negative T-w-T-a across small ponds, lakes, streams/rivers and the sea shore (i.e. downward Q(H)), with T-w-T-a becoming increasingly negative with increasing T-a. Further examination of T-w-T-a using high-frequency temperature data from inland waters across the globe confirmed that T-w-T-a is linearly related to T-a. Using the longest available high-frequency temperature time series from Lake Erken, Sweden, we found a rapid increase in the occasions of negative T-w-T-a with increasing annual mean T-a since 1989. From these results, we can expect that ongoing and projected global warming will result in increasingly negative T-w-T-a, thereby reducing CO2 and CH4 transfer velocities from inland waters into the atmosphere.}, language = {en} } @article{WestburyDalerumbNorenetal.2017, author = {Westbury, Michael V. and Dalerumb, Fredrik and Noren, Karin and Hofreiter, Michael}, title = {Complete mitochondrial genome of a bat-eared fox (Otocyon megalotis), along with phylogenetic considerations}, series = {Mitochondrial DNA. Part B}, volume = {2}, journal = {Mitochondrial DNA. Part B}, number = {1}, publisher = {Routledge, Taylor \& Francis Group}, address = {London}, issn = {2380-2359}, doi = {10.1080/23802359.2017.1331325}, pages = {298 -- 299}, year = {2017}, abstract = {The bat-eared fox, Otocyon megalotis, is the only member of its genus and is thought to occupy a basal position within the dog family. These factors can lead to challenges in complete mitochondrial reconstructions and accurate phylogenetic positioning. Here, we present the first complete mitochondrial genome of the bat-eared fox recovered using shotgun sequencing and iterative mapping to three distantly related species. Phylogenetic analyses placed the bat-eared fox basal in the Canidae family within the clade including true foxes (Vulpes) and the raccoon dog (Nyctereutes) with high support values. This position is in good agreement with previously published results based on short fragments of mitochondrial and nuclear genes, therefore adding more support to the basal positioning of the bat-eared fox within Canidae.}, language = {en} } @article{WestburyBalekaBarlowetal.2017, author = {Westbury, Michael V. and Baleka, Sina Isabelle and Barlow, Axel and Hartmann, Stefanie and Paijmans, Johanna L. A. and Kramarz, Alejandro and Forasiepi, Analia M. and Bond, Mariano and Gelfo, Javier N. and Reguero, Marcelo A. and Lopez-Mendoza, Patricio and Taglioretti, Matias and Scaglia, Fernando and Rinderknecht, Andres and Jones, Washington and Mena, Francisco and Billet, Guillaume and de Muizon, Christian and Luis Aguilar, Jose and MacPhee, Ross D. E. and Hofreiter, Michael}, title = {A mitogenomic timetree for Darwin's enigmatic South American mammal Macrauchenia patachonica}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms15951}, pages = {8}, year = {2017}, abstract = {The unusual mix of morphological traits displayed by extinct South American native ungulates (SANUs) confounded both Charles Darwin, who first discovered them, and Richard Owen, who tried to resolve their relationships. Here we report an almost complete mitochondrial genome for the litoptern Macrauchenia. Our dated phylogenetic tree places Macrauchenia as sister to Perissodactyla, but close to the radiation of major lineages within Laurasiatheria. This position is consistent with a divergence estimate of B66Ma (95\% credibility interval, 56.64-77.83 Ma) obtained for the split between Macrauchenia and other Panperissodactyla. Combined with their morphological distinctiveness, this evidence supports the positioning of Litopterna (possibly in company with other SANU groups) as a separate order within Laurasiatheria. We also show that, when using strict criteria, extinct taxa marked by deep divergence times and a lack of close living relatives may still be amenable to palaeogenomic analysis through iterative mapping against more distant relatives.}, language = {en} } @phdthesis{Weiss2017, author = {Weiß, Lina}, title = {Understanding the emergence and maintenance of biodiversity in grasslands}, school = {Universit{\"a}t Potsdam}, pages = {153}, year = {2017}, language = {en} } @article{WeithoffTaubeBolius2017, author = {Weithoff, Guntram and Taube, Anne and Bolius, Sarah}, title = {The invasion success of the cyanobacterium Cylindrospermopsis raciborskii in experimental mesocosms}, series = {Aquatic Invasions}, volume = {12}, journal = {Aquatic Invasions}, publisher = {Regional Euro-Asian Biological Invasions centre-reabic}, address = {Helsinki}, issn = {1798-6540}, doi = {10.3391/ai.2017.12.3.07}, pages = {333 -- 341}, year = {2017}, abstract = {The potentially toxic, invasive cyanobacterium Cylindrospermopsis raciborskii, originating from sub-tropical regions, has spread into temperate climate zones in almost all continents. Potential factors in its success are temperature, light and nutrient levels. Grazing losses through zooplankton have been measured in the laboratory but are typically not regarded as a factor in (failed) invasion success. In some potentially suitable lakes, C. raciborskii has never been found, although it is present in water bodies close by. Therefore, we tested the invasive potential of three different isolates introduced into natural plankton communities using laboratory mesocosm experiments under three grazing levels: ambient zooplankton densities, removal of large species using 100 mu m mesh and a ca. doubling of large species. Three C. raciborskii isolates originating from the same geographic region (North-East Germany) were added separately to the four replicates of each treatment and kept in semi-continuous cultures for 21 days. Two isolates disappeared from the mesocosms and were also not viable in filtered lake water indicating that the lake water itself or the switch from culture medium to lake water led to the decay of the inoculated C. raciborskii. Only one out of the three isolates persisted in the plankton communities at a rather low level and only in the treatment without larger zooplankton. This result demonstrates that under potentially suitable environmental conditions, top-down control from zooplankton might hamper the establishment of C. raciborskii. Non-metric multidimensional scaling showed distinct variation in resident phytoplankton communities between the different grazing levels, thus differential grazing impact shaped the resident community in different ways allowing C. raciborskii only to invade under competitive (= low grazing pressure) conditions. Furthermore, even after invasion failure, the temporary presence of C. raciborskii influenced the phytoplankton community.}, language = {en} } @article{WeithoffGaedke2017, author = {Weithoff, Guntram and Gaedke, Ursula}, title = {Mean functional traits of lake phytoplankton reflect seasonal and inter-annual changes in nutrients, climate and herbivory}, series = {Journal of plankton research}, volume = {39}, journal = {Journal of plankton research}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0142-7873}, doi = {10.1093/plankt/fbw072}, pages = {509 -- 517}, year = {2017}, abstract = {Trait-based approaches have become increasingly successful in community ecology. They assume that the distribution of functional traits within communities responds in a predictable way to alterations in environmental forcing and that strong forcing may accelerate such trait changes. We used high frequency measurements of phytoplankton to test these assumptions. We analyzed the seasonal and long-term dynamics of the community trait mean within a multi-dimensional trait space under alternating multifactorial environmental conditions. The community trait mean exhibited a distinct recurrent annual pattern that reflected minor changes in climate, herbivory and nutrients. Independent of early spring conditions, the community trait mean was repeatedly driven into a narrow confined area in the trait space under pronounced herbivory during the clear water phase. The speed of movement was highest at the onset and the relaxation of such strong unidirectional forcing. Thus, our data support the conceptual framework of trait-based ecology that alterations in environmental conditions are systematically tracked by adjustments in the dominant functional trait values and that the speed of trait changes depends on the kind and intensity of the selection pressure. Our approach provides a sensitive tool to detect small functional differences in the community related to subtle differences in forcing.}, language = {en} } @misc{WeisserStueblerMatheisetal.2017, author = {Weisser, Karin and St{\"u}bler, Sabine and Matheis, Walter and Huisinga, Wilhelm}, title = {Towards toxicokinetic modelling of aluminium exposure from adjuvants in medicinal products}, series = {Regulatory toxicology and pharmacology : official journal of the International Society for Regulatory Toxicology and Pharmacology}, volume = {88}, journal = {Regulatory toxicology and pharmacology : official journal of the International Society for Regulatory Toxicology and Pharmacology}, publisher = {Elsevier}, address = {San Diego}, issn = {0273-2300}, doi = {10.1016/j.yrtph.2017.02.018}, pages = {310 -- 321}, year = {2017}, abstract = {As a potentially toxic agent on nervous system and bone, the safety of aluminium exposure from adjuvants in vaccines and subcutaneous immune therapy (SCIT) products has to be continuously reevaluated, especially regarding concomitant administrations. For this purpose, knowledge on absorption and disposition of aluminium in plasma and tissues is essential. Pharmacokinetic data after vaccination in humans, however, are not available, and for methodological and ethical reasons difficult to obtain. To overcome these limitations, we discuss the possibility of an in vitro-in silico approach combining a toxicokinetic model for aluminium disposition with biorelevant kinetic absorption parameters from adjuvants. We critically review available kinetic aluminium-26 data for model building and, on the basis of a reparameterized toxicokinetic model (Nolte et al., 2001), we identify main modelling gaps. The potential of in vitro dissolution experiments for the prediction of intramuscular absorption kinetics of aluminium after vaccination is explored. It becomes apparent that there is need for detailed in vitro dissolution and in vivo absorption data to establish an in vitro-in vivo correlation (IVIVC) for aluminium adjuvants. We conclude that a combination of new experimental data and further refinement of the Nolte model has the potential to fill a gap in aluminium risk assessment. (C) 2017 Elsevier Inc. All rights reserved.}, language = {en} } @article{vonLoeffelholzLieskeNeuschaeferRubeetal.2017, author = {von Loeffelholz, Christian and Lieske, Stefanie and Neuschaefer-Rube, Frank and Willmes, Diana M. and Raschzok, Nathanael and Sauer, Igor M. and K{\"o}nig, J{\"o}rg and Fromm, Martin F. and Horn, Paul and Chatzigeorgiou, Antonios and Pathe-Neuschaefer-Rube, Andrea and Jordan, Jens and Pfeiffer, Andreas F. H. and Mingrone, Geltrude and Bornstein, Stefan R. and Stroehle, Peter and Harms, Christoph and Wunderlich, F. Thomas and Helfand, Stephen L. and Bernier, Michel and de Cabo, Rafael and Shulman, Gerald I. and Chavakis, Triantafyllos and P{\"u}schel, Gerhard Paul and Birkenfeld, Andreas L.}, title = {The human longevity gene homolog INDY and interleukin-6 interact in hepatic lipid metabolism}, series = {Hepatology}, volume = {66}, journal = {Hepatology}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {0270-9139}, doi = {10.1002/hep.29089}, pages = {616 -- 630}, year = {2017}, abstract = {Reduced expression of the Indy ("I am Not Dead, Yet") gene in lower organisms promotes longevity in a manner akin to caloric restriction. Deletion of the mammalian homolog of Indy (mIndy, Slc13a5) encoding for a plasma membrane-associated citrate transporter expressed highly in the liver, protects mice from high-fat diet-induced and aging-induced obesity and hepatic fat accumulation through a mechanism resembling caloric restriction. We studied a possible role of mIndy in human hepatic fat metabolism. In obese, insulin-resistant patients with nonalcoholic fatty liver disease, hepatic mIndy expression was increased and mIndy expression was also independently associated with hepatic steatosis. In nonhuman primates, a 2-year high-fat, high-sucrose diet increased hepatic mIndy expression. Liver microarray analysis showed that high mIndy expression was associated with pathways involved in hepatic lipid metabolism and immunological processes. Interleukin-6 (IL-6) was identified as a regulator of mIndy by binding to its cognate receptor. Studies in human primary hepatocytes confirmed that IL-6 markedly induced mIndy transcription through the IL-6 receptor and activation of the transcription factor signal transducer and activator of transcription 3, and a putative start site of the human mIndy promoter was determined. Activation of the IL-6-signal transducer and activator of transcription 3 pathway stimulated mIndy expression, enhanced cytoplasmic citrate influx, and augmented hepatic lipogenesis in vivo. In contrast, deletion of mIndy completely prevented the stimulating effect of IL-6 on citrate uptake and reduced hepatic lipogenesis. These data show that mIndy is increased in liver of obese humans and nonhuman primates with NALFD. Moreover, our data identify mIndy as a target gene of IL-6 and determine novel functions of IL-6 through mINDY. Conclusion: Targeting human mINDY may have therapeutic potential in obese patients with nonalcoholic fatty liver disease. German Clinical Trials Register: DRKS00005450.}, language = {en} } @article{VoigtRoelekeMarggrafetal.2017, author = {Voigt, Christian C. and Roeleke, Manuel and Marggraf, Lara and Petersons, Gunars and Voigt-Heucke, Silke L.}, title = {Migratory bats respond to artificial green light with positive phototaxis}, series = {PLoS one}, volume = {12}, journal = {PLoS one}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0177748}, pages = {11}, year = {2017}, language = {en} } @article{vanVelzenGaedke2017, author = {van Velzen, Ellen and Gaedke, Ursula}, title = {Disentangling eco-evolutionary dynamics of predator-prey coevolution: the case of antiphase cycles}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-017-17019-4}, pages = {11}, year = {2017}, abstract = {The impact of rapid predator-prey coevolution on predator-prey dynamics remains poorly understood, as previous modelling studies have given rise to contradictory conclusions and predictions. Interpreting and reconciling these contradictions has been challenging due to the inherent complexity of model dynamics, defying mathematical analysis and mechanistic understanding. We develop a new approach here, based on the Geber method for deconstructing eco-evolutionary dynamics, for gaining such understanding. We apply this approach to a co-evolutionary predator-prey model to disentangle the processes leading to either antiphase or 1/4-lag cycles. Our analysis reveals how the predator-prey phase relationship is driven by the temporal synchronization between prey biomass and defense dynamics. We further show when and how prey biomass and trait dynamics become synchronized, resulting in antiphase cycles, allowing us to explain and reconcile previous modelling and empirical predictions. The successful application of our proposed approach provides an important step towards a comprehensive theory on eco-evolutionary feedbacks in predator-prey systems.}, language = {en} } @article{VandenWyngaertSetoRojasJimenezetal.2017, author = {Van den Wyngaert, Silke and Seto, Kensuke and Rojas-Jimenez, Keilor and Kagami, Maiko and Grossart, Hans-Peter}, title = {A New Parasitic Chytrid, Staurastromyces oculus (Rhizophydiales, Staurastromy-cetaceae fam. nov.), Infecting the Freshwater Desmid Staurastrum sp.}, series = {Protist}, volume = {168}, journal = {Protist}, publisher = {Elsevier}, address = {Jena}, issn = {1434-4610}, doi = {10.1016/j.protis.2017.05.001}, pages = {392 -- 407}, year = {2017}, abstract = {Chytrids are a diverse group of ubiquitous true zoosporic fungi. The recent molecular discovery of a large diversity of undescribed chytrids has raised awareness on their important, but so far understudied ecological role in aquatic ecosystems. In the pelagic zone, of both freshwater and marine ecosystems, many chytrid species have been morphologically described as parasites on almost all major groups of phytoplankton. However, the majority of these parasitic chytrids has rarely been isolated and lack DNA sequence data, resulting in a large proportion of "dark taxa" in databases. Here, we report on the isolation and in-depth morphological, molecular and host range characterization of a chytrid infecting the common freshwater desmid Staurastrum sp. We provide first insights on the metabolic activity of the different chytrid development stages by using the vital dye FUN (R)-1 (2-chloro-4-[2,3-dihydro-3-methyl-[benzo-1,3-thiazol-2-yl]-methylidene]-1-phenylquinolinium iodide). Cross infection experiments suggest that this chytrid is an obligate parasite and specific for the genus Staurastrum sp. Phylogenetic analysis, based on ITS1-5.8S-ITS2 and 28S rDNA sequences, placed it in the order Rhizophydiales. Based on the unique zoospore ultrastructure, combined with thallus morphology, and molecular phylogenetic placement, we describe this parasitic chytrid as a new genus and species Staurastromyces oculus, within a new family Staurastromycetaceae. (C) 2017 Elsevier GmbH. All rights reserved.}, language = {en} } @article{ValenteIlleraHavensteinetal.2017, author = {Valente, Luis and Illera, Juan Carlos and Havenstein, Katja and Pallien, Tamara and Etienne, Rampal S. and Tiedemann, Ralph}, title = {Equilibrium Bird Species Diversity in Atlantic Islands}, series = {Current biology}, volume = {27}, journal = {Current biology}, publisher = {Cell Press}, address = {Cambridge}, issn = {0960-9822}, doi = {10.1016/j.cub.2017.04.053}, pages = {1660 -- +}, year = {2017}, language = {en} } @article{ValenteEtienneDavalos2017, author = {Valente, Luis and Etienne, Rampal S. and Davalos, Liliana M.}, title = {Recent extinctions disturb path to equilibrium diversity in Caribbean bats}, series = {Nature Ecology \& Evolution}, volume = {1}, journal = {Nature Ecology \& Evolution}, publisher = {Nature Publ. Group}, address = {London}, issn = {2397-334X}, doi = {10.1038/s41559-016-0026}, pages = {7}, year = {2017}, abstract = {Islands are ideal systems to model temporal changes in biodiversity and reveal the influence of humans on natural communities. Although theory predicts biodiversity on islands tends towards an equilibrium value, the recent extinction of large proportions of island biotas complicates testing this model. The well-preserved subfossil record of Caribbean bats-involving multiple insular radiations-provides a rare opportunity to model diversity dynamics in an insular community. Here, we reconstruct the diversity trajectory in noctilionoid bats of the Greater Antilles by applying a dynamic model of colonization, extinction and speciation to phylogenetic and palaeontological data including all known extinct and extant species. We show species richness asymptotes to an equilibrium value, a demonstration of natural equilibrium dynamics across an entire community. However, recent extinctions-many caused by humans-have wiped out nearly a third of island lineages, dragging diversity away from equilibrium. Using a metric to measure island biodiversity loss, we estimate it will take at least eight million years to regain pre-human diversity levels. Our integrative approach reveals how anthropogenic extinctions can drastically alter the natural trajectory of biological communities, resulting in evolutionary disequilibrium.}, language = {en} } @phdthesis{UlbrichtJones2017, author = {Ulbricht-Jones, Elena Sofia}, title = {The virescent and narrow leaf phenotype of a plastome-genome-incompatible Oenothera hybrid is associated with the plastid gene accD and fatty acid synthesis}, school = {Universit{\"a}t Potsdam}, pages = {124}, year = {2017}, language = {en} } @article{TwortDennisParketal.2017, author = {Twort, Victoria G. and Dennis, Alice B. and Park, Duckchul and Lomas, Kathryn F. and Newcomb, Richard D. and Buckley, Thomas R.}, title = {Positive selection and comparative molecular evolution of reproductive proteins from New Zealand tree weta (Orthoptera, Hemideina)}, series = {PLoS one}, volume = {12}, journal = {PLoS one}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0188147}, pages = {144 -- 170}, year = {2017}, abstract = {Animal reproductive proteins, especially those in the seminal fluid, have been shown to have higher levels of divergence than non-reproductive proteins and are often evolving adaptively. Seminal fluid proteins have been implicated in the formation of reproductive barriers between diverging lineages, and hence represent interesting candidates underlying speciation. RNA-seq was used to generate the first male reproductive transcriptome for the New Zealand tree weta species Hemideina thoracica and H. crassidens. We identified 865 putative reproductive associated proteins across both species, encompassing a diverse range of functional classes. Candidate gene sequencing of nine genes across three Hemideina, and two Deinacrida species suggests that H. thoracica has the highest levels of intra-specific genetic diversity. Non-monophyly was observed in the majority of sequenced genes indicating that either gene flow may be occurring between the species, or that reciprocal monophyly at these loci has yet to be attained. Evidence for positive selection was found for one lectin-related reproductive protein, with an overall omega of 7.65 and one site in particular being under strong positive selection. This candidate gene represents the first step in the identification of proteins underlying the evolutionary basis of weta reproduction and speciation.}, language = {en} } @article{TritschMartensSunetal.2017, author = {Tritsch, Christian and Martens, Jochen and Sun, Yue-Hua and Heim, Wieland and Strutzenberger, Patrick and P{\"a}ckert, Martin}, title = {Improved sampling at the subspecies level solves a taxonomic dilemma}, series = {Molecular phylogenetics and evolution}, volume = {107}, journal = {Molecular phylogenetics and evolution}, publisher = {Elsevier}, address = {San Diego}, issn = {1055-7903}, doi = {10.1016/j.ympev.2016.12.014}, pages = {538 -- 550}, year = {2017}, abstract = {A recent full species-level phylogeny of tits, titmice and chickadees (Paridae) has placed the Chinese endemic black-bibbed tit (Poecile hypermelaenus) as the sister to the Palearctic willow tit (P. montanus). Because this sister-group relationship is in striking disagreement with the traditional affiliation of P. hypermelaenus close to the marsh tit (P. palustris) we tested this phylogenetic hypothesis in a multi locus analysis with an extended taxon sampling including sixteen subspecies of willow tits and marsh tits. As a taxonomic reference we included type specimens in our analysis. The molecular genetic study was complemented with an analysis of biometric data obtained from museum specimens. Our phylogenetic reconstructions, including a comparison of all GenBank data available for our target species, clearly show that the genetic lineage previously identified as P. hypermelaenus actually refers to P. weigoldicus because sequences were identical to that of a syntype of this taxon. The close relationship of P. weigoldicus and P. montanus - despite large genetic distances between the two taxa - is in accordance with current taxonomy and systematics. In disagreement with the previous phylogenetic hypothesis but in accordance with most taxonomic authorities, all our P. hypermelaenus specimens fell in the sister Glade of all western and eastern Palearctic P. palustris. Though shared haplotypes among the Chinese populations of the two latter species might indicate mitochondrial introgression in this part of the breeding range, further research is needed here due to the limitations of our own sampling.}, language = {en} } @article{TomioloMetzBlackwoodetal.2017, author = {Tomiolo, Sara and Metz, Johannes and Blackwood, Christopher B. and Djendouci, Karin and Henneberg, Lorenz and Mueller, Caroline and Tielboerger, Katja}, title = {Short-term drought and long-term climate legacy affect production of chemical defenses among plant ecotypes}, series = {Environmental and Experimental Botany}, volume = {141}, journal = {Environmental and Experimental Botany}, publisher = {Elsevier}, address = {Oxford}, issn = {0098-8472}, doi = {10.1016/j.envexpbot.2017.07.009}, pages = {124 -- 131}, year = {2017}, abstract = {Long and short-term climatic variation affect the ability of plants to simultaneously cope with increasing abiotic stress and biotic interactions. Specifically, ecotypes adapted to different climatic conditions (i.e., long-term legacy) may have to adjust their allocation to chemical defenses against enemies under acute drought (i.e., short-term response). Although several studies have addressed drought effects on chemical defense production, little is known about their intraspecific variation along resource gradients. Studying intraspecific variation is important for understanding how different environments select for defense strategies and how these may be affected directly and indirectly by changing climatic conditions. We conducted greenhouse experiments with the annual Biscutella didyma (Brassicaceae) to test the effects of long-term climatic legacy versus short-term drought stress on the concentrations of defense compounds (glucosinolates). To this aim, four ecotypes originating from a steep aridity gradient were exposed to contrasting water treatments. Concentrations of chemical defenses were measured separately in leaves of young (8 weeks) and old (14 weeks) plants, respectively. For young plants, ecotypes from the wettest climate (long-term legacy) as well as plants receiving high water treatments (short-term response) were better defended. A marginally significant interaction suggested that wetter ecotypes experienced a larger shift in defense production across water treatments. Older plants contained much lower glucosinolate concentrations and showed no differences between ecotypes and water treatments. Our results indicate that younger plants invest more resources into chemical defenses, possibly due to higher vulnerability to tissue loss compared to older plants. We propose that the strong response of wet ecotypes to water availability may be explained by a less pronounced adaptation to drought.}, language = {en} } @article{ThomasCarvalhoHaileetal.2017, author = {Thomas, Jessica E. and Carvalho, Gary R. and Haile, James and Martin, Michael D. and Castruita, Jose A. Samaniego and Niemann, Jonas and Sinding, Mikkel-Holger S. and Sandoval-Velasco, Marcela and Rawlence, Nicolas J. and Fuller, Errol and Fjeldsa, Jon and Hofreiter, Michael and Stewart, John R. and Gilbert, M. Thomas P. and Knapp, Michael}, title = {An ‛Aukward' tale}, series = {Genes}, volume = {8}, journal = {Genes}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2073-4425}, doi = {10.3390/genes8060164}, pages = {164}, year = {2017}, abstract = {One hundred and seventy-three years ago, the last two Great Auks, Pinguinus impennis, ever reliably seen were killed. Their internal organs can be found in the collections of the Natural History Museum of Denmark, but the location of their skins has remained a mystery. In 1999, Great Auk expert Errol Fuller proposed a list of five potential candidate skins in museums around the world. Here we take a palaeogenomic approach to test which—if any—of Fuller's candidate skins likely belong to either of the two birds. Using mitochondrial genomes from the five candidate birds (housed in museums in Bremen, Brussels, Kiel, Los Angeles, and Oldenburg) and the organs of the last two known individuals, we partially solve the mystery that has been on Great Auk scholars' minds for generations and make new suggestions as to the whereabouts of the still-missing skin from these two birds.}, language = {en} } @article{ThammSchollReimetal.2017, author = {Thamm, Markus and Scholl, Christina and Reim, Tina and Gruebel, Kornelia and Moeller, Karin and Rossler, Wolfgang and Scheiner, Ricarda}, title = {Neuronal distribution of tyramine and the tyramine receptor AmTAR1 in the honeybee brain}, series = {The journal of comparative neurology}, volume = {525}, journal = {The journal of comparative neurology}, publisher = {Wiley}, address = {Hoboken}, issn = {0021-9967}, doi = {10.1002/cne.24228}, pages = {2615 -- 2631}, year = {2017}, abstract = {Tyramine is an important neurotransmitter, neuromodulator, and neurohormone in insects. In honeybees, it is assumed to have functions in modulating sensory responsiveness and controlling motor behavior. Tyramine can bind to two characterized receptors in honeybees, both of which are coupled to intracellular cAMP pathways. How tyramine acts on neuronal, cellular and circuit levels is unclear. We investigated the spatial brain expression of the tyramine receptor AmTAR1 using a specific antibody. This antibody detects a membrane protein of the expected molecular weight in western blot analysis. In honeybee brains, it labels different structures which process sensory information. Labeling along the antennal nerve, in projections of the dorsal lobe and in the gnathal ganglion suggest that tyramine receptors are involved in modulating gustatory and tactile perception. Furthermore, the ellipsoid body of the central complex and giant synapses in the lateral complex show AmTAR1-like immunoreactivity (AmTAR1-IR), suggesting a role of this receptor in modulating sky-compass information and/or higher sensor-motor control. Additionally, intense signals derive from the mushroom bodies, higher-order integration centers for olfactory, visual, gustatory and tactile information. To investigate whether AmTAR1-expressing brain structures are in vicinity to tyramine releasing sites, a specific tyramine antibody was applied. Tyramine-like labeling was observed in AmTAR1-IR positive structures, although it was sometimes weak and we did not always find a direct match of ligand and receptor. Moreover, tyramine-like immunoreactivity was also found in brain regions without AmTAR1-IR (optic lobes, antennal lobes), indicating that other tyramine-specific receptors may be expressed there.}, language = {en} } @article{TaubeGanzertGrossartetal.2017, author = {Taube, Robert and Ganzert, Lars and Grossart, Hans-Peter and Gleixner, Gerd and Premke, Katrin}, title = {Organic matter quality structures benthic fatty acid patterns and the abundance of fungi and bacteria in temperate lakes}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {610}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2017.07.256}, pages = {469 -- 481}, year = {2017}, abstract = {Benthic microbial communities (BMCs) play important roles in the carbon cycle of lakes, and benthic littoral zones in particular have been previously highlighted as biogeochemical hotspots. Dissolved organic matter (DOM) presents the major carbon pool in lakes, and although the effect of DOM composition on the pelagic microbial community composition is widely accepted, little is known about its effect on BMCs, particularly aquatic fungi. Therefore, we investigated the composition of benthic littoral microbial communities in twenty highly diverse lakes in northeast Germany. DOM quality was analyzed via size exclusion chromatography (SEC), fluorescence parallel factor analyses (PRAFACs) and UV-Vis spectroscopy. We determined the BMC composition and biomass using phospholipid-derived fatty acids (PLFA) and extended the interpretation to the analysis of fungi by applying a Bayesian mixed model. We present evidence that the quality of DOM structures the BMCs, which are dominated by heterotrophic bacteria and show low fungal biomass. The fungal biomass increases when the DOM pool is processed by microorganisms of allochthonous origin, whereas the opposite is true for bacteria.}, language = {en} } @article{TassiVaiGhirottoetal.2017, author = {Tassi, Francesca and Vai, Stefania and Ghirotto, Silvia and Lari, Martina and Modi, Alessandra and Pilli, Elena and Brunelli, Andrea and Susca, Roberta Rosa and Budnik, Alicja and Labuda, Damian and Alberti, Federica and Lalueza-Fox, Carles and Reich, David and Caramelli, David and Barbujani, Guido}, title = {Genome diversity in the Neolithic Globular Amphorae culture and the spread of Indo-European languages}, series = {Proceedings of the Royal Society of London : B, Biological sciences}, volume = {284}, journal = {Proceedings of the Royal Society of London : B, Biological sciences}, publisher = {Royal Society}, address = {London}, issn = {0962-8452}, doi = {10.1098/rspb.2017.1540}, pages = {9}, year = {2017}, abstract = {It is unclear whether Indo-European languages in Europe spread from the Pontic steppes in the late Neolithic, or from Anatolia in the Early Neolithic. Under the former hypothesis, people of the Globular Amphorae culture (GAC) would be descended from Eastern ancestors, likely representing the Yamnaya culture. However, nuclear (six individuals typed for 597 573 SNPs) and mitochondrial (11 complete sequences) DNA from the GAC appear closer to those of earlier Neolithic groups than to the DNA of all other populations related to the Pontic steppe migration. Explicit comparisons of alternative demographic models via approximate Bayesian computation confirmed this pattern. These results are not in contrast to Late Neolithic gene flow from the Pontic steppes into Central Europe. However, they add nuance to this model, showing that the eastern affinities of the GAC in the archaeological record reflect cultural influences from other groups from the East, rather than the movement of people.}, language = {en} } @article{TaniguchiFurutaniNishimuraetal.2017, author = {Taniguchi, Masatoshi and Furutani, Masahiko and Nishimura, Takeshi and Nakamura, Moritaka and Fushita, Toyohito and Iijima, Kohta and Baba, Kenichiro and Tanaka, Hirokazu and Toyota, Masatsugu and Tasaka, Masao and Morita, Miyo Terao}, title = {The Arabidopsis LAZY1 Family Plays a Key Role in Gravity Signaling within Statocytes and in Branch Angle Control of Roots and Shoots}, series = {The plant cell}, volume = {29}, journal = {The plant cell}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {1040-4651}, doi = {10.1105/tpc.16.00575}, pages = {1984 -- 1999}, year = {2017}, abstract = {During gravitropism, the directional signal of gravity is perceived by gravity-sensing cells called statocytes, leading to asymmetric distribution of auxin in the responding organs. To identify the genes involved in gravity signaling in statocytes, we performed transcriptome analyses of statocyte-deficient Arabidopsis thaliana mutants and found two candidates from the LAZY1 family, AtLAZY1/LAZY1-LIKE1 (LZY1) and AtDRO3/AtNGR1/LZY2. We showed that LZY1, LZY2, and a paralog AtDRO1/AtNGR2/LZY3 are redundantly involved in gravitropism of the inflorescence stem, hypocotyl, and root. Mutations of LZY genes affected early processes in gravity signal transduction without affecting amyloplast sedimentation. Statocyte-specific expression of LZY genes rescued the mutant phenotype, suggesting that LZY genes mediate gravity signaling in statocytes downstream of amyloplast displacement, leading to the generation of asymmetric auxin distribution in gravity-responding organs. We also found that lzy mutations reversed the growth angle of lateral branches and roots. Moreover, expression of the conserved C-terminal region of LZY proteins also reversed the growth direction of primary roots in the lzy mutant background. In lateral root tips of lzy multiple mutants, asymmetric distribution of PIN3 and auxin response were reversed, suggesting that LZY genes regulate the direction of polar auxin transport in response to gravity through the control of asymmetric PIN3 expression in the root cap columella.}, language = {en} } @article{TangFluryGrossartetal.2017, author = {Tang, Kam W. and Flury, Sabine and Grossart, Hans-Peter and McGinnis, Daniel F.}, title = {The Chaoborus pump: Migrating phantom midge larvae sustain hypolimnetic oxygen deficiency and nutrient internal loading in lakes}, series = {Water research}, volume = {122}, journal = {Water research}, publisher = {Elsevier}, address = {Oxford}, issn = {0043-1354}, doi = {10.1016/j.watres.2017.05.058}, pages = {36 -- 41}, year = {2017}, abstract = {Hypolimnetic oxygen demand in lakes is often assumed to be driven mainly by sediment microbial processes, while the role of Chaoborus larvae, which are prevalent in eutrophic lakes with hypoxic to anoxic bottoms, has been overlooked. We experimentally measured the respiration rates of C flavicans at different temperatures yielding a Q(10) of 1.44-1.71 and a respiratory quotient of 0.84-0.98. Applying the experimental data in a system analytical approach, we showed that migrating Chaoborus larvae can significantly add to the water column and sediment oxygen demand, and contribute to the observed linear relationship between water column respiration and depth. The estimated phosphorus excretion by Chaoborus in sediment is comparable in magnitude to the required phosphorus loading for eutrophication. Migrating Chaoborus larvae thereby essentially trap nutrients between the water column and the sediment, and this continuous internal loading of nutrients would delay lake remediation even when external inputs are stopped. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @phdthesis{Tabatabaei2017, author = {Tabatabaei, Iman}, title = {Development of new selection systems for organellar genome transformation}, school = {Universit{\"a}t Potsdam}, pages = {II, 152}, year = {2017}, abstract = {Plant cells host two important organelles: mitochondria, known as the cell's 'powerhouse', which act by converting oxygen and nutrients into ATP, and plastids, which perform photosynthesis. These organelles contain their own genomes that encode proteins required for gene expression and energy metabolism. Transformation technologies offer great potential for investigating all aspects of the physiology and gene expression of these organelles in vivo. In addition, organelle transformation can be a valuable tool for biotechnology and molecular plant breeding. Plastid transformation systems are well-developed for a few higher plants, however, mitochondrial transformation has so far only been reported for Saccharomyces cerevisiae and the unicellular alga Chlamydomonas reinhardtii. Development of an efficient new selection marker for plastid transformation is important for several reasons, including facilitating supertransformation of the plastid genome for metabolic engineering purposes and for producing multiple knock-outs or site-directed mutagenesis of two unlinked genes. In this work, we developed a novel selection system for Nicotiana tabacum (tobacco) chloroplast transformation with an alternative marker. The marker gene, aac(6′)-Ie/aph(2′′)-Ia, was cloned into different plastid transformation vectors and several candidate aminoglycoside antibiotics were investigated as selection agents. Generally, the efficiency of selection and the transformation efficiency with aac(6′)-Ie/aph(2′′)-Ia as selectable marker in combination with the aminoglycoside antibiotic tobramycin was similarly high as that with the standard marker gene aadA and spectinomycin selection. Furthermore, our new selection system may be useful for the development of plastid transformation for new species, including cereals, the world's most important food crops, and could also be helpful for the establishment of a selection system for mitochondrial transformation. To date, all attempts to achieve mitochondrial transformation for higher plants have been unsuccessful. A mitochondrial transformation system for higher plants would not only provide a potential for studying mitochondrial physiology but could also provide a method to introduce cytoplasmic male sterility into crops to produce hybrid seeds. Establishing a stable mitochondrial transformation system in higher plants requires several steps including delivery of foreign DNA, stable integration of the foreign sequences into the mitochondrial genome, efficient expression of the transgene, a highly regenerable tissue culture system that allows regeneration of the transformed cells into plants, and finally, a suitable selection system to identify cells with transformed mitochondrial genomes. Among all these requirements, finding a good selection is perhaps the most important obstacle towards the development of a mitochondrial transformation system for higher plants. In this work, two selection systems were tested for mitochondrial transformation: kanamycin as a selection system in combination with the antibiotic-inactivating marker gene nptII, and sulfadiazine as a selection agent that inhibits the folic acid biosynthesis pathway residing in plant mitochondria in combination with the sul gene encoding an enzyme that is insensitive to inhibition by sulfadiazine. Nuclear transformation experiments were considered as proof of the specificity of the sulfadiazine selection system for mitochondria. We showed that an optimized sulfadiazine selection system, with the Sul protein targeted to mitochondria, is much more efficient than the previous sulfadiazine selection system, in which the Sul protein was targeted to the chloroplast. We also showed by systematic experiments that the efficiency of selection and nuclear transformation of the optimized sulfadiazine selection was higher compared to the standard kanamycin selection system. Finally, we also investigated the suitability of this selection system for nuclear transformation of the model alga Chlamydomonas reinhardtii, obtaining promising results. Although we designed several mitochondrial transformation vectors with different expression elements and integration sites in the mitochondrial genome based on the sulfadiazine system, and different tissue culture condition were also considered, we were not able to obtain mitochondrial transformation with this system. Nonetheless, establishing the sul gene as an efficient and specific selection marker for mitochondria addresses one of the major bottlenecks and may pave the way to achieve mitochondrial transformation in higher plants.}, language = {en} } @article{SzaboGrafeKemperetal.2017, author = {Szabo, Istvan and Grafe, Marianne and Kemper, Nicole and Junker, Ernst and Malorny, Burkhard}, title = {Genetic basis for loss of immuno-reactive O-chain in Salmonella enterica serovar Enteritidis veterinary isolates}, series = {Veterinary microbiology}, volume = {204}, journal = {Veterinary microbiology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0378-1135}, doi = {10.1016/j.vetmic.2017.03.033}, pages = {165 -- 173}, year = {2017}, abstract = {Fifty-two rough Salmonella enterica serovar Enteritidis (S. Enteritidis) isolates from broilers and the environment were characterized for their serological and genotypic properties. Under routine diagnostic serotyping methods such isolates lack the immuno-reactivity of the O-chain of the lipopolysaccharide (LPS), and are referred to as non-typeable. Using a modified slide agglutination method, the isolates could be differentiated into three different serological variants. Twenty-six isolates (50\%) were defined as semi-rough, nineteen isolates (37\%) as deep-rough, four isolates (8\%) as rough and three isolates could not be assigned. Genetically, all semi-rough isolates lacked the wzyB gene encoding the O-antigen polymerase. Two isolates carried a frameshift mutation in wzyB. In 15 of 23 cases deep-rough or rough isolates had a single point mutation, a single- or double-nucleotide insert or deletion in the wbaP gene. The mutational changes lead to expression of truncated (premature) protein, resulting in the loss of the immuno-reactive O-chain. Both rough and smooth S. Enteritidis isolates showed identical or highly similar XbaI-PFGE profiles. Our results indicate that the loss of a functional LPS in S. Enteritidis isolates is caused by a variety of different mutation events within the wzyB (semi-rough) or the wbaP (deep-rough) gene and is not a result of a vertical spread of a specific S. Enteritidis subtype. The defect of the LPS may be a common evolutionary mechanism through which host defence can be escaped.}, language = {en} } @phdthesis{Swart2017, author = {Swart, Corn{\´e}}, title = {Managing protein activity in A. thaliana}, school = {Universit{\"a}t Potsdam}, pages = {160}, year = {2017}, language = {en} } @misc{SullivanNitschkeSteupetal.2017, author = {Sullivan, Mitchell A. and Nitschke, Silvia and Steup, Martin and Minassian, Berge A. and Nitschke, Felix}, title = {Pathogenesis of Lafora disease}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1080}, issn = {1866-8372}, doi = {10.25932/publishup-47462}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-474622}, pages = {18}, year = {2017}, abstract = {Lafora disease (LD, OMIM \#254780) is a rare, recessively inherited neurodegenerative disease with adolescent onset, resulting in progressive myoclonus epilepsy which is fatal usually within ten years of symptom onset. The disease is caused by loss-of-function mutations in either of the two genes EPM2A (laforin) or EPM2B (malin). It characteristically involves the accumulation of insoluble glycogen-derived particles, named Lafora bodies (LBs), which are considered neurotoxic and causative of the disease. The pathogenesis of LD is therefore centred on the question of how insoluble LBs emerge from soluble glycogen. Recent data clearly show that an abnormal glycogen chain length distribution, but neither hyperphosphorylation nor impairment of general autophagy, strictly correlates with glycogen accumulation and the presence of LBs. This review summarizes results obtained with patients, mouse models, and cell lines and consolidates apparent paradoxes in the LD literature. Based on the growing body of evidence, it proposes that LD is predominantly caused by an impairment in chain-length regulation affecting only a small proportion of the cellular glycogen. A better grasp of LD pathogenesis will further develop our understanding of glycogen metabolism and structure. It will also facilitate the development of clinical interventions that appropriately target the underlying cause of LD.}, language = {en} } @phdthesis{Suchoszek2017, author = {Suchoszek, Monika}, title = {Characterization of inducible galactolipid biosynthesis mutants in tobacco}, school = {Universit{\"a}t Potsdam}, pages = {116}, year = {2017}, abstract = {Chloroplast membranes have a unique composition characterized by very high contents of the galactolipids, MGDG and DGDG. Many studies on constitutive, galactolipid-deficient mutants revealed conflicting results about potential functions of galactolipids in photosynthetic membranes. Likely, this was caused by pleiotropic effects such as starvation artefacts because of impaired photosynthesis from early developmental stages of the plants onward. Therefore, an ethanol inducible RNAi-approach has been taken to suppress two key enzymes of galactolipid biosynthesis in the chloroplast, MGD1 and DGD1. Plants were allowed to develop fully functional source leaves prior to induction, which then could support plant growth. Then, after the ethanol induction, both young and mature leaves were investigated over time. Our studies revealed similar changes in both MGDG- and DGDG-deficient lines, however young and mature leaves of transgenic lines showed a different response to galactolipid deficiency. While no changes of photosynthetic parameters and minor changes in lipid content were observed in mature leaves of transgenic lines, strong reductions in total chlorophyll content and in the accumulation of all photosynthetic complexes and significant changes in contents of various lipid groups occurred in young leaves. Microscopy studies revealed an appearance of lipid droplets in the cytosol of young leaves in all transgenic lines which correlates with significantly higher levels of TAGs. Since in young leaves the production of membrane lipids is lowered, the excess of fatty acids is used for storage lipids production, resulting in the accumulation of TAGs. Our data indicate that both investigated galactolipids serve as structural lipids since changes in photosynthetic parameters were mainly the result of reduced amounts of all photosynthetic constituents. In response to restricted galactolipid synthesis, thylakoid biogenesis is precisely readjusted to keep the proper stoichiometry and functionality of the photosynthetic apparatus. Ultimately, the data revealed that downregulation of one galactolipid triggers changes not only in chloroplasts but also in the nucleus as shown by downregulation of nuclear encoded subunits of the photosynthetic complexes.}, language = {en} } @article{StojanovicErdossyKeltaietal.2017, author = {Stojanovic, Zorica and Erdossy, Julia and Keltai, Katalin and Scheller, Frieder W. and Gyurcsanyi, Robert E.}, title = {Electrosynthesized molecularly imprinted polyscopoletin nanofilms for human serum albumin detection}, series = {Analytica chimica acta : an international journal devoted to all branches of analytical chemistry}, volume = {977}, journal = {Analytica chimica acta : an international journal devoted to all branches of analytical chemistry}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0003-2670}, doi = {10.1016/j.aca.2017.04.043}, pages = {1 -- 9}, year = {2017}, abstract = {Molecularly imprinted polymers (MIPs) rendered selective solely by the imprinting with protein templates lacking of distinctive properties to facilitate strong target-MIP interaction are likely to exhibit medium to low template binding affinities. While this prohibits the use of such MIPs for applications requiring the assessment of very low template concentrations, their implementation for the quantification of high-abundance proteins seems to have a clear niche in the analytical practice. We investigated this opportunity by developing a polyscopoletin-based MIP nanofilm for the electrochemical determination of elevated human serum albumin (HSA) in urine. As reference for a low abundance protein ferritin-MIPs were also prepared by the same procedure. Under optimal conditions, the imprinted sensors gave a linear response to HSA in the concentration range of 20-100 mg/dm(3), and to ferritin in the range of 120-360 mg/dm(3). While as expected the obtained limit of detection was not sufficient to determine endogenous ferritin in plasma, the HSA-sensor was successfully employed to analyse urine samples of patients with albuminuria. The results suggest that MIP-based sensors may be applicable for quantifying high abundance proteins in a clinical setting. (c) 2017 Elsevier B.V. All rights reserved.}, language = {en} } @article{StillfriedFickelBoerneretal.2017, author = {Stillfried, Milena and Fickel, J{\"o}rns and B{\"o}rner, Konstantin and Wittstatt, Ulrich and Heddergott, Mike and Ortmann, Sylvia and Kramer-Schadt, Stephanie and Frantz, Alain C.}, title = {Do cities represent sources, sinks or isolated islands for urban wild boar population structure?}, series = {Journal of applied ecology : an official journal of the British Ecological Society}, volume = {54}, journal = {Journal of applied ecology : an official journal of the British Ecological Society}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0021-8901}, doi = {10.1111/1365-2664.12756}, pages = {272 -- 281}, year = {2017}, language = {en} } @misc{StankeWengerBieretal.2017, author = {Stanke, S. and Wenger, C. and Bier, Frank Fabian and H{\"o}lzel, Ralph}, title = {Dielectrophoretic functionalization of nanoelectrode arrays for the detection of influenza viruses}, series = {European biophysics journal : with biophysics letters ; an international journal of biophysics}, volume = {46}, journal = {European biophysics journal : with biophysics letters ; an international journal of biophysics}, publisher = {Springer}, address = {New York}, issn = {0175-7571}, pages = {S337 -- S337}, year = {2017}, language = {en} } @article{SpijkermanLukasWacker2017, author = {Spijkerman, Elly and Lukas, Marcus and Wacker, Alexander}, title = {Ecophysiological strategies for growth under varying light and organic carbon supply in two species of green microalgae differing in their motility}, series = {Phytochemistry : an international journal of plant biochemistry}, volume = {144}, journal = {Phytochemistry : an international journal of plant biochemistry}, publisher = {Elsevier}, address = {Oxford}, issn = {0031-9422}, doi = {10.1016/j.phytochem.2017.08.018}, pages = {43 -- 51}, year = {2017}, abstract = {Mixing events in stratified lakes result in microalgae being exposed to varying conditions in light and organic carbon concentrations. Stratified lakes consist of an upper illuminated strata and a lower, darker strata where organic carbon accumulates. Therefore, in this contribution we explore the importance of dissolved organic carbon for growth under various light intensities by measuring some ecophysiological adaptations in two green microalgae. We compared the non-motile Chlorella vulgaris with the flagellated Chlamydomonas acidophila under auto-, mixo-, and heterotrophic growth conditions. In both algae the maximum photosynthetic and growth rates were highest under mixotrophy, and both algae appeared inhibited in their phosphorus acquisition under heterotrophy. Heterotrophic conditions provoked the largest differences as C. vulgaris produced chlorophyll a in darkness and grew as well as in autotrophic conditions, whereas Chl. acidophila bleached and could not grow heterotrophically. Although the fatty acid composition of both phytoplankton species differed, both species reacted in a similar way to changes in their growth conditions, mainly by a decrease of C18:3n-3 and an increase of C18:1n-9 from auto- to heterotrophic conditions. The two contrasting responses within the group of green microalgae suggest that dissolved organic carbon has a high deterministic potential to explain the survival and behaviour of green algae in the deeper strata of lakes.}, language = {en} } @article{SpeckmannSchulzHilleretal.2017, author = {Speckmann, Bodo and Schulz, Sarah and Hiller, Franziska and Hesse, Deike and Schumacher, Fabian and Kleuser, Burkhard and Geisel, Juergen and Obeid, Rima and Grune, Tilman and Kipp, Anna Patricia}, title = {Selenium increases hepatic DNA methylation and modulates one-carbon metabolism in the liver of mice}, series = {The journal of nutritional biochemistry}, volume = {48}, journal = {The journal of nutritional biochemistry}, publisher = {Elsevier}, address = {New York}, issn = {0955-2863}, doi = {10.1016/j.jnutbio.2017.07.002}, pages = {112 -- 119}, year = {2017}, abstract = {The average intake of the essential trace element selenium (Se) is below the recommendation in most European countries, possibly causing sub-optimal expression of selenoproteins. It is still unclear how a suboptimal Se status may affect health. To mimic this situation, mice were fed one of three physiologically relevant amounts of Se. We focused on the liver, the organ most sensitive to changes in the Se supply indicated by hepatic glutathione peroxidase activity. In addition, liver is the main organ for synthesis of methyl groups and glutathione via one-carbon metabolism. Accordingly, the impact of Se on global DNA methylation, methylation capacity, and gene expression was assessed. We observed higher global DNA methylation indicated by LINE1 methylation, and an increase of the methylation potential as indicated by higher S-adenosylmethionine (SAM)/S-adenosylhomocysteine (SAH) ratio and by elevated mRNA expression of serine hydroxymethyltransferase in both or either of the Se groups. Furthermore, increasing the Se supply resulted in higher plasma concentrations of triglycerides. Hepatic expression of glycolytic and lipogenic genes revealed consistent Se dependent up-regulation of glucokinase. The sterol regulatory element-binding transcription factor 1 (Srebf1) was also up-regulated by Se. Both effects were confirmed in primary hepatocytes. In contrast to the overall Se-dependent increase of methylation capacity, the up-regulation of Srebf1 expression was paralleled by reduced local methylation of a specific CpG site within the Srebf1 gene. Thus, we provided evidence that Se-dependent effects on lipogenesis involve epigenetic mechanisms. (C) 2017 The Authors. Published by Elsevier Inc.}, language = {en} } @article{SmirnovaFernieSpahnetal.2017, author = {Smirnova, Julia and Fernie, Alisdair R. and Spahn, Christian M. T. and Steup, Martin}, title = {Photometric assay of maltose and maltose-forming enzyme activity by using 4-alpha-glucanotransferase (DPE2) from higher plants}, series = {Analytical biochemistry : methods in the biological sciences}, volume = {532}, journal = {Analytical biochemistry : methods in the biological sciences}, publisher = {Elsevier}, address = {San Diego}, issn = {0003-2697}, doi = {10.1016/j.ab.2017.05.026}, pages = {72 -- 82}, year = {2017}, abstract = {Maltose frequently occurs as intermediate of the central carbon metabolism of prokaryotic and eukaryotic cells. Various mutants possess elevated maltose levels. Maltose exists as two anomers, (alpha- and beta-form) which are rapidly interconverted without requiring enzyme-mediated catalysis. As maltose is often abundant together with other oligoglucans, selective quantification is essential. In this communication, we present a photometric maltose assay using 4-alpha-glucanotransferase (AtDPE2) from Arabidopsis thaliana. Under in vitro conditions, AtDPE2 utilizes maltose as glucosyl donor and glycogen as acceptor releasing the other hexosyl unit as free glucose which is photometrically quantified following enzymatic phosphorylation and oxidation. Under the conditions used, DPE2 does not noticeably react with other di- or oligosaccharides. Selectivity compares favorably with that of maltase frequently used in maltose assays. Reducing end interconversion of the two maltose anomers is in rapid equilibrium and, therefore, the novel assay measures total maltose contents. Furthermore, an AtDPE2-based continuous photometric assay is presented which allows to quantify beta-amylase activity and was found to be superior to a conventional test. Finally, the AtDPE2-based maltose assay was used to quantify leaf maltose contents of both Arabidopsis wild type and AtDPE2-deficient plants throughout the light-dark cycle. These data are presented together with assimilatory starch levels. (C) 2017 Published by Elsevier Inc.}, language = {en} } @article{SmaczniakMuinoChenetal.2017, author = {Smaczniak, Cezary and Muino, Jose M. and Chen, Dijun and Angenent, Gerco C. and Kaufmann, Kerstin}, title = {Differences in DNA Binding Specificity of Floral Homeotic Protein Complexes Predict Organ-Specific Target Genes}, series = {The plant cell}, volume = {29}, journal = {The plant cell}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {1040-4651}, doi = {10.1105/tpc.17.00145}, pages = {1822 -- 1835}, year = {2017}, abstract = {Floral organ identities in plants are specified by the combinatorial action of homeotic master regulatory transcription factors. However, how these factors achieve their regulatory specificities is still largely unclear. Genome-wide in vivo DNA binding data show that homeotic MADS domain proteins recognize partly distinct genomic regions, suggesting that DNA binding specificity contributes to functional differences of homeotic protein complexes. We used in vitro systematic evolution of ligands by exponential enrichment followed by high-throughput DNA sequencing (SELEX-seq) on several floral MADS domain protein homo-and heterodimers to measure their DNA binding specificities. We show that specification of reproductive organs is associated with distinct binding preferences of a complex formed by SEPALLATA3 and AGAMOUS. Binding specificity is further modulated by different binding site spacing preferences. Combination of SELEX-seq and genome-wide DNA binding data allows differentiation between targets in specification of reproductive versus perianth organs in the flower. We validate the importance of DNA binding specificity for organ-specific gene regulation by modulating promoter activity through targeted mutagenesis. Our study shows that intrafamily protein interactions affect DNA binding specificity of floral MADS domain proteins. Differential DNA binding of MADS domain protein complexes plays a role in the specificity of target gene regulation.}, language = {en} } @article{SkłodowskiRiedelsbergerRaddatzetal.2017, author = {Skłodowski, Kamil and Riedelsberger, Janin and Raddatz, Natalia and Riadi, Gonzalo and Caballero, Julio and Ch{\´e}rel, Isabelle and Schulze, Waltraud and Graf, Alexander and Dreyer, Ingo}, title = {The receptor-like pseudokinase MRH1 interacts with the voltage-gated potassium channel AKT2}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publishing Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep44611}, pages = {12}, year = {2017}, abstract = {The potassium channel AKT2 plays important roles in phloem loading and unloading. It can operate as inward-rectifying channel that allows H+-ATPase-energized K+ uptake. Moreover, through reversible post-translational modifications it can also function as an open, K+-selective channel, which taps a 'potassium battery', providing additional energy for transmembrane transport processes. Knowledge about proteins involved in the regulation of the operational mode of AKT2 is very limited. Here, we employed a large-scale yeast two-hybrid screen in combination with fluorescence tagging and null-allele mutant phenotype analysis and identified the plasma membrane localized receptor-like kinase MRH1/MDIS2 (AT4G18640) as interaction partner of AKT2. The phenotype of the mrh1-1 knockout plant mirrors that of akt2 knockout plants in energy limiting conditions. Electrophysiological analyses showed that MRH1/MDIS2 failed to exert any functional regulation on AKT2. Using structural protein modeling approaches, we instead gathered evidence that the putative kinase domain of MRH1/MDIS2 lacks essential sites that are indispensable for a functional kinase suggesting that MRH1/MDIS2 is a pseudokinase. We propose that MRH1/MDIS2 and AKT2 are likely parts of a bigger protein complex. MRH1 might help to recruit other, so far unknown partners, which post-translationally regulate AKT2. Additionally, MRH1 might be involved in the recognition of chemical signals.}, language = {en} } @article{SimonsLewinsohnBluethgenetal.2017, author = {Simons, Nadja K. and Lewinsohn, Thomas and Bluethgen, Nico and Buscot, Francois and Boch, Steffen and Daniel, Rolf and Gossner, Martin M. and Jung, Kirsten and Kaiser, Kristin and M{\"u}ller, J{\"o}rg and Prati, Daniel and Renner, Swen C. and Socher, Stephanie A. and Sonnemann, Ilja and Weiner, Christiane N. and Werner, Michael and Wubet, Tesfaye and Wurst, Susanne and Weisser, Wolfgang W.}, title = {Contrasting effects of grassland management modes on species-abundance distributions of multiple groups}, series = {Agriculture, ecosystems \& environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere}, volume = {237}, journal = {Agriculture, ecosystems \& environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-8809}, doi = {10.1016/j.agee.2016.12.022}, pages = {143 -- 153}, year = {2017}, abstract = {Intensive land use is a major cause of biodiversity loss, but most studies comparing the response of multiple taxa rely on simple diversity measures while analyses of other community attributes are only recently gaining attention. Species-abundance distributions (SADs) are a community attribute that can be used to study changes in the overall abundance structure of species groups, and whether these changes are driven by abundant or rare species. We evaluated the effect of grassland management intensity for three land-use modes (fertilization, mowing, grazing) and their combination on species richness and SADs for three belowground (arbuscular mycorrhizal fungi, prokaryotes and insect larvae) and seven aboveground groups (vascular plants, bryophytes and lichens; arthropod herbivores; arthropod pollinators; bats and birds). Three descriptors of SADs were evaluated: general shape (abundance decay rate), proportion of rare species (rarity) and proportional abundance of the commonest species (dominance). Across groups, taxonomic richness was largely unaffected by land-use intensity and only decreased with increasing mowing intensity. Of the three SAD descriptors, abundance decay rate became steeper with increasing combined land-use intensity across groups. This reflected a decrease in rarity among plants, herbivores and vertebrates. Effects of fertilization on the three descriptors were similar to the combined land-use intensity effects. Mowing intensity only affected the SAD descriptors of insect larvae and vertebrates, while grazing intensity produced a range of effects on different descriptors in distinct groups. Overall, belowground groups had more even abundance distribtitions than aboveground groups. Strong differences among aboveground groups and between above- and belowground groups indicate that no single taxonomic group can serve as an indicator for effects in other groups. In the past, the use of SADs has been hampered by concerns over theoretical models underlying specific forms of SADs. Our study shows that SAD descriptors that are not connected to a particular model are suitable to assess the effect of land use on community structure.}, language = {en} } @misc{SieckIbischMoloneyetal.2017, author = {Sieck, Mungla and Ibisch, Pierre L. and Moloney, Kirk A. and Jeltsch, Florian}, title = {Current models broadly neglect specific needs of biodiversity conservation in protected areas under climate change}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400894}, pages = {12}, year = {2017}, abstract = {Background Protected areas are the most common and important instrument for the conservation of biological diversity and are called for under the United Nations' Convention on Biological Diversity. Growing human population densities, intensified land-use, invasive species and increasing habitat fragmentation threaten ecosystems worldwide and protected areas are often the only refuge for endangered species. Climate change is posing an additional threat that may also impact ecosystems currently under protection. Therefore, it is of crucial importance to include the potential impact of climate change when designing future nature conservation strategies and implementing protected area management. This approach would go beyond reactive crisis management and, by necessity, would include anticipatory risk assessments. One avenue for doing so is being provided by simulation models that take advantage of the increase in computing capacity and performance that has occurred over the last two decades. Here we review the literature to determine the state-of-the-art in modeling terrestrial protected areas under climate change, with the aim of evaluating and detecting trends and gaps in the current approaches being employed, as well as to provide a useful overview and guidelines for future research. Results Most studies apply statistical, bioclimatic envelope models and focus primarily on plant species as compared to other taxa. Very few studies utilize a mechanistic, process-based approach and none examine biotic interactions like predation and competition. Important factors like land-use, habitat fragmentation, invasion and dispersal are rarely incorporated, restricting the informative value of the resulting predictions considerably. Conclusion The general impression that emerges is that biodiversity conservation in protected areas could benefit from the application of modern modeling approaches to a greater extent than is currently reflected in the scientific literature. It is particularly true that existing models have been underutilized in testing different management options under climate change. Based on these findings we suggest a strategic framework for more effectively incorporating the impact of climate change in models exploring the effectiveness of protected areas.}, language = {en} } @article{ShubchynskyyBonieckaSchweighoferetal.2017, author = {Shubchynskyy, Volodymyr and Boniecka, Justyna and Schweighofer, Alois and Simulis, Justinas and Kvederaviciute, Kotryna and Stumpe, Michael and Mauch, Felix and Balazadeh, Salma and M{\"u}ller-R{\"o}ber, Bernd and Boutrot, Freddy and Zipfel, Cyril and Meskiene, Irute}, title = {Protein phosphatase AP2C1 negatively regulates basal resistance and defense responses to Pseudomonas syringae}, series = {Journal of experimental botany}, volume = {68}, journal = {Journal of experimental botany}, number = {5}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0022-0957}, doi = {10.1093/jxb/erw485}, pages = {1169 -- 1183}, year = {2017}, abstract = {Mitogen-activated protein kinases (MAPKs) mediate plant immune responses to pathogenic bacteria. However, less is known about the cell autonomous negative regulatory mechanism controlling basal plant immunity. We report the biological role of Arabidopsis thaliana MAPK phosphatase AP2C1 as a negative regulator of plant basal resistance and defense responses to Pseudomonas syringae. AP2C2, a closely related MAPK phosphatase, also negatively controls plant resistance. Loss of AP2C1 leads to enhanced pathogen-induced MAPK activities, increased callose deposition in response to pathogen-associated molecular patterns or to P. syringae pv. tomato (Pto) DC3000, and enhanced resistance to bacterial infection with Pto. We also reveal the impact of AP2C1 on the global transcriptional reprogramming of transcription factors during Pto infection. Importantly, ap2c1 plants show salicylic acid-independent transcriptional reprogramming of several defense genes and enhanced ethylene production in response to Pto. This study pinpoints the specificity of MAPK regulation by the different MAPK phosphatases AP2C1 and MKP1, which control the same MAPK substrates, nevertheless leading to different downstream events. We suggest that precise and specific control of defined MAPKs by MAPK phosphatases during plant challenge with pathogenic bacteria can strongly influence plant resistance.}, language = {en} } @article{SharmaRuelensMaggenetal.2017, author = {Sharma, Neha and Ruelens, Philip and Maggen, Thomas and Dochy, Niklas and Torfs, Sanne and Kaufmann, Kerstin and Rohde, Antje and Geuten, Koen}, title = {A Flowering Locus C Homolog Is a Vernalization-Regulated Repressor in Brachypodium and Is Cold Regulated in Wheat}, series = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, volume = {173}, journal = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, number = {2}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {0032-0889}, doi = {10.1104/pp.16.01161}, pages = {1301 -- 1315}, year = {2017}, abstract = {Winter cereals require prolonged cold to transition from vegetative to reproductive development. This process, referred to as vernalization, has been extensively studied in Arabidopsis (Arabidopsis thaliana). In Arabidopsis, a key flowering repressor called FLOWERING LOCUS C (FLC) quantitatively controls the vernalization requirement. By contrast, in cereals, the vernalization response is mainly regulated by the VERNALIZATION genes, VRN1 and VRN2. Here, we characterize ODDSOC2, a recently identified FLC ortholog in monocots, knowing that it belongs to the FLC lineage. By studying its expression in a diverse set of Brachypodium accessions, we find that it is a good predictor of the vernalization requirement. Analyses of transgenics demonstrated that BdODDSOC2 functions as a vernalization-regulated flowering repressor. In most Brachypodium accessions BdODDSOC2 is down-regulated by cold, and in one of the winter accessions in which this down-regulation was evident, BdODDSOC2 responded to cold before BdVRN1. When stably down-regulated, the mechanism is associated with spreading H3K27me3 modifications at the BdODDSOC2 chromatin. Finally, homoeolog-specific gene expression analyses identify TaAGL33 and its splice variant TaAGL22 as the FLC orthologs in wheat (Triticum aestivum) behaving most similar to Brachypodium ODDSOC2. Overall, our study suggests that ODDSOC2 is not only phylogenetically related to FLC in eudicots but also functions as a flowering repressor in the vernalization pathway of Brachypodium and likely other temperate grasses. These insights could prove useful in breeding efforts to refine the vernalization requirement of temperate cereals and adapt varieties to changing climates.}, language = {en} } @article{ShahnejatBushehriAlluMehterovetal.2017, author = {Shahnejat-Bushehri, Sara and Allu, Annapurna Devi and Mehterov, Nikolay and Thirumalaikumar, Venkatesh P. and Alseekh, Saleh and Fernie, Alisdair R. and Mueller-Roeber, Bernd and Balazadeh, Salma}, title = {Arabidopsis NAC Transcription Factor JUNGBRUNNEN1 Exerts Conserved Control Over Gibberellin and Brassinosteroid Metabolism and Signaling Genes in Tomato}, series = {Frontiers in plant science}, volume = {8}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2017.00214}, pages = {13}, year = {2017}, abstract = {The Arabidopsis thaliana NAC transcription factor JUNGBRUNNEN1 (AtJUB1) regulates growth by directly repressing GA3ox1 and DWF4, two key genes involved in gibberellin (GA) and brassinosteroid (BR) biosynthesis, respectively, leading to GA and BR deficiency phenotypes. AtJUB1 also reduces the expression of PIF4, a bHLH transcription factor that positively controls cell elongation, while it stimulates the expression of DELLA genes, which are important repressors of growth. Here, we extend our previous findings by demonstrating that AtJUB1 induces similar GA and BR deficiency phenotypes and changes in gene expression when overexpressed in tomato (Solanum lycopersicum). Importantly, and in accordance with the growth phenotypes observed, AtJUB1 inhibits the expression of growth-supporting genes, namely the tomato orthologs of GA3ox1, DWF4 and PIF4, but activates the expression of DELLA orthologs, by directly binding to their promoters. Overexpression of AtJUB1 in tomato delays fruit ripening, which is accompanied by reduced expression of several ripeningrelated genes, and leads to an increase in the levels of various amino acids (mostly proline, beta-alanine, and phenylalanine), gamma-aminobutyric acid (GABA), and major organic acids including glutamic acid and aspartic acid. The fact that AtJUB1 exerts an inhibitory effect on the GA/BR biosynthesis and PIF4 genes but acts as a direct activator of DELLA genes in both, Arabidopsis and tomato, strongly supports the model that the molecular constituents of the JUNGBRUNNEN1 growth control module are considerably conserved across species.}, language = {en} } @phdthesis{Sedaghatmehr2017, author = {Sedaghatmehr, Mastoureh}, title = {Unraveling the regulatory mechanisms of heat stress memory in Arabidopsis thaliana}, school = {Universit{\"a}t Potsdam}, pages = {176}, year = {2017}, language = {en} } @article{SchaeferMenzJeltschetal.2017, author = {Sch{\"a}fer, Merlin and Menz, Stephan and Jeltsch, Florian and Zurell, Damaris}, title = {sOAR: a tool for modelling optimal animal life-history strategies in cyclic environments}, series = {Ecography : pattern and diversity in ecology ; research papers forum}, volume = {41}, journal = {Ecography : pattern and diversity in ecology ; research papers forum}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {0906-7590}, doi = {10.1111/ecog.03328}, pages = {551 -- 557}, year = {2017}, abstract = {Periodic environments determine the life cycle of many animals across the globe and the timing of important life history events, such as reproduction and migration. These adaptive behavioural strategies are complex and can only be fully understood (and predicted) within the framework of natural selection in which species adopt evolutionary stable strategies. We present sOAR, a powerful and user-friendly implementation of the well-established framework of optimal annual routine modelling. It allows determining optimal animal life history strategies under cyclic environmental conditions using stochastic dynamic programming. It further includes the simulation of population dynamics under the optimal strategy. sOAR provides an important tool for theoretical studies on the behavioural and evolutionary ecology of animals. It is especially suited for studying bird migration. In particular, we integrated options to differentiate between costs of active and passive flight into the optimal annual routine modelling framework, as well as options to consider periodic wind conditions affecting flight energetics. We provide an illustrative example of sOAR where food supply in the wintering habitat of migratory birds significantly alters the optimal timing of migration. sOAR helps improving our understanding of how complex behaviours evolve and how behavioural decisions are constrained by internal and external factors experienced by the animal. Such knowledge is crucial for anticipating potential species' response to global environmental change.}, language = {en} } @article{SchwensowMazzoniMarmesatetal.2017, author = {Schwensow, Nina and Mazzoni, Camila J. and Marmesat, Elena and Fickel, J{\"o}rns and Peacock, David and Kovaliski, John and Sinclair, Ron and Cassey, Phillip and Cooke, Brian and Sommer, Simone}, title = {High adaptive variability and virus-driven selection on major histocompatibility complex (MHC) genes in invasive wild rabbits in Australia}, series = {Biological invasions : unique international journal uniting scientists in the broad field of biological invasions}, volume = {19}, journal = {Biological invasions : unique international journal uniting scientists in the broad field of biological invasions}, publisher = {Springer}, address = {Dordrecht}, issn = {1387-3547}, doi = {10.1007/s10530-016-1329-5}, pages = {1255 -- 1271}, year = {2017}, abstract = {The rabbit haemorrhagic disease virus (RHDV) was imported into Australia in 1995 as a biocontrol agent to manage one of the most successful and devastating invasive species, the European rabbit (Oryctolagus cuniculus cuniculus). During the first disease outbreaks, RHDV caused mortality rates of up to 97\% and reduced Australian rabbit numbers to very low levels. However, recently increased genetic resistance to RHDV and strong population growth has been reported. Major histocompatibility complex (MHC) class I immune genes are important for immune responses against viruses, and a high MHC variability is thought to be crucial in adaptive processes under pathogen-driven selection. We asked whether strong population bottlenecks and presumed genetic drift would have led to low MHC variability in wild Australian rabbits, and if the retained MHC variability was enough to explain the increased resistance against RHD. Despite the past bottlenecks we found a relatively high number of MHC class I sequences distributed over 2-4 loci. We identified positive selection on putative antigen-binding sites of the MHC. We detected evidence for RHDV-driven selection as one MHC supertype was negatively associated with RHD survival, fitting expectations of frequency-dependent selection. Gene duplication and pathogen-driven selection are possible (and likely) mechanisms that maintained the adaptive potential of MHC genes in Australian rabbits. Our findings not only contribute to a better understanding of the evolution of invasive species, they are also important in the light of planned future rabbit biocontrol in Australia.}, language = {en} } @article{SchwensowDeteringPedersonetal.2017, author = {Schwensow, Nina I. and Detering, Harald and Pederson, Stephen and Mazzoni, Camila and Sinclair, Ron and Peacock, David and Kovaliski, John and Cooke, Brian and Fickel, J{\"o}rns and Sommer, Simone}, title = {Resistance to RHD virus in wild Australian rabbits}, series = {Molecular ecology}, volume = {26}, journal = {Molecular ecology}, publisher = {Wiley}, address = {Hoboken}, issn = {0962-1083}, doi = {10.1111/mec.14228}, pages = {4551 -- 4561}, year = {2017}, abstract = {Deciphering the genes involved in disease resistance is essential if we are to understand host-pathogen coevolutionary processes. The rabbit haemorrhagic disease virus (RHDV) was imported into Australia in 1995 as a biocontrol agent to manage one of the most successful and devastating invasive species, the European rabbit (Oryctolagus cuniculus). During the first outbreaks of the disease, RHDV caused mortality rates of up to 97\%. Recently, however, increased genetic resistance to RHDV has been reported. Here, we have aimed to identify genomic differences between rabbits that survived a natural infection with RHDV and those that died in the field using a genomewide next-generation sequencing (NGS) approach. We detected 72 SNPs corresponding to 133 genes associated with survival of a RHD infection. Most of the identified genes have known functions in virus infections and replication, immune responses or apoptosis, or have previously been found to be regulated during RHD. Some of the genes identified in experimental studies, however, did not seem to play a role under natural selection regimes, highlighting the importance of field studies to complement the genomic background of wildlife diseases. Our study provides a set of candidate markers as a tool for the future scanning of wild rabbits for their resistance to RHDV. This is important both for wild rabbit populations in southern Europe where RHD is regarded as a serious problem decimating the prey of endangered predator species and for assessing the success of currently planned RHDV variant biocontrol releases in Australia.}, language = {en} } @article{SchwarzerJoshi2017, author = {Schwarzer, Christian and Joshi, Jasmin Radha}, title = {Parallel adaptive responses to abiotic but not biotic conditions after cryptic speciation in European peat moss Sphagnum magellanicum Brid}, series = {Perspectives in plant ecology, evolution and systematics}, volume = {26}, journal = {Perspectives in plant ecology, evolution and systematics}, publisher = {Elsevier}, address = {Jena}, issn = {1433-8319}, doi = {10.1016/j.ppees.2017.03.001}, pages = {14 -- 27}, year = {2017}, abstract = {Sphagnum magellanicum Brid. is a worldwide distributed peat moss and an ecosystem-engineer in temperate and boreal bog ecosystems suggesting a great adaptive potential to different environmental conditions. Phenotypes of S. magellanicum have been described as one species so far, although this has been questioned by the detection of several genetic groups in a recent global study. Concordant with morphological uniformity, our analyses of Mid-to Northern European plants revealed only minimal variation in nuclear nrITS and plastid rps4 sequences. However, we detected two distinct genetic groups within Europe by analyzing microsatellite data of 298 individuals from 27 populations. Plants formed an Eastern and a Western European cluster, with overlapping areas in northern Germany and southern Sweden where plants of both clusters coexist within populations but show no signs of admixture. These two cryptic taxa seem therefore to be reproductively isolated. Bayesian analyses indicated that reproductive isolation occurred before the end of the late Pleistocene glaciations. After the meltdown of the glaciers, both clusters colonized northern and central Europe from glacial refugia in the West and possibly from Euro-Siberian populations. To test for divergent adaptation to environmental conditions, we exposed plants of both clusters to experimental climate warming treatments at two different plant-diversity levels (monocultures vs. mixtures) for two years. Despite their different evolutionary history, plants of both genetic clusters responded equally to climate treatments in our southern common garden near Potsdam, Germany. However, only eastern cluster populations benefited from plant-community diversity and increased their biomass in mixtures. These differences in their ecological niche match the diverging microhabitat preferences observed in situ and may effectively hamper genetic exchange if distances between microhabitats are too large for Sphagnum sperm movement. (C) 2017 Elsevier GmbH. All rights reserved.}, language = {en} } @misc{SchwarzenbergerChristjaniWacker2017, author = {Schwarzenberger, Anke and Christjani, Mark and Wacker, Alexander}, title = {Longevity of Daphnia and the attenuation of stress responses by melatonin}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401476}, pages = {7}, year = {2017}, abstract = {The widespread occurrence of melatonin in prokaryotes as well as eukaryotes indicates that this indoleamine is considerably old. This high evolutionary age has led to the development of diverse functions of melatonin in different organisms, such as the detoxification of reactive oxygen species and anti-stress effects. In insects, i.e. Drosophila, the addition of melatonin has also been shown to increase the life span of this arthropod, probably by reducing age-related increasing oxidative stress. Although the presence of melatonin was recently found to exist in the ecological and toxicological model organism Daphnia, its function in this cladoceran has thus far not been addressed. Therefore, we challenged Daphnia with three different stressors in order to investigate potential stress-response attenuating effects of melatonin. i) Female and male daphnids were exposed to melatonin in a longevity experiment, ii) Daphnia were confronted with stress signals from the invertebrate predator Chaoborus sp., and iii) Daphnia were grown in high densities, i.e. under crowding-stress conditions. Results In our experiments we were able to show that longevity of daphnids was not affected by melatonin. Therefore, age-related increasing oxidative stress was probably not compensated by added melatonin. However, melatonin significantly attenuated Daphnia' s response to acute predator stress, i.e. the formation of neckteeth which decrease the ability of the gape-limited predator Chaoborus sp. to handle their prey. In addition, melatonin decreased the extent of crowding-related production of resting eggs of Daphnia. Conclusions Our results confirm the effect of melatonin on inhibition of stress-signal responses of Daphnia. Until now, only a single study demonstrated melatonin effects on behavioral responses due to vertebrate kairomones, whereas we clearly show a more general effect of melatonin: i) on morphological predator defense induced by an invertebrate kairomone and ii) on life history characteristics transmitted by chemical cues from conspecifics. Therefore, we could generally confirm that melatonin plays a role in the attenuation of responses to different stressors in Daphnia.}, language = {en} } @article{SchwahnBeleggiaOmranianetal.2017, author = {Schwahn, Kevin and Beleggia, Romina and Omranian, Nooshin and Nikoloski, Zoran}, title = {Stoichiometric Correlation Analysis: Principles of Metabolic Functionality from Metabolomics Data}, series = {Frontiers in plant science}, volume = {8}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2017.02152}, pages = {12}, year = {2017}, abstract = {Recent advances in metabolomics technologies have resulted in high-quality (time-resolved) metabolic profiles with an increasing coverage of metabolic pathways. These data profiles represent read-outs from often non-linear dynamics of metabolic networks. Yet, metabolic profiles have largely been explored with regression-based approaches that only capture linear relationships, rendering it difficult to determine the extent to which the data reflect the underlying reaction rates and their couplings. Here we propose an approach termed Stoichiometric Correlation Analysis (SCA) based on correlation between positive linear combinations of log-transformed metabolic profiles. The log-transformation is due to the evidence that metabolic networks can be modeled by mass action law and kinetics derived from it. Unlike the existing approaches which establish a relation between pairs of metabolites, SCA facilitates the discovery of higherorder dependence between more than two metabolites. By using a paradigmatic model of the tricarboxylic acid cycle we show that the higher-order dependence reflects the coupling of concentration of reactant complexes, capturing the subtle difference between the employed enzyme kinetics. Using time-resolved metabolic profiles from Arabidopsis thaliana and Escherichia coli, we show that SCA can be used to quantify the difference in coupling of reactant complexes, and hence, reaction rates, underlying the stringent response in these model organisms. By using SCA with data from natural variation of wild and domesticated wheat and tomato accession, we demonstrate that the domestication is accompanied by loss of such couplings, in these species. Therefore, application of SCA to metabolomics data from natural variation in wild and domesticated populations provides a mechanistic way to understanding domestication and its relation to metabolic networks.}, language = {en} } @article{SchroeterMeyerHahnetal.2017, author = {Schr{\"o}ter, M. -A. and Meyer, S. and Hahn, M. B. and Solomun, T. and Sturm, H. and Kunte, H. J.}, title = {Ectoine protects DNA from damage by ionizing radiation}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-017-15512-4}, pages = {7}, year = {2017}, abstract = {Ectoine plays an important role in protecting biomolecules and entire cells against environmental stressors such as salinity, freezing, drying and high temperatures. Recent studies revealed that ectoine also provides effective protection for human skin cells from damage caused by UV-A radiation. These protective properties make ectoine a valuable compound and it is applied as an active ingredient in numerous pharmaceutical devices and cosmetics. Interestingly, the underlying mechanism resulting in protecting cells from radiation is not yet fully understood. Here we present a study on ectoine and its protective influence on DNA during electron irradiation. Applying gel electrophoresis and atomic force microscopy, we demonstrate for the first time that ectoine prevents DNA strand breaks caused by ionizing electron radiation. The results presented here point to future applications of ectoine for instance in cancer radiation therapy.}, language = {en} } @article{Schmidt2017, author = {Schmidt, Marco F.}, title = {miRNA Targeting Drugs}, series = {Drug Target miRNA: Methods and Protocols}, volume = {1517}, journal = {Drug Target miRNA: Methods and Protocols}, publisher = {Springer}, address = {New York}, isbn = {978-1-4939-6563-2}, issn = {1064-3745}, doi = {10.1007/978-1-4939-6563-2_1}, pages = {3 -- 22}, year = {2017}, abstract = {Only 20 years after the discovery of small non-coding, single-stranded ribonucleic acids, so-called microRNAs (miRNAs), as post-transcriptional gene regulators, the first miRNA-targeting drug Miravirsen for the treatment of hepatitis C has been successfully tested in clinical Phase II trials. Addressing miRNAs as drug targets may enable the cure, or at least the treatment of diseases, which presently seems impossible. However, due to miRNAs' chemical structure, generation of potential drug molecules with necessary pharmacokinetic properties is still challenging and requires a re-thinking of the drug discovery process. Therefore, this chapter highlights the potential of miRNAs as drug targets, discusses the challenges, and tries to give a complete overview of recent strategies in miRNA drug discovery.}, language = {en} } @incollection{Schmidt2017, author = {Schmidt, Marco F.}, title = {Preface}, series = {Drug target miRNA}, volume = {1517}, booktitle = {Drug target miRNA}, editor = {Schmidt, Marco F.}, publisher = {Springer}, address = {New York}, isbn = {978-1-4939-6563-2}, issn = {1064-3745}, doi = {10.1007/978-1-4939-6563-2}, pages = {V -- V}, year = {2017}, language = {en} } @misc{SchmidtRabschBroekeretal.2017, author = {Schmidt, Andreas and Rabsch, Wolfgang and Broeker, Nina K. and Barbirz, Stefanie}, title = {Bacteriophage tailspike protein based assay to monitor phase variable glucosylations in Salmonella O-antigens}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-103769}, pages = {11}, year = {2017}, abstract = {Background Non-typhoid Salmonella Typhimurium (S. Typhimurium) accounts for a high number of registered salmonellosis cases, and O-serotyping is one important tool for monitoring epidemiology and spread of the disease. Moreover, variations in glucosylated O-antigens are related to immunogenicity and spread in the host. However, classical autoagglutination tests combined with the analysis of specific genetic markers cannot always reliably register phase variable glucose modifications expressed on Salmonella O-antigens and additional tools to monitor O-antigen glucosylation phenotypes of S. Typhimurium would be desirable. Results We developed a test for the phase variable O-antigen glucosylation state of S. Typhimurium using the tailspike proteins (TSP) of Salmonella phages 9NA and P22. We used this ELISA like tailspike adsorption (ELITA) assay to analyze a library of 44 Salmonella strains. ELITA was successful in discriminating strains that carried glucose 1-6 linked to the galactose of O-polysaccharide backbone (serotype O1) from non-glucosylated strains. This was shown by O-antigen compositional analyses of the respective strains with mass spectrometry and capillary electrophoresis. The ELITA test worked rapidly in a microtiter plate format and was highly O-antigen specific. Moreover, TSP as probes could also detect glucosylated strains in flow cytometry and distinguish multiphasic cultures differing in their glucosylation state. Conclusions Tailspike proteins contain large binding sites with precisely defined specificities and are therefore promising tools to be included in serotyping procedures as rapid serotyping agents in addition to antibodies. In this study, 9NA and P22TSP as probes could specifically distinguish glucosylation phenotypes of Salmonella on microtiter plate assays and in flow cytometry. This opens the possibility for flow sorting of cell populations for subsequent genetic analyses or for monitoring phase variations during large scale O-antigen preparations necessary for vaccine production.}, language = {en} } @article{SchlaegelMerrillLewis2017, author = {Schl{\"a}gel, Ulrike E. and Merrill, Evelyn H. and Lewis, Mark A.}, title = {Territory surveillance and prey management: Wolves keep track of space and time}, series = {Ecology and evolution}, volume = {7}, journal = {Ecology and evolution}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.3176}, pages = {8388 -- 8405}, year = {2017}, abstract = {Identifying behavioral mechanisms that underlie observed movement patterns is difficult when animals employ sophisticated cognitive\&\#8208;based strategies. Such strategies may arise when timing of return visits is important, for instance to allow for resource renewal or territorial patrolling. We fitted spatially explicit random\&\#8208;walk models to GPS movement data of six wolves (Canis lupus; Linnaeus, 1758) from Alberta, Canada to investigate the importance of the following: (1) territorial surveillance likely related to renewal of scent marks along territorial edges, to reduce intraspecific risk among packs, and (2) delay in return to recently hunted areas, which may be related to anti\&\#8208;predator responses of prey under varying prey densities. The movement models incorporated the spatiotemporal variable "time since last visit," which acts as a wolf's memory index of its travel history and is integrated into the movement decision along with its position in relation to territory boundaries and information on local prey densities. We used a model selection framework to test hypotheses about the combined importance of these variables in wolf movement strategies. Time\&\#8208;dependent movement for territory surveillance was supported by all wolf movement tracks. Wolves generally avoided territory edges, but this avoidance was reduced as time since last visit increased. Time\&\#8208;dependent prey management was weak except in one wolf. This wolf selected locations with longer time since last visit and lower prey density, which led to a longer delay in revisiting high prey density sites. Our study shows that we can use spatially explicit random walks to identify behavioral strategies that merge environmental information and explicit spatiotemporal information on past movements (i.e., "when" and "where") to make movement decisions. The approach allows us to better understand cognition\&\#8208;based movement in relation to dynamic environments and resources.}, language = {en} } @article{SchiebelBoehmNitschkeetal.2017, author = {Schiebel, Juliane and Boehm, Alexander and Nitschke, Joerg and Burdukiewicz, Michal and Weinreich, Joerg and Ali, Aamir and Roggenbuck, Dirk and Roediger, Stefan and Schierack, Peter}, title = {Genotypic and Phenotypic Characteristics Associated with Biofilm Formation by Human Clinical Escherichia coli Isolates of Different Pathotypes}, series = {Applied and environmental microbiology}, volume = {83}, journal = {Applied and environmental microbiology}, publisher = {American Society for Microbiology}, address = {Washington}, issn = {0099-2240}, doi = {10.1128/AEM.01660-17}, pages = {15}, year = {2017}, abstract = {Bacterial biofilm formation is a widespread phenomenon and a complex process requiring a set of genes facilitating the initial adhesion, maturation, and production of the extracellular polymeric matrix and subsequent dispersal of bacteria. Most studies on Escherichia coli biofilm formation have investigated nonpathogenic E. coli K-12 strains. Due to the extensive focus on laboratory strains in most studies, there is poor information regarding biofilm formation by pathogenic E. coli isolates. In this study, we genotypically and phenotypically characterized 187 human clinical E. coli isolates representing various pathotypes (e.g., uropathogenic, enteropathogenic, and enteroaggregative E. coli). We investigated the presence of biofilm-associated genes ("genotype") and phenotypically analyzed the isolates for motility and curli and cellulose production ("phenotype"). We developed a new screening method to examine the in vitro biofilm formation ability. In summary, we found a high prevalence of biofilm-associated genes. However, we could not detect a biofilm-associated gene or specific phenotype correlating with the biofilm formation ability. In contrast, we did identify an association of increased biofilm formation with a specific E. coli pathotype. Enteroaggregative E. coli (EAEC) was found to exhibit the highest capacity for biofilm formation. Using our image-based technology for the screening of biofilm formation, we demonstrated the characteristic biofilm formation pattern of EAEC, consisting of thick bacterial aggregates. In summary, our results highlight the fact that biofilm-promoting factors shown to be critical for biofilm formation in nonpathogenic strains do not reflect their impact in clinical isolates and that the ability of biofilm formation is a defined characteristic of EAEC. IMPORTANCE Bacterial biofilms are ubiquitous and consist of sessile bacterial cells surrounded by a self-produced extracellular polymeric matrix. They cause chronic and device-related infections due to their high resistance to antibiotics and the host immune system. In nonpathogenic Escherichia coli, cell surface components playing a pivotal role in biofilm formation are well known. In contrast, there is poor information for their role in biofilm formation of pathogenic isolates. Our study provides insights into the correlation of biofilm-associated genes or specific phenotypes with the biofilm formation ability of commensal and pathogenic E. coli. Additionally, we describe a newly developed method enabling qualitative biofilm analysis by automated image analysis, which is beneficial for high-throughput screenings. Our results help to establish a better understanding of E. coli biofilm formation.}, language = {en} } @article{ScheinerReimSoviketal.2017, author = {Scheiner, Ricarda and Reim, Tina and Sovik, Eirik and Entler, Brian V. and Barron, Andrew B. and Thamm, Markus}, title = {Learning, gustatory responsiveness and tyramine differences across nurse and forager honeybees}, series = {The journal of experimental biology}, volume = {220}, journal = {The journal of experimental biology}, publisher = {Company of Biologists Limited}, address = {Cambridge}, issn = {0022-0949}, doi = {10.1242/jeb.152496}, pages = {1443 -- 1450}, year = {2017}, abstract = {Honeybees are well known for their complex division of labor. Each bee sequentially performs a series of social tasks during its life. The changes in social task performance are linked to gross differences in behavior and physiology. We tested whether honeybees performing different social tasks (nursing versus foraging) would differ in their gustatory responsiveness and associative learning behavior in addition to their daily tasks in the colony. Further, we investigated the role of the biogenic amine tyramine and its receptors in the behavior of nurse bees and foragers. Tyramine is an important insect neurotransmitter, which has long been neglected in behavioral studies as it was believed to only act as the metabolic precursor of the better-known amine octopamine. With the increasing number of characterized tyramine receptors in diverse insects, we need to understand the functions of tyramine on its own account. Our findings suggest an important role for tyramine and its two receptors in regulating honeybee gustatory responsiveness, social organization and learning behavior. Foragers, which were more responsive to gustatory stimuli than nurse bees and performed better in appetitive learning, also differed from nurse bees in their tyramine brain titers and in the mRNA expression of a tyramine receptor in the brain. Pharmacological activation of tyramine receptors increased gustatory responsiveness of nurse bees and foragers and improved appetitive learning in nurse bees. These data suggest that a large part of the behavioral differences between honeybees may be directly linked to tyramine signaling in the brain.}, language = {en} } @misc{Scheffler2017, author = {Scheffler, Tatjana}, title = {Root infinitives on Twitter}, series = {Snippets}, journal = {Snippets}, number = {31}, publisher = {Editioni Universit{\`a} di Lettere Economica Diritto}, address = {Milano}, issn = {1590-1807}, doi = {10.7358/snip-2017-031-sche}, pages = {24 -- 25}, year = {2017}, language = {en} } @article{SchefflerGreilHermanussen2017, author = {Scheffler, Christiane and Greil, Holle and Hermanussen, Michael}, title = {The association between weight, height, and head circumference reconsidered}, series = {Pediatric Research}, volume = {81}, journal = {Pediatric Research}, publisher = {Nature Publ. Group}, address = {New York}, issn = {0031-3998}, doi = {10.1038/pr.2017.3}, pages = {825 -- 830}, year = {2017}, abstract = {BACKGROUND: Under normal nutritional and health conditions, body height, weight and head circumference are significantly related. We hypothesize that the apparent general association between weight, height, and head circumference of the growing child might be misleading. METHODS: We reanalyzed data of 7,444 boys and 7,375 girls measured in East-Germany between 1986 and 1990, aged from 0 to 7 y with measurements of body length/height, leg length, sitting height, biacromial shoulder breadth, thoracic breadth, thoracic depth, thoracic circumference, body weight, head volume, percentage of body fat, and hip skinfold vertical, using principal component analysis. RESULTS: Strong associations exist between skeletal growth, fat accumulation, and head volume increments. Yet in spite of this general proportionality, skeletal growth, fat acquisition, and head growth exhibit different patterns. Three components explain between almost 60\% and more than 75\% of cumulative variance between birth and age 7 y. Parameters of skeletal growth predominantly load on the first component and clearly separate from indicators of fat deposition. After age of 2 y, head volume loads on a separate third component in both sexes indicating independence of head growth. CONCLUSION: Under appropriate nutritional and health circumstances, nutritional status, body size, and head circumference are not related.}, language = {en} } @article{SchefflerDammhahn2017, author = {Scheffler, Christiane and Dammhahn, Melanie}, title = {Feminization of the fat distribution pattern of children and adolescents in a recent German population}, series = {American journal of human biology : the official journal of the Human Biology Council}, volume = {29}, journal = {American journal of human biology : the official journal of the Human Biology Council}, publisher = {Wiley}, address = {Hoboken}, issn = {1042-0533}, doi = {10.1002/ajhb.23017}, pages = {10}, year = {2017}, abstract = {Objectives During the early 1990s, the economic and political situation in eastern Germany changed overnight. Here, we use the rare chance of an experiment-like setting in humans and aim to test whether the rapid change of environmental conditions in eastern Germany in the 1990s led to a change in the sex-specific fat distribution pattern, an endocrine-influenced phenotypic marker. METHODS Based on a cross-sectional data set of 6- to 18-year-old girls and boys measured between 1982-1991 and 1997-2012, we calculated a skinfold ratio of triceps to subscapular and percentage of body fat. Using linear regressions, we tested for differences in percentage of body fat and skinfold ratio between these two time periods. RESULTS We found that the percentage of body fat increased in boys and girls, and they accumulated relatively more fat on extremities than on the trunk in all BMI groups measured after 1997 as compared to those measured between 1982 and 1991. CONCLUSIONS Concurrent with drastic and rapid changes of environmental conditions, the body fat distribution of children and adolescents changed to a more feminized pattern during the early 1990s in an East German population. The changes in this endocrinologically mediated pattern might be associated with the increased exposure of individuals to endocrine-disrupting chemicals which are known to influence the endocrine, reproductive, and immune systems in animals and humans.}, language = {en} } @phdthesis{Schedina2017, author = {Schedina, Ina-Maria}, title = {Comparative genetic and transcriptomic analyses of the amazon molly, poecilia formosa and its parental species, poecilia mexicana and poecilia latipinna}, school = {Universit{\"a}t Potsdam}, pages = {124}, year = {2017}, language = {en} } @article{SchallGossnerHeinrichsetal.2017, author = {Schall, Peter and Gossner, Martin M. and Heinrichs, Steffi and Fischer, Markus and Boch, Steffen and Prati, Daniel and Jung, Kirsten and Baumgartner, Vanessa and Blaser, Stefan and B{\"o}hm, Stefan and Buscot, Francois and Daniel, Rolf and Goldmann, Kezia and Kaiser, Kristin and Kahl, Tiemo and Lange, Markus and M{\"u}ller, J{\"o}rg Hans and Overmann, J{\"o}rg and Renner, Swen C. and Schulze, Ernst-Detlef and Sikorski, Johannes and Tschapka, Marco and T{\"u}rke, Manfred and Weisser, Wolfgang W. and Wemheuer, Bernd and Wubet, Tesfaye and Ammer, Christian}, title = {The impact of even-aged and uneven-aged forest management on regional biodiversity of multiple taxa in European beech forests}, series = {Journal of applied ecology : an official journal of the British Ecological Society}, volume = {55}, journal = {Journal of applied ecology : an official journal of the British Ecological Society}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0021-8901}, doi = {10.1111/1365-2664.12950}, pages = {267 -- 278}, year = {2017}, abstract = {1. For managed temperate forests, conservationists and policymakers favour fine-grained uneven-aged (UEA) management over more traditional coarse-grained even-aged (EA) management, based on the assumption that within-stand habitat heterogeneity enhances biodiversity. There is, however, little empirical evidence to support this assumption. We investigated for the first time how differently grained forest management systems affect the biodiversity of multiple above- and below-ground taxa across spatial scales. 2. We sampled 15 taxa of animals, plants, fungi and bacteria within the largest contiguous beech forest landscape of Germany and classified them into functional groups. Selected forest stands have been managed for more than a century at different spatial grains. The EA (coarse-grained management) and UEA (fine-grained) forests are comparable in spatial arrangement, climate and soil conditions. These were compared to forests of a nearby national park that have been unmanaged for at least 20years. We used diversity accumulation curves to compare -diversity for Hill numbers D-0 (species richness), D-1 (Shannon diversity) and D-2 (Simpson diversity) between the management systems. Beta diversity was quantified as multiple-site dissimilarity. 3. Gamma diversity was higher in EA than in UEA forests for at least one of the three Hill numbers for six taxa (up to 77\%), while eight showed no difference. Only bacteria showed the opposite pattern. Higher -diversity in EA forests was also found for forest specialists and saproxylic beetles. 4. Between-stand -diversity was higher in EA than in UEA forests for one-third (all species) and half (forest specialists) of all taxa, driven by environmental heterogeneity between age-classes, while -diversity showed no directional response across taxa or for forest specialists. 5. Synthesis and applications. Comparing EA and uneven-aged forest management in Central European beech forests, our results show that a mosaic of different age-classes is more important for regional biodiversity than high within-stand heterogeneity. We suggest reconsidering the current trend of replacing even-aged management in temperate forests. Instead, the variability of stages and stand structures should be increased to promote landscape-scale biodiversity.}, language = {en} } @article{SantanaWeithoffFerragut2017, author = {Santana, Lucineide Maria and Weithoff, Guntram and Ferragut, Carla}, title = {Seasonal and spatial functional shifts in phytoplankton communities of five tropical reservoirs}, series = {Aquatic ecology : the international forum covering research in freshwater and marine environments}, volume = {51}, journal = {Aquatic ecology : the international forum covering research in freshwater and marine environments}, publisher = {Springer}, address = {Dordrecht}, issn = {1386-2588}, doi = {10.1007/s10452-017-9634-3}, pages = {531 -- 543}, year = {2017}, abstract = {Trait-based approaches have become increasingly important and valuable in understanding phytoplankton community assembly and composition. These approaches allow for comparisons between water bodies with different species composition. We hypothesize that similar changes in environmental conditions lead to similar responses with regard to functional traits of phytoplankton communities, regardless of trophic state or species composition. We studied the phytoplankton (species composition, community trait mean and diversity) of five reservoirs in Brazil along a trophic gradient from ultra-oligotrophic to meso-eutrophic. Samples at two seasons (summer/rainy and winter/dry) with a horizontal and vertical resolution were taken. Using multivariate analysis, the five reservoirs separated, despite some overlap, according to their environmental variables (mainly total phosphorus, conductivity, pH, chlorophyll a). However, between the seasonal periods, the reservoirs shifted in a similar direction in the multi-dimensional space. The seasonal response of the overall phytoplankton community trait mean differed between the ultra-oligotrophic and the other reservoirs, with three reservoirs exhibiting a very similar community trait mean despite considerable differences in species composition. Within-season differences between different water layers were low. The functional diversity was also unrelated to the trophic state of the reservoirs. Thus, seasonal environmental changes had strong influence on the functional characteristics of the phytoplankton community in reservoirs with distinct trophic condition and species composition. These results demonstrate that an ataxonomic trait-based approach is a relevant tool for comparative studies in phytoplankton ecology.}, language = {en} } @article{SanderEccardHeim2017, author = {Sander, Martha Maria and Eccard, Jana and Heim, Wieland}, title = {Flight range estimation of migrant yellow-browed warblers phylloscopus inornatus on the East Asian flyway}, series = {Bird study : the journal of the British Trust for Ornithology}, volume = {64}, journal = {Bird study : the journal of the British Trust for Ornithology}, publisher = {Taylor \& Francis}, address = {Abingdon}, issn = {0006-3657}, doi = {10.1080/00063657.2017.1409696}, pages = {569 -- 572}, year = {2017}, abstract = {Fat loads were quantified for 2125 Yellow-browed Warblers Phylloscopus inornatus trapped at a stop-over site in Far East Russia during autumn migration. Flight ranges of 660-820km were estimated for the fattest individuals, suggesting that they would need to stop for refuelling at least six times to reach their wintering areas in South East Asia.}, language = {en} } @misc{SammlerKetmaierHavensteinetal.2017, author = {Sammler, Svenja and Ketmaier, Valerio and Havenstein, Katja and Krause, Ulrike and Curio, Eberhard and Tiedemann, Ralph}, title = {Mitochondrial control region I and microsatellite analyses of endangered Philippine hornbill species (Aves; Bucerotidae) detect gene flow between island populations and genetic diversity loss}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401108}, pages = {14}, year = {2017}, abstract = {Background: The Visayan Tarictic Hornbill (Penelopides panini) and the Walden's Hornbill (Aceros waldeni) are two threatened hornbill species endemic to the western islands of the Visayas that constitute - between Luzon and Mindanao - the central island group of the Philippine archipelago. In order to evaluate their genetic diversity and to support efforts towards their conservation, we analyzed genetic variation in similar to 600 base pairs (bp) of the mitochondrial control region I and at 12-19 nuclear microsatellite loci. The sampling covered extant populations, still occurring only on two islands (P. panini: Panay and Negros, A. waldeni: only Panay), and it was augmented with museum specimens of extinct populations from neighboring islands. For comparison, their less endangered (= more abundant) sister taxa, the Luzon Tarictic Hornbill (P. manillae) from the Luzon and Polillo Islands and the Writhed Hornbill (A. leucocephalus) from Mindanao Island, were also included in the study. We reconstructed the population history of the two Penelopides species and assessed the genetic population structure of the remaining wild populations in all four species. Results: Mitochondrial and nuclear data concordantly show a clear genetic separation according to the island of origin in both Penelopides species, but also unravel sporadic over-water movements between islands. We found evidence that deforestation in the last century influenced these migratory events. Both classes of markers and the comparison to museum specimens reveal a genetic diversity loss in both Visayan hornbill species, P. panini and A. waldeni, as compared to their more abundant relatives. This might have been caused by local extinction of genetically differentiated populations together with the dramatic decline in the abundance of the extant populations. Conclusions: We demonstrated a loss in genetic diversity of P. panini and A. waldeni as compared to their sister taxa P. manillae and A. leucocephalus. Because of the low potential for gene flow and population exchange across islands, saving of the remaining birds of almost extinct local populations - be it in the wild or in captivity - is particularly important to preserve the species' genetic potential.}, language = {en} } @misc{SammlerBleidornTiedemann2017, author = {Sammler, Svenja and Bleidorn, Christoph and Tiedemann, Ralph}, title = {Full mitochondrial genome sequences of two endemic Philippine hornbill species (Aves: Bucerotidae) provide evidence for pervasive mitochondrial DNA recombination}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400889}, pages = {10}, year = {2017}, abstract = {Background: Although nowaday it is broadly accepted that mitochondrial DNA (mtDNA) may undergo recombination, the frequency of such recombination remains controversial. Its estimation is not straightforward, as recombination under homoplasmy (i.e., among identical mt genomes) is likely to be overlooked. In species with tandem duplications of large mtDNA fragments the detection of recombination can be facilitated, as it can lead to gene conversion among duplicates. Although the mechanisms for concerted evolution in mtDNA are not fully understood yet, recombination rates have been estimated from "one per speciation event" down to 850 years or even "during every replication cycle". Results: Here we present the first complete mt genome of the avian family Bucerotidae, i.e., that of two Philippine hornbills, Aceros waldeni and Penelopides panini. The mt genomes are characterized by a tandemly duplicated region encompassing part of cytochrome b, 3 tRNAs, NADH6, and the control region. The duplicated fragments are identical to each other except for a short section in domain I and for the length of repeat motifs in domain III of the control region. Due to the heteroplasmy with regard to the number of these repeat motifs, there is some size variation in both genomes; with around 21,657 bp (A. waldeni) and 22,737 bp (P. panini), they significantly exceed the hitherto longest known avian mt genomes, that of the albatrosses. We discovered concerted evolution between the duplicated fragments within individuals. The existence of differences between individuals in coding genes as well as in the control region, which are maintained between duplicates, indicates that recombination apparently occurs frequently, i. e., in every generation. Conclusions: The homogenised duplicates are interspersed by a short fragment which shows no sign of recombination. We hypothesize that this region corresponds to the so-called Replication Fork Barrier (RFB), which has been described from the chicken mitochondrial genome. As this RFB is supposed to halt replication, it offers a potential mechanistic explanation for frequent recombination in mitochondrial genomes.}, language = {en} } @article{SallehRamosMadrigalPenalozaetal.2017, author = {Salleh, Faezah Mohd and Ramos-Madrigal, Jazmin and Penaloza, Fernando and Liu, Shanlin and Sinding, Mikkel-Holger S. and Patel, Riddhi P. and Martins, Renata and Lenz, Dorina and Fickel, J{\"o}rns and Roos, Christian and Shamsir, Mohd Shahir and Azman, Mohammad Shahfiz and Lim, Burton K. and Rossiter, Stephen J. and Wilting, Andreas and Gilbert, M. Thomas P.}, title = {An expanded mammal mitogenome dataset from Southeast Asia}, series = {Gigascience}, volume = {6}, journal = {Gigascience}, number = {8}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {2047-217X}, pages = {1 -- 19}, year = {2017}, abstract = {Background: Findings: Approximately 55 gigabases of raw sequence were generated. From this data we assembled 72 complete mitogenome sequences, with an average depth of coverage of 102.9x and 55.2x for modern samples and historical samples, respectively. This dataset represents 52 species, of which 30 species had no previous mitogenome data available. The mitogenomes were geotagged to their sampling location, where known, to display a detailed geographical distribution of the species. Conclusion:}, language = {en} } @article{SakurabaBuelbuelPiaoetal.2017, author = {Sakuraba, Yasuhito and B{\"u}lb{\"u}l, Selin and Piao, Weilan and Choi, Giltsu and Paek, Nam-Chon}, title = {Arabidopsis EARLY FLOWERING3 increases salt tolerance by suppressing salt stress response pathways}, series = {The plant journal}, volume = {92}, journal = {The plant journal}, publisher = {Wiley}, address = {Hoboken}, issn = {0960-7412}, doi = {10.1111/tpj.13747}, pages = {1106 -- 1120}, year = {2017}, language = {en} } @article{SainiGuentherAichneretal.2017, author = {Saini, Jeetendra and Guenther, Franziska and Aichner, Bernhard and Mischke, Steffen and Herzschuh, Ulrike and Zhang, Chengjun and Maeusbacher, Roland and Gleixner, Gerd}, title = {Climate variability in the past similar to 19,000 yr in NE Tibetan Plateau inferred from biomarker and stable isotope records of Lake Donggi Cona}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {157}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2016.12.023}, pages = {129 -- 140}, year = {2017}, abstract = {We investigated 4.84-m-long sediment record spanning over the Late Glacial and Holocene from Lake Donggi Cona to be able to reconstruct circulation pattern on the Tibetan Plateau (TP). Presently, Lake Donggi Cona is located at the boundaries of Westerlies and Asian monsoon circulations in the northeastern TP. However, the exact timing and stimulating mechanisms for climatic changes and monsoon shifts in this region are still debated. We used a 19-ka-long stable isotope record of sedimentary n-alkanes to address this discrepancy by providing insights into paleohydrological conditions. The SD of nC(23) is influenced by lake water evaporation; the BD. values of sedimentary nC(29) are mainly controlled by moisture source and temperature changes. Long-chain n-alkanes dominate over the core whereas three mean clusters (i.e. microbial, aquatic and terrestrial) can be inferred. Multi-proxies suggest five major episodes in the history of Lake Donggi Cona. The Lake Donggi Cona record indicates that the Late Glacial(18.4-14.8 cal ka BP) was dominated by low productivity of mainly microbial and aquatic organisms. Relatively low delta D values suggest low temperatures and moist conditions eventually caused by stronger Westerlies, winter monsoon and melt-water influence. Likely, the shift (similar to 17.9 cal ka BP) from microbial to enhanced aquatic input suggests either a change from deep to shallow water lake or a break in local stratification. Between 14.8 and 13.0 cal ka BP, variable climatic conditions prevailed. Although the Westerlies weekend, the increase in temperature enhanced the permafrost and snow melting (displayed by a high sedimentary accumulation rate). Higher delta D values indicate increasingly arid conditions with higher temperatures which eventually lead to high evaporative conditions and lowest lake levels. Low vegetation cover and high erosion rates led to high sediment accumulation resulting in stratification followed by anoxia in the terminal lake. From 13.0 to 9.2 cal ka BP, lowered values of 813 along with high contents of terrestrial organic matter marked the early-Holocene warming indicating a further strengthening of summer precipitation and higher lake levels. A cooling trend was observed in the mid-Holocene between 9.2 and 3.0 cal ka BP accompanied by higher moisture availability (displayed by lowered SD values) caused by reduced evaporative conditions due to a drop in temperature and recovering Westerlies. After 3.0 cal ka BP, a decrease in lake productivity and cold and semi-arid conditions prevailed suggesting lower lake levels and reduced moisture from recycled air masses and Westerlies. We propose that the summer monsoon was the predominant moisture source during the Belling-Allered warm complex and early -Holocene followed by Westerlies in mid-to-late Holocene period. Stable carbon isotope values-32\%o indicate the absence of C-4 -type vegetation in the region contradicting with their presence in the Lake Qinghai record. The 81) record from lake Donggi Cona highlights the importance of the interplay between Westerlies and summer monsoon circulation at this location, which is highly dynamic in northeastern plateau compared to the North Atlantic circulation and insolation changes. Consequently lake Donggi Cona might be an important anchor point for environmental reconstructions on the Tibetan Plateau. (C) 2017 The Authors. Published by Elsevier Ltd.}, language = {en} } @article{RuebsamStompsBoekeretal.2017, author = {R{\"u}bsam, Kristin and Stomps, Benjamin Ren{\´e} Harald and B{\"o}ker, Alexander and Jakob, Felix and Schwaneberg, Ulrich}, title = {Anchor peptides: A green and versatile method for polypropylene functionalization}, series = {Polymer : the international journal for the science and technology of polymers}, volume = {116}, journal = {Polymer : the international journal for the science and technology of polymers}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-3861}, doi = {10.1016/j.polymer.2017.03.070}, pages = {124 -- 132}, year = {2017}, language = {en} } @article{RuprechtLohausVannesteetal.2017, author = {Ruprecht, Colin and Lohaus, Rolf and Vanneste, Kevin and Mutwil, Marek and Nikoloski, Zoran and Van de Peer, Yves and Persson, Staffan}, title = {Revisiting ancestral polyploidy in plants}, series = {Science Advances}, volume = {3}, journal = {Science Advances}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {2375-2548}, doi = {10.1126/sciadv.1603195}, pages = {6}, year = {2017}, abstract = {Whole-genome duplications (WGDs) or polyploidy events have been studied extensively in plants. In a now widely cited paper, Jiao et al. presented evidence for two ancient, ancestral plant WGDs predating the origin of flowering and seed plants, respectively. This finding was based primarily on a bimodal age distribution of gene duplication events obtained from molecular dating of almost 800 phylogenetic gene trees. We reanalyzed the phylogenomic data of Jiao et al. and found that the strong bimodality of the age distribution may be the result of technical and methodological issues and may hence not be a "true" signal of two WGD events. By using a state-of-the-art molecular dating algorithm, we demonstrate that the reported bimodal age distribution is not robust and should be interpreted with caution. Thus, there exists little evidence for two ancient WGDs in plants from phylogenomic dating.}, language = {en} } @article{RuelensZhangvanMouriketal.2017, author = {Ruelens, Philip and Zhang, Zhicheng and van Mourik, Hilda and Maere, Steven and Kaufmann, Kerstin and Geuten, Koen}, title = {The Origin of Floral Organ Identity Quartets}, series = {The plant cell}, volume = {29}, journal = {The plant cell}, number = {2}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {1040-4651}, doi = {10.1105/tpc.16.00366}, pages = {229 -- 242}, year = {2017}, abstract = {The origin of flowers has puzzled plant biologists ever since Darwin referred to their sudden appearance in the fossil record as an abominable mystery. Flowers are considered to be an assembly of protective, attractive, and reproductive male and female leaf-like organs. Their origin cannot be understood by a morphological comparison to gymnosperms, their closest relatives, which develop separate male or female cones. Despite these morphological differences, gymnosperms and angiosperms possess a similar genetic toolbox consisting of phylogenetically related MADS domain proteins. Using ancestral MADS domain protein reconstruction, we trace the evolution of organ identity quartets along the stem lineage of crown angiosperms. We provide evidence that current floral quartets specifying male organ identity, which consist of four types of subunits, evolved from ancestral complexes of two types of subunits through gene duplication and integration of SEPALLATA proteins just before the origin of flowering plants. Our results suggest that protein interaction changes underlying this compositional shift were the result of a gradual and reversible evolutionary trajectory. Modeling shows that such compositional changes may have facilitated the evolution of the perfect, bisexual flower.}, language = {en} } @article{RottstockKummerFischeretal.2017, author = {Rottstock, Tanja and Kummer, Volker and Fischer, Markus and Joshi, Jasmin Radha}, title = {Rapid transgenerational effects in Knautia arvensis in response to plant community diversity}, series = {The journal of ecology}, volume = {105}, journal = {The journal of ecology}, publisher = {Wiley}, address = {Hoboken}, issn = {0022-0477}, doi = {10.1111/1365-2745.12689}, pages = {714 -- 725}, year = {2017}, abstract = {1. Plant species persistence in natural communities requires coping with biotic and abiotic challenges. These challenges also depend on plant community composition and diversity. Over time, biodiversity effects have been shown to be strengthened via increasing species complementarity in mixtures. Little is known, however, whether differences in community diversity and composition induce rapid transgenerational phenotypic adaptive differentiation during community assembly. We expect altered plant-plant and other biotic interactions (mutualists or antagonists) in high vs. low diverse communities to affect immediate within-and between-species trait differentiations due to competition for light and nutrients. 2. Three years after the initiation of a large-scale, long-term biodiversity experiment in Jena, Germany, we tested for effects of varying experimental plant community diversity (1-60 plant species; one to four plant functional groups) and composition (with or without legumes and/or grasses) on phenotypic differentiation and variation of the tall herb Knautia arvensis. We measured reproduction at different diversity levels in the Jena Experiment (residents hereafter) and, in an additional common garden experiment without competition, recorded subsequent offspring performance (i.e. growth, reproductive success and susceptibility to powdery mildew) to test for differentiation in phenotypic expression and variability. 3. We observed phenotypic differences among diversity levels with reduced fecundity of K. arvensis residents in more diverse communities. In the next generation grown under common garden conditions, offspring from high-diversity plots showed reduced growth (i.e. height) and lower reproduction (i.e. fewer infructescences), but increased phenotypic trait variability (e.g. in leaf width and powdery mildew presence) and also tended to be less susceptible to powdery mildew infection. 4. Community composition also affected Knautia parents and offspring. In the presence of legumes, resident plants produced more seeds (increased fecundity); however, germination rate of those seeds was reduced at an early seedling stage (reduced fertility). 5. Synthesis. We conclude that rapid transgenerational effects of community diversity and composition on both mean and variation of phenotypic traits among offspring exist. In addition to heritable variation, environmentally induced epigenetic and/or maternal processes matter for early plant community assembly and may also determine future species coexistence and community stability.}, language = {en} } @article{RomeroDiazBreedveldFitze2017, author = {Romero-Diaz, Cristina and Breedveld, Merel Cathelijne and Fitze, Patrick S.}, title = {Climate Effects on Growth, Body Condition, and Survival Depend on the Genetic Characteristics of the Population}, series = {The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences}, volume = {190}, journal = {The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences}, publisher = {Univ. of Chicago Press}, address = {Chicago}, issn = {0003-0147}, doi = {10.1086/693780}, pages = {649 -- 662}, year = {2017}, abstract = {Climatic change is expected to affect individual life histories and population dynamics, potentially increasing vulnerability to extinction. The importance of genetic diversity has been highlighted for adaptation and population persistence. However, whether responses of life-history traits to a given environmental condition depend on the genetic characteristics of a population remains elusive. Here we tested this hypothesis in the lizard Zootoca vivipara by simultaneously manipulating habitat humidity, a major climatic predictor of Zootoca's distribution, and adult male color morph frequency, a trait with genome-wide linkage. Interactive effects of humidity and morph frequency had immediate effects on growth and body condition of juveniles and yearlings, as well as on adult survival, and delayed effects on offspring size. In yearlings, higher humidity led to larger female body size and lower humidity led to higher male compared to female survival. In juveniles and yearlings, some treatment effects were compensated over time. The results show that individual responses to environmental conditions depend on the population's color morph frequency, age class, and sex and that these affect intra- and inter-age class competition. Moreover, humidity affected the competitive environment rather than imposing trait-based selection on specific color morphs. This indicates that species' responses to changing environments (e.g., to climate change) are highly complex and difficult to accurately reconstruct and predict without information on the genetic characteristics and demographic structure of populations.}, language = {en} } @misc{RomaoCoelhoSantosSilvaetal.2017, author = {Romao, Maria Joao and Coelho, Catarina and Santos-Silva, Teresa and Foti, Alessandro and Terao, Mineko and Garattini, Enrico and Leimk{\"u}hler, Silke}, title = {Structural basis for the role of mammalian aldehyde oxidases in the metabolism of drugs and xenobiotics}, series = {Current Opinion in Chemical Biology}, volume = {37}, journal = {Current Opinion in Chemical Biology}, publisher = {Elsevier}, address = {Oxford}, issn = {1367-5931}, doi = {10.1016/j.cbpa.2017.01.005}, pages = {39 -- 47}, year = {2017}, abstract = {Aldehyde oxidases (AOXs) are molybdo-flavoenzymes characterized by broad substrate specificity, oxidizing aromatic/aliphatic aldehydes into the corresponding carboxylic acids and hydroxylating various heteroaromatic rings. Mammals are characterized by a complement of species specific AOX isoenzymes, that varies from one in humans (AOX1) to four in rodents (AOX1, AOX2, AOX3 and AOX4). The physiological function of mammalian AOX isoenzymes is unknown, although human AOX1 is an emerging enzyme in phase-I drug metabolism. Indeed, the number of therapeutic molecules under development which act as AOX substrates is increasing. The recent crystallization and structure determination of human AOX1 as well as mouse AOX3 has brought new insights into the mechanisms underlying substrate/inhibitor binding as well as the catalytic activity of this class of enzymes.}, language = {en} } @article{RojasJimenezWurzbacherBourneetal.2017, author = {Rojas-Jimenez, Keilor and Wurzbacher, Christian and Bourne, Elizabeth Charlotte and Chiuchiolo, Amy and Priscu, John C. and Grossart, Hans-Peter}, title = {Early diverging lineages within Cryptomycota and Chytridiomycota dominate the fungal communities in ice-covered lakes of the McMurdo Dry Valleys, Antarctica}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-017-15598-w}, pages = {11}, year = {2017}, abstract = {Antarctic ice-covered lakes are exceptional sites for studying the ecology of aquatic fungi under conditions of minimal human disturbance. In this study, we explored the diversity and community composition of fungi in five permanently covered lake basins located in the Taylor and Miers Valleys of Antarctica. Based on analysis of the 18S rRNA sequences, we showed that fungal taxa represented between 0.93\% and 60.32\% of the eukaryotic sequences. Cryptomycota and Chytridiomycota dominated the fungal communities in all lakes; however, members of Ascomycota, Basidiomycota, Zygomycota, and Blastocladiomycota were also present. Of the 1313 fungal OTUs identified, the two most abundant, belonging to LKM11 and Chytridiaceae, comprised 74\% of the sequences. Significant differences in the community structure were determined among lakes, water depths, habitat features (i.e., brackish vs. freshwaters), and nucleic acids (DNA vs. RNA), suggesting niche differentiation. Network analysis suggested the existence of strong relationships among specific fungal phylotypes as well as between fungi and other eukaryotes. This study sheds light on the biology and ecology of basal fungi in aquatic systems. To our knowledge, this is the first report showing the predominance of early diverging lineages of fungi in pristine limnetic ecosystems, particularly of the enigmatic phylum Cryptomycota.}, language = {en} } @article{RojasJimenezFonvielleMaetal.2017, author = {Rojas-Jimenez, Keilor and Fonvielle, Jeremy Andre and Ma, Hua and Grossart, Hans-Peter}, title = {Transformation of humic substances by the freshwater Ascomycete Cladosporium sp.}, series = {Waterbird}, volume = {40}, journal = {Waterbird}, publisher = {Waterbird SOC}, address = {Washington}, issn = {1524-4695}, doi = {10.1002/lno.10545}, pages = {282 -- 288}, year = {2017}, abstract = {The ecological relevance of fungi in freshwater ecosystems is becoming increasingly evident, particularly in processing the extensive amounts of polymeric organic carbon such as cellulose, chitin, and humic substances (HS). We isolated several fungal strains from oligo-mesotrophic Lake Stechlin, Brandenburg, Germany, and analyzed their ability to degrade polymeric-like substrates. Using liquid chromatography-organic carbon detection, we determined the byproducts of HS transformation by the freshwater fungus Cladosporium sp. KR14. We demonstrate the ability of this fungus to degrade and simultaneously synthesize HS, and that transformation processes were intensified when iron, as indicator of the occurrence of Fenton reactions, was present in the medium. Furthermore, we showed that structural complexity of the HS produced changed with the availability of other polymeric substances in the medium. Our study highlights the contribution of freshwater Ascomycetes to the transformation of complex organic compounds. As such, it has important implications for understanding the ecological contribution of fungi to aquatic food webs and related biogeochemical cycles.}, language = {en} } @article{RobainaEstevezNikoloski2017, author = {Robaina-Estevez, Semidan and Nikoloski, Zoran}, title = {On the effects of alternative optima in context-specific metabolic model predictions}, series = {PLoS Computational Biology : a new community journal}, volume = {13}, journal = {PLoS Computational Biology : a new community journal}, publisher = {PLoS}, address = {San Fransisco}, issn = {1553-734X}, doi = {10.1371/journal.pcbi.1005568}, pages = {750 -- 766}, year = {2017}, abstract = {The integration of experimental data into genome-scale metabolic models can greatly improve flux predictions. This is achieved by restricting predictions to a more realistic context-specific domain, like a particular cell or tissue type. Several computational approaches to integrate data have been proposed D generally obtaining context-specific (sub) models or flux distributions. However, these approaches may lead to a multitude of equally valid but potentially different models or flux distributions, due to possible alternative optima in the underlying optimization problems. Although this issue introduces ambiguity in context-specific predictions, it has not been generally recognized, especially in the case of model reconstructions. In this study, we analyze the impact of alternative optima in four state-of-the-art context-specific data integration approaches, providing both flux distributions and/or metabolic models. To this end, we present three computational methods and apply them to two particular case studies: leaf-specific predictions from the integration of gene expression data in a metabolic model of Arabidopsis thaliana, and liver-specific reconstructions derived from a human model with various experimental data sources. The application of these methods allows us to obtain the following results: (i) we sample the space of alternative flux distributions in the leaf-and the liver-specific case and quantify the ambiguity of the predictions. In addition, we show how the inclusion of l(1)-regularization during data integration reduces the ambiguity in both cases. (ii) We generate sets of alternative leaf-and liver-specific models that are optimal to each one of the evaluated model reconstruction approaches. We demonstrate that alternative models of the same context contain a marked fraction of disparate reactions. Further, we show that a careful balance between model sparsity and metabolic functionality helps in reducing the discrepancies between alternative models. Finally, our findings indicate that alternative optima must be taken into account for rendering the context-specific metabolic model predictions less ambiguous.}, language = {en} } @article{RobainaEstevezDalosoZhangetal.2017, author = {Robaina-Estevez, Semidan and Daloso, Danilo M. and Zhang, Youjun and Fernie, Alisdair R. and Nikoloski, Zoran}, title = {Resolving the central metabolism of Arabidopsis guard cells}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-017-07132-9}, pages = {1913 -- 1932}, year = {2017}, abstract = {Photosynthesis and water use efficiency, key factors affecting plant growth, are directly controlled by microscopic and adjustable pores in the leaf-the stomata. The size of the pores is modulated by the guard cells, which rely on molecular mechanisms to sense and respond to environmental changes. It has been shown that the physiology of mesophyll and guard cells differs substantially. However, the implications of these differences to metabolism at a genome-scale level remain unclear. Here, we used constraint-based modeling to predict the differences in metabolic fluxes between the mesophyll and guard cells of Arabidopsis thaliana by exploring the space of fluxes that are most concordant to cell-type-specific transcript profiles. An independent C-13-labeling experiment using isolated mesophyll and guard cells was conducted and provided support for our predictions about the role of the Calvin-Benson cycle in sucrose synthesis in guard cells. The combination of in silico with in vivo analyses indicated that guard cells have higher anaplerotic CO2 fixation via phosphoenolpyruvate carboxylase, which was demonstrated to be an important source of malate. Beyond highlighting the metabolic differences between mesophyll and guard cells, our findings can be used in future integrated modeling of multicellular plant systems and their engineering towards improved growth.}, language = {en} } @phdthesis{RobainaEstevez2017, author = {Robaina Estevez, Semidan}, title = {Context-specific metabolic predictions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401365}, school = {Universit{\"a}t Potsdam}, pages = {vi, 158}, year = {2017}, abstract = {All life-sustaining processes are ultimately driven by thousands of biochemical reactions occurring in the cells: the metabolism. These reactions form an intricate network which produces all required chemical compounds, i.e., metabolites, from a set of input molecules. Cells regulate the activity through metabolic reactions in a context-specific way; only reactions that are required in a cellular context, e.g., cell type, developmental stage or environmental condition, are usually active, while the rest remain inactive. The context-specificity of metabolism can be captured by several kinds of experimental data, such as by gene and protein expression or metabolite profiles. In addition, these context-specific data can be assimilated into computational models of metabolism, which then provide context-specific metabolic predictions. This thesis is composed of three individual studies focussing on context-specific experimental data integration into computational models of metabolism. The first study presents an optimization-based method to obtain context-specific metabolic predictions, and offers the advantage of being fully automated, i.e., free of user defined parameters. The second study explores the effects of alternative optimal solutions arising during the generation of context-specific metabolic predictions. These alternative optimal solutions are metabolic model predictions that represent equally well the integrated data, but that can markedly differ. This study proposes algorithms to analyze the space of alternative solutions, as well as some ways to cope with their impact in the predictions. Finally, the third study investigates the metabolic specialization of the guard cells of the plant Arabidopsis thaliana, and compares it with that of a different cell type, the mesophyll cells. To this end, the computational methods developed in this thesis are applied to obtain metabolic predictions specific to guard cell and mesophyll cells. These cell-specific predictions are then compared to explore the differences in metabolic activity between the two cell types. In addition, the effects of alternative optima are taken into consideration when comparing the two cell types. The computational results indicate a major reorganization of the primary metabolism in guard cells. These results are supported by an independent 13C labelling experiment.}, language = {en} } @article{RiedelSabirSchelleretal.2017, author = {Riedel, M. and Sabir, N. and Scheller, Frieder W. and Parak, Wolfgang J. and Lisdat, Fred}, title = {Connecting quantum dots with enzymes}, series = {Nanoscale}, volume = {9}, journal = {Nanoscale}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2040-3364}, doi = {10.1039/c7nr00091j}, pages = {2814 -- 2823}, year = {2017}, abstract = {The combination of the biocatalytic features of enzymes with the unique physical properties of nanoparticles in a biohybrid system provides a promising approach for the development of advanced bioelectrocatalytic devices. This study describes the construction of photoelectrochemical signal chains based on CdSe/ZnS quantum dot (QD) modified gold electrodes as light switchable elements, and low molecular weight redox molecules for the combination with different biocatalysts. Photoelectrochemical and photoluminescence experiments verify that electron transfer can be achieved between the redox molecules hexacyanoferrate and ferrocene, and the QDs under illumination. Since for both redox mediators a concentration dependent photocurrent change has been found, light switchable enzymatic signal chains are built up with fructose dehydrogenase (FDH) and pyrroloquinoline quinone-dependent glucose dehydrogenase ((PQQ) GDH) for the detection of sugars. After immobilization of the enzymes at the QD electrode the biocatalytic oxidation of the substrates can be followed by conversion of the redox mediator in solution and subsequent detection at the QD electrode. Furthermore, (PQQ) GDH has been assembled together with ferrocenecarboxylic acid on top of the QD electrode for the construction of a funtional biohybrid architecture, showing that electron transfer can be realized from the enzyme over the redox mediator to the QDs and subsequently to the electrode in a completely immobilized fashion. The results obtained here do not only provide the basis for light-switchable biosensing and bioelectrocatalytic applications, but may also open the way for self-driven point-of-care systems by combination with solar cell approaches (power generation at the QD electrode by enzymatic substrate consumption).}, language = {en} } @phdthesis{RibeiroMartins2017, author = {Ribeiro Martins, Renata Filipa}, title = {Deciphering evolutionary histories of Southeast Asian Ungulates}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-404669}, school = {Universit{\"a}t Potsdam}, pages = {vii, 115}, year = {2017}, abstract = {Im Verlauf von Jahrmillionen gestalteten evolution{\"a}re Kr{\"a}fte die Verbreitung und genetische Variabilit{\"a}t von Arten, indem sie die Anpassungsf{\"a}higkeit und {\"U}berlebenswahrscheinlichkeit dieser Arten beeinflussten. Da S{\"u}dostasien eine außerordentlich artenreiche Region darstellt, eignet sie sich besonders, um den Einfluss dieser Kr{\"a}fte zu untersuchen. Historische Klimaver{\"a}nderungen hatten dramatische Auswirkungen auf die Verf{\"u}gbarkeit sowie die Verbreitung von Habitaten in S{\"u}dostasien, weil hierdurch wiederholt das Festland mit sonst isolierten Inseln verbunden wurde. Dies beeinflusste nicht nur, wie Arten in dieser Region verbreitet sind, sondern erm{\"o}glichte auch eine zunehmende genetische Variabilit{\"a}t. Zwar ist es bekannt, dass Arten mit {\"a}hnlicher Evolutionsgeschichte unterschiedliche phylogeographische Muster aufweisen k{\"o}nnen. Die zugrundeliegenden Mechanismen sind jedoch nur gering verstanden. Diese Dissertation behandelt die Phylogeographie von drei Gruppen von Huftieren, welche im S{\"u}den und S{\"u}dosten Asiens vorkommen. Dabei war das vornehmliche Ziel, zu verstehen, wie es zur Ausbildung verschiedener Arten sowie zu einer regionalen Verteilung von genetischer Variabilit{\"a}t kam. Hierf{\"u}r untersuchte ich die mitochondrialen Genome alter Proben. Dadurch war es m{\"o}glich, Populationen des gesamten Verbreitungsgebietes der jeweiligen Arten zu untersuchen - auch solche Populationen, die heutzutage nicht mehr existieren. Entsprechend der einzelnen Huftiergruppen ist diese Arbeit in drei Kapitel unterteilt: Muntjaks (Muntiacus sp.), Hirsche der Gattung Rusa und asiatische Nash{\"o}rner. Alle drei Gruppen weisen eine Aufteilung in unterschiedliche Linien auf, was jeweils direkt auf Ereignisse des Pleistoz{\"a}ns zur{\"u}ckgef{\"u}hrt werden kann. Muntjaks sind eine weit verbreitete Art, die in verschiedensten Habitaten vorkommen kann. Ich wies nach, dass es in der Vergangenheit zu genetischem Austausch zwischen Populationen von verschiedenen Inseln des Sundalandes kam. Dies deutet auf die F{\"a}higkeit von Muntjaks hin, sich an die ehemaligen Landbr{\"u}cken anzupassen. Jedoch zeige ich auch, dass mindestens zwei Hindernisse bei ihrer Verbreitung existierten, wodurch es zu einer Differenzierung von Populationen kam: eine Barriere trennte Populationen des asiatischen Festlands von denen der Sundainseln, die andere isolierte sri-lankische von restlichen Muntjaks. Die zwei untersuchten Rusa-Arten weisen ein anderes Muster auf, was wiederum eine weitere Folge der pleistoz{\"a}nen Landbr{\"u}cken darstellt. Beide Arten sind ausschließlich monophyletisch. Allerdings gibt es Anzeichen f{\"u}r die Hybridisierung dieser Arten auf Java, was durch eine fr{\"u}here Ausbreitung des sambar (R. unicolor) gef{\"o}rdert wurde. Aufgrund dessen fand ich zudem, dass all jene Individuen der anderen Art, R. timorensis, die durch den Menschen auf die {\"o}stlichen Sundainseln gebracht wurden, in Wahrheit Hybride sind. F{\"u}r den dritten Teil war es mir m{\"o}glich, Proben von Vertretern ausgestorbener Populationen vom asiatischen Festland des Sumatra- und des Java-Nashorns (Dicerorhinus sumatrensis und Rhinoceros sondaicus) zu analysieren. Die Ergebnisse meiner Arbeit belegen, dass die genetische Vielfalt dieser historischen Populationen bedeutend gr{\"o}ßer war als die der heutigen Nachkommen. Ihre jeweilige Evolutionsgeschichte korreliert stark mit pleistoz{\"a}nen Prozessen. Außerdem betonen meine Ergebnisse das enorme Ausmaß von verlorener genetischer Diversit{\"a}t dieser stark bedrohten Arten. Jede Art besitzt eine individuelle phylogeographische Geschichte. Ebenso fand ich aber auch allgemeing{\"u}ltige Muster von genetischer Differenzierung in allen Gruppen, welche direkt mit Ereignissen des Pleistoz{\"a}ns assoziiert werden k{\"o}nnen. Vergleicht man jedoch die einzelnen Ergebnisse der Arten, wird deutlich, dass die gleichen geologischen Prozesse nicht zwangsl{\"a}ufig in gleiche evolutive Ergebnisse resultieren. Einer der Gr{\"u}nde hierf{\"u}r k{\"o}nnte zum Beispiel die unterschiedliche Durchl{\"a}ssigkeit der entstandenen Landkorridore des Sundaschelfs sein. Die M{\"o}glichkeit diese neuen Habitate zu nutzen und somit auch zu passieren steht im direkten Bezug zu den spezifischen {\"o}kologischen Bed{\"u}rfnissen der Arten.Zusammenfassend leisten meine Erkenntnisse einen wichtigen Beitrag, die Evolution und geographische Aufteilung der genetischen Vielfalt in diesem Hotspot an Biodiversit{\"a}t zu verstehen. Obendrein k{\"o}nnen sie aber auch Auswirkungen auf die Erhaltung und systematische Klassifikation der untersuchten Arten haben.}, language = {en} } @phdthesis{ReynaGonzalez2017, author = {Reyna Gonz{\´a}lez, Emmanuel}, title = {Engineering of the microviridin post-translational modification enzymes for the production of synthetic protease inhibitors}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-406979}, school = {Universit{\"a}t Potsdam}, pages = {XI, 91, CI}, year = {2017}, abstract = {Natural products and their derivatives have always been a source of drug leads. In particular, bacterial compounds have played an important role in drug development, for example in the field of antibiotics. A decrease in the discovery of novel leads from natural sources and the hope of finding new leads through the generation of large libraries of drug-like compounds by combinatorial chemistry aimed at specific molecular targets drove the pharmaceutical companies away from research on natural products. However, recent technological advances in genetics, bioinformatics and analytical chemistry have revived the interest in natural products. The ribosomally synthesized and post-translationally modified peptides (RiPPs) are a group of natural products generated by the action of post-translationally modifying enzymes on precursor peptides translated from mRNA by ribosomes. The great substrate promiscuity exhibited by many of the enzymes from RiPP biosynthetic pathways have led to the generation of hundreds of novel synthetic and semisynthetic variants, including variants carrying non-canonical amino acids (ncAAs). The microviridins are a family of RiPPs characterized by their atypical tricyclic structure composed of lactone and lactam rings, and their activity as serine protease inhibitors. The generalities of their biosynthetic pathway have already been described, however, the lack of information on details such as the protease responsible for cleaving off the leader peptide from the cyclic core peptide has impeded the fast and cheap production of novel microviridin variants. In the present work, knowledge on leader peptide activation of enzymes from other RiPP families has been extrapolated to the microviridin family, making it possible to bypass the need of a leader peptide. This feature allowed for the exploitation of the microviridin biosynthetic machinery for the production of novel variants through the establishment of an efficient one-pot in vitro platform. The relevance of this chemoenzymatic approach has been exemplified by the synthesis of novel potent serine protease inhibitors from both rationally-designed peptide libraries and bioinformatically predicted microviridins. Additionally, new structure-activity relationships (SARs) could be inferred by screening microviridin intermediates. The significance of this technique was further demonstrated by the simple incorporation of ncAAs into the microviridin scaffold.}, language = {en} } @article{ReinickeReesEspeeletal.2017, author = {Reinicke, Stefan and Rees, Huw C. and Espeel, Pieter and Vanparijs, Nane and Bisterfeld, Carolin and Dick, Markus and Rosencrantz, Ruben R. and Brezesinski, Gerald and de Geest, Bruno G. and Du Prez, Filip E. and Pietruszka, J{\"o}rg and B{\"o}ker, Alexander}, title = {Immobilization of 2-Deoxy-D-ribose-5-phosphate Aldolase in Polymeric Thin Films via the Langmuir-Schaefer Technique}, series = {ACS applied materials \& interfaces}, volume = {9}, journal = {ACS applied materials \& interfaces}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.6b13632}, pages = {8317 -- 8326}, year = {2017}, abstract = {A synthetic protocol for the fabrication of ultrathin polymeric films containing the enzyme 2-deoxy-D-ribose-5-phosphate aldolase from Escherichia coli (DERA(EC)) is presented. Ultrathin enzymatically active films are useful for applications in which only small quantities of active material are needed and at the same time quick response and contact times without diffusion limitation are wanted. We show how DERA as an exemplary enzyme can be immobilized in a thin polymer layer at the air-water interface and transferred to a suitable support by the Langmuir-Schaefer technique under full conservation of enzymatic activity. The polymer in use is a poly(N-isopropylacrylamide-co-N-2-thiolactone acrylamide) (P(NIPAAm-co-TlaAm)) statistical copolymer in which the thiolactone units serve a multitude of purposes including hydrophobization of the polymer, covalent binding of the enzyme and the support and finally cross-linking of the polymer matrix. The application of this type of polymer keeps the whole approach simple as additional cocomponents such as cross-linkers are avoided.}, language = {en} } @misc{ReilRosenfeldImholtetal.2017, author = {Reil, Daniela and Rosenfeld, Ulrike M. and Imholt, Christian and Schmidt, Sabrina and Ulrich, Rainer G. and Eccard, Jana and Jacob, Jens}, title = {Puumala hantavirus infections in bank vole populations}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {957}, issn = {1866-8372}, doi = {10.25932/publishup-43123}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431232}, pages = {15}, year = {2017}, abstract = {Background In Europe, bank voles (Myodes glareolus) are widely distributed and can transmit Puumala virus (PUUV) to humans, which causes a mild to moderate form of haemorrhagic fever with renal syndrome, called nephropathia epidemica. Uncovering the link between host and virus dynamics can help to prevent human PUUV infections in the future. Bank voles were live trapped three times a year in 2010-2013 in three woodland plots in each of four regions in Germany. Bank vole population density was estimated and blood samples collected to detect PUUV specific antibodies. Results We demonstrated that fluctuation of PUUV seroprevalence is dependent not only on multi-annual but also on seasonal dynamics of rodent host abundance. Moreover, PUUV infection might affect host fitness, because seropositive individuals survived better from spring to summer than uninfected bank voles. Individual space use was independent of PUUV infections. Conclusions Our study provides robust estimations of relevant patterns and processes of the dynamics of PUUV and its rodent host in Central Europe, which are highly important for the future development of predictive models for human hantavirus infection risk.}, language = {en} } @article{ReilRosenfeldImholtetal.2017, author = {Reil, Daniela and Rosenfeld, Ulrike M. and Imholt, Christian and Schmidt, Sabrina and Ulrich, Rainer G. and Eccard, Jana and Jacob, Jens}, title = {Puumala hantavirus infections in bank vole populations}, series = {BMC ecology}, volume = {17}, journal = {BMC ecology}, publisher = {BioMed Central}, address = {London}, issn = {1472-6785}, doi = {10.1186/s12898-017-0118-z}, pages = {13}, year = {2017}, abstract = {Background In Europe, bank voles (Myodes glareolus) are widely distributed and can transmit Puumala virus (PUUV) to humans, which causes a mild to moderate form of haemorrhagic fever with renal syndrome, called nephropathia epidemica. Uncovering the link between host and virus dynamics can help to prevent human PUUV infections in the future. Bank voles were live trapped three times a year in 2010-2013 in three woodland plots in each of four regions in Germany. Bank vole population density was estimated and blood samples collected to detect PUUV specific antibodies. Results We demonstrated that fluctuation of PUUV seroprevalence is dependent not only on multi-annual but also on seasonal dynamics of rodent host abundance. Moreover, PUUV infection might affect host fitness, because seropositive individuals survived better from spring to summer than uninfected bank voles. Individual space use was independent of PUUV infections. Conclusions Our study provides robust estimations of relevant patterns and processes of the dynamics of PUUV and its rodent host in Central Europe, which are highly important for the future development of predictive models for human hantavirus infection risk}, language = {en} } @article{ReilImholtRosenfeldetal.2017, author = {Reil, Daniela and Imholt, Christian and Rosenfeld, Ulrike M. and Drewes, Stephan and Fischer, S. and Heuser, Emil and Petraityte-Burneikiene, Rasa and Ulrich, R. G. and Jacob, J.}, title = {Validation of the Puumala virus rapid field test for bank voles in Germany}, series = {Epidemiology and infection}, volume = {145}, journal = {Epidemiology and infection}, number = {3}, publisher = {Cambridge Univ. Press}, address = {New York}, issn = {0950-2688}, doi = {10.1017/S0950268816002557}, pages = {434 -- 439}, year = {2017}, abstract = {Puumala virus (PUUV) causes many human infections in large parts of Europe and can lead to mild to moderate disease. The bank vole (Myodes glareolus) is the only reservoir of PUUV in Central Europe. A commercial PUUV rapid field test for rodents was validated for bank-vole blood samples collected in two PUUV-endemic regions in Germany (North Rhine-Westphalia and Baden-Wurttemberg). A comparison of the results of the rapid field test and standard ELISAs indicated a test efficacy of 93-95\%, largely independent of the origin of the antigens used in the ELISA. In ELISAs, reactivity for the German PUUV strain was higher compared to the Swedish strain but not compared to the Finnish strain, which was used for the rapid field test. In conclusion, the use of the rapid field test can facilitate short-term estimation of PUUV seroprevalence in bank-vole populations in Germany and can aid in assessing human PUUV infection risk.}, language = {en} } @article{ReegSchadPreussetal.2017, author = {Reeg, Jette and Schad, Thorsten and Preuss, Thomas G. and Solga, Andreas and K{\"o}rner, Katrin and Mihan, Christine and Jeltsch, Florian}, title = {Modelling direct and indirect effects of herbicides on non-target grassland communities}, series = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, volume = {348}, journal = {Ecological modelling : international journal on ecological modelling and engineering and systems ecolog}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-3800}, doi = {10.1016/j.ecolmodel.2017.01.010}, pages = {44 -- 55}, year = {2017}, abstract = {Natural grassland communities are threatened by a variety of factors, such as climate change and increasing land use by mankind. The use of plant protection products (synthetic or organic) is mandatory in agricultural food production. To avoid adverse effects on natural grasslands within agricultural areas, synthetic plant protection products are strictly regulated in Europe. However, effects of herbicides on non-target terrestrial plants are primarily studied on the level of individual plants neglecting interactions between species. In our study, we aim to extrapolate individual-level effects to the population and community level by adapting an existing spatio-temporal, individual-based plant community model (IBC-grass). We analyse the effects of herbicide exposure for three different grassland communities: 1) representative field boundary community, 2) Calthion grassland community, and 3) Arrhenatheretalia grassland community. Our simulations show that herbicide depositions can have effects on non-target plant communities resulting from direct and indirect effects on population level. The effect extent depends not only on the distance to the field, but also on the specific plant community, its disturbance regime (cutting frequency, trampling and grazing intensity) and resource level. Mechanistic modelling approaches such as IBC-grass present a promising novel approach in transferring and extrapolating standardized pot experiments to community level and thereby bridging the gap between ecotoxicological testing (e.g. in the greenhouse) and protection goals referring to real world conditions.}, language = {en} }