@article{SperfeldWacker2015, author = {Sperfeld, Erik and Wacker, Alexander}, title = {Maternal diet of Daphnia magna affects offspring growth responses to supplementation with particular polyunsaturated fatty acids}, series = {Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica}, volume = {755}, journal = {Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {0018-8158}, doi = {10.1007/s10750-015-2244-y}, pages = {267 -- 282}, year = {2015}, abstract = {Previous studies examining the effects of food quality on zooplankton often controlled for maternal effects of resource provisioning using standardized maternal diets. However, varying nutritional history of mothers may change resource provisioning to their progeny, especially regarding polyunsaturated fatty acids (PUFAs), which may change the interpretation of previously observed fitness responses of offspring. To assess PUFA-mediated maternal provisioning effects on offspring, we raised females of the cladoceran Daphnia magna on diets differing considerably in PUFA composition and raised their offspring on a PUFA-lacking diet supplemented with the omega 3 PUFAs alpha-linolenic acid (ALA) and/or eicosapentaenoic acid (EPA). The mass-specific growth responses of offspring to their own diets were affected by the maternal diet regime, probably due to varying maternal PUFA provisioning. A low maternal provisioning of EPA or ALA was sufficient to prevent growth limitation of offspring by these PUFAs until reaching maturity. A comparison with results of published ALA and EPA supplementation experiments suggests that the previously observed limitation effects depended on the usage of a single algae genus as maternal diet. Therefore, we suggest that maternal diets should be deliberately varied in future studies assessing ecological relevant food quality effects on zooplankton, especially regarding PUFAs.}, language = {en} } @article{QuintanaArimBadosaetal.2015, author = {Quintana, Xavier D. and Arim, Matias and Badosa, Anna and Maria Blanco, Jose and Boix, Dani and Brucet, Sandra and Compte, Jordi and Egozcue, Juan J. and de Eyto, Elvira and Gaedke, Ursula and Gascon, Stephanie and Gil de Sola, Luis and Irvine, Kenneth and Jeppesen, Erik and Lauridsen, Torben L. and Lopez-Flores, Rocio and Mehner, Thomas and Romo, Susana and Sondergaard, Martin}, title = {Predation and competition effects on the size diversity of aquatic communities}, series = {Aquatic sciences : research across boundaries}, volume = {77}, journal = {Aquatic sciences : research across boundaries}, number = {1}, publisher = {Springer}, address = {Basel}, issn = {1015-1621}, doi = {10.1007/s00027-014-0368-1}, pages = {45 -- 57}, year = {2015}, abstract = {Body size has been widely recognised as a key factor determining community structure in ecosystems. We analysed size diversity patterns of phytoplankton, zooplankton and fish assemblages in 13 data sets from freshwater and marine sites with the aim to assess whether there is a general trend in the effect of predation and resource competition on body size distribution across a wide range of aquatic ecosystems. We used size diversity as a measure of the shape of size distribution. Size diversity was computed based on the Shannon-Wiener diversity expression, adapted to a continuous variable, i.e. as body size. Our results show that greater predation pressure was associated with reduced size diversity of prey at all trophic levels. In contrast, competition effects depended on the trophic level considered. At upper trophic levels (zooplankton and fish), size distributions were more diverse when potential resource availability was low, suggesting that competitive interactions for resources promote diversification of aquatic communities by size. This pattern was not found for phytoplankton size distributions where size diversity mostly increased with low zooplankton grazing and increasing nutrient availability. Relationships we found were weak, indicating that predation and competition are not the only determinants of size distribution. Our results suggest that predation pressure leads to accumulation of organisms in the less predated sizes, while resource competition tends to favour a wider size distribution.}, language = {en} } @phdthesis{Lischke2015, author = {Lischke, Betty}, title = {Food web regulation under different forcing regimes in shallow lakes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-89149}, school = {Universit{\"a}t Potsdam}, pages = {131}, year = {2015}, abstract = {The standing stock and production of organismal biomass depends strongly on the organisms' biotic environment, which arises from trophic and non-trophic interactions among them. The trophic interactions between the different groups of organisms form the food web of an ecosystem, with the autotrophic and bacterial production at the basis and potentially several levels of consumers on top of the producers. Feeding interactions can regulate communities either by severe grazing pressure or by shortage of resources or prey production, termed top-down and bottom-up control, respectively. The limitations of all communities conglomerate in the food web regulation, which is subject to abiotic and biotic forcing regimes arising from external and internal constraints. This dissertation presents the effects of alterations in two abiotic, external forcing regimes, terrestrial matter input and long-lasting low temperatures in winter. Diverse methodological approaches, a complex ecosystem model study and the analysis of two whole-lake measurements, were performed to investigate effects for the food web regulation and the resulting consequences at the species, community and ecosystem scale. Thus, all types of organisms, autotrophs and heterotrophs, at all trophic levels were investigated to gain a comprehensive overview of the effects of the two mentioned altered forcing regimes. In addition, an extensive evaluation of the trophic interactions and resulting carbon fluxes along the pelagic and benthic food web was performed to display the efficiencies of the trophic energy transfer within the food webs. All studies were conducted in shallow lakes, which is worldwide the most abundant type of lakes. The specific morphology of shallow lakes allows that the benthic production contributes substantially to the whole-lake production. Further, as shallow lakes are often small they are especially sensitive to both, changes in the input of terrestrial organic matter and the atmospheric temperature. Another characteristic of shallow lakes is their appearance in alternative stable states. They are either in a clear-water or turbid state, where macrophytes and phytoplankton dominate, respectively. Both states can stabilize themselves through various mechanisms. These two alternative states and stabilizing mechanisms are integrated in the complex ecosystem model PCLake, which was used to investigate the effects of the enhanced terrestrial particulate organic matter (t-POM) input to lakes. The food web regulation was altered by three distinct pathways: (1) Zoobenthos received more food, increased in biomass which favored benthivorous fish and those reduced the available light due to bioturbation. (2) Zooplankton substituted autochthonous organic matter in their diet by suspended t-POM, thus the autochthonous organic matter remaining in the water reduced its transparency. (3) T-POM suspended into the water and reduced directly the available light. As macrophytes are more light-sensitive than phytoplankton they suffered the most from the lower transparency. Consequently, the resilience of the clear-water state was reduced by enhanced t-POM inputs, which makes the turbid state more likely at a given nutrient concentration. In two subsequent winters long-lasting low temperatures and a concurrent long duration of ice coverage was observed which resulted in low overall adult fish biomasses in the two study lakes - Schulzensee and Gollinsee, characterized by having and not having submerged macrophytes, respectively. Before the partial winterkill of fish Schulzensee allowed for a higher proportion of piscivorous fish than Gollinsee. However, the partial winterkill of fish aligned both communities as piscivorous fish are more sensitive to low oxygen concentrations. Young of the year fish benefitted extremely from the absence of adult fish due to lower predation pressure. Therefore, they could exert a strong top-down control on crustaceans, which restructured the entire zooplankton community leading to low crustacean biomasses and a community composition characterized by copepodites and nauplii. As a result, ciliates were released from top-down control, increased to high biomasses compared to lakes of various trophic states and depths and dominated the zooplankton community. While being very abundant in the study lakes and having the highest weight specific grazing rates among the zooplankton, ciliates exerted potentially a strong top-down control on small phytoplankton and particle-attached bacteria. This resulted in a higher proportion of large phytoplankton compared to other lakes. Additionally, the phytoplankton community was evenly distributed presumably due to the numerous fast growing and highly specific ciliate grazers. Although, the pelagic food web was completely restructured after the subsequent partial winterkills of fish, both lakes were resistant to effects of this forcing regime at the ecosystem scale. The consistently high predation pressure on phytoplankton prevented that Schulzensee switched from the clear-water to the turbid state. Further mechanisms, which potentially stabilized the clear-water state, were allelopathic effects by macrophytes and nutrient limitation in summer. The pelagic autotrophic and bacterial production was an order of magnitude more efficient transferred to animal consumers than the respective benthic production, despite the alterations of the food web structure after the partial winterkill of fish. Thus, the compiled mass-balanced whole-lake food webs suggested that the benthic bacterial and autotrophic production, which exceeded those of the pelagic habitat, was not used by animal consumers. This holds even true if the food quality, additional consumers such as ciliates, benthic protozoa and meiobenthos, the pelagic-benthic link and the potential oxygen limitation of macrobenthos were considered. Therefore, low benthic efficiencies suggest that lakes are primarily pelagic systems at least at the animal consumer level. Overall, this dissertation gives insights into the regulation of organism groups in the pelagic and benthic habitat at each trophic level under two different forcing regimes and displays the efficiency of the carbon transfer in both habitats. The results underline that the alterations of external forcing regimes affect all hierarchical level including the ecosystem.}, language = {en} }