@article{ZobirOberhaensli2013, author = {Zobir, Soraya Hadj and Oberh{\"a}nsli, Roland}, title = {The sidi Mohamed peridotites (Edough Massif, NE Algeria) - evidence for an upper mantle origin}, series = {Journal of earth system science}, volume = {122}, journal = {Journal of earth system science}, number = {6}, publisher = {Indian Academy of Science}, address = {Bangalore}, issn = {0253-4126}, doi = {10.1007/s12040-013-0358-z}, pages = {1455 -- 1465}, year = {2013}, abstract = {The Hercynian Edough massif is the easternmost crystalline massif of the Algerian coast. It consists of two tectonically superposed units composed of micaschists, gneisses, and peridotite. This study concentrates on the small and isolated Sidi Mohamed peridotite outcrop area (0.03 km(2)). The Sidi Mohamed peridotite is composed mainly of harzburgites (Mg-rich olivine and orthopyroxene as major minerals). The Ni (2051-2920 ppm), Cr (2368-5514 ppm) and MgO (similar to 28-35 wt.\%) whole-rock composition and the relative depletion in Nb make these harzburgites comparable to depleted peridotites related to a subduction zone. We suggest that the Sidi Mohamed ultramafic body was derived directly from the upper mantle and tectonically incorporated into the gneiss units of the Edough metamorphic core complex in a subduction environment.}, language = {en} }