@article{RojasTierschRabeetal.2013, author = {Rojas, Oscar and Tiersch, Brigitte and Rabe, Christian and Stehle, Ralf and Hoell, Armin and Arlt, Bastian and Koetz, Joachim}, title = {Nonaqueous Microemulsions Based on N,N '-Alkylimidazolium Alkylsulfate Ionic Liquids}, series = {Langmuir}, volume = {29}, journal = {Langmuir}, number = {23}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/la401080q}, pages = {6833 -- 6839}, year = {2013}, abstract = {The ternary system composed of the ionic liquid surfactant (IL-S) 1-butyl-3-methylimidazolium dodecylsulfate ([Bmim][DodSO(4)]), the room temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium ethylsulfate ([Emim][EtSO4]), and toluene has been investigated. Three major mechanisms guiding the structure of the isotropic phase were identified by means of conductometric experiments, which have been correlated to the presence of oil-in-IL, bicontinuous, and IL-in-oil microemulsions. IL-S forms micelles in toluene, which swell by adding RTIL as to be shown by dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS) experiments. Therefore, it is possible to form water free IL-in-oil reverse microemulsions <= 10 nm in size as a new type of nanoreactor.}, language = {en} } @article{DolyaRojasKosmellaetal.2013, author = {Dolya, Natalya and Rojas, Oscar and Kosmella, Sabine and Tiersch, Brigitte and Koetz, Joachim and Kudaibergenov, Sarkyt}, title = {"One-Pot" in situ frmation of Gold Nanoparticles within Poly(acrylamide) Hydrogels}, series = {Macromolecular chemistry and physics}, volume = {214}, journal = {Macromolecular chemistry and physics}, number = {10}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1352}, doi = {10.1002/macp.201200727}, pages = {1114 -- 1121}, year = {2013}, abstract = {This paper focuses on two different strategies to incorporate gold nanoparticles (AuNPs) into the matrix of polyacrylamide (PAAm) hydrogels. Poly(ethyleneimine) (PEI) is used as both reducing and stabilizing agent for the formation of AuNPs. In addition, the influence of an ionic liquid (IL) (i.e., 1-ethyl-3-methylimidazolium ethylsulfate) on the stability of the nanoparticles and their immobilization in the hydrogel is investigated The results show that AuNPs surrounded by a shell containing PEI and IL, synthesized according to the one-pot approach, are much better immobilized within the PAAm hydrogel. Hereby, the IL is responsible for structural changes in the hydrogel as well as the improved stabilization and embedding of the AuNPs into the polymer gel matrix.}, language = {en} } @article{BertzWoehlBruhnMietheetal.2013, author = {Bertz, Andreas and W{\"o}hl-Bruhn, Stefanie and Miethe, Sebastian and Tiersch, Brigitte and Koetz, Joachim and Hust, Michael and Bunjes, Heike and Menzel, Henning}, title = {Encapsulation of proteins in hydrogel carrier systems for controlled drug delivery influence of network structure and drug size on release rate}, series = {Journal of biotechnology}, volume = {163}, journal = {Journal of biotechnology}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-1656}, doi = {10.1016/j.jbiotec.2012.06.036}, pages = {243 -- 249}, year = {2013}, abstract = {Novel hydrogels based on hydroxyethyl starch modified with polyethylene glycol methacrylate (HES-P(EG)(6)MA) were developed as delivery system for the controlled release of proteins. Since the drug release behavior is supposed to be related to the pore structure of the hydrogel network the pore sizes were determined by cryo-SEM, which is a mild technique for imaging on a nanometer scale. The results showed a decreasing pore size and an increase in pore homogeneity with increasing polymer concentration. Furthermore, the mesh sizes of the hydrogels were calculated based on swelling data. Pore and mesh size were significantly different which indicates that both structures are present in the hydrogel. The resulting structural model was correlated with release data for bulk hydrogel cylinders loaded with FITC-dextran and hydrogel microspheres loaded with FITC-IgG and FITC-dextran of different molecular size. The initial release depended much on the relation between hydrodynamic diameter and pore size while the long term release of the incorporated substances was predominantly controlled by degradation of the network of the much smaller meshes.}, language = {en} }