@article{KlopschBaldermannVossetal.2019, author = {Klopsch, Rebecca and Baldermann, Susanne and Voss, Alexander and Rohn, Sascha and Schreiner, Monika and Neugart, Susanne}, title = {Narrow-Banded UVB Affects the Stability of Secondary Plant Metabolites in Kale (Brassica oleracea var. sabellica) and Pea (Pisum sativum) Leaves Being Added to Lentil Flour Fortified Bread: A Novel Approach for Producing Functional Foods}, series = {Foods}, volume = {8}, journal = {Foods}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {2304-8158}, doi = {10.3390/foods8100427}, pages = {20}, year = {2019}, abstract = {Young kale and pea leaves are rich in secondary plant metabolites (SPMs) whose profile can be affected by ultraviolet B (UVB) radiation. Carotenoids and flavonoids in kale and pea exposed to narrow-banded UVB, produced by innovative light-emitting diodes (LEDs), and subsequently used for breadmaking were investigated for the first time, thus combining two important strategies to increase the SPMs intake. Breads were also fortified with protein-rich lentil flour. Antioxidant activity in the 'vegetable breads' indicated health-promoting effects. Lentil flour increased the antioxidant activity in all of the 'vegetable breads'. While carotenoids and chlorophylls showed a minor response to UVB treatment, kaempferol glycosides decreased in favor of increasing quercetin glycosides, especially in kale. Additionally, breadmaking caused major decreases in carotenoids and a conversion of chlorophyll to bioactive degradation products. In 'kale breads' and 'pea breads', 20\% and 84\% of flavonoid glycosides were recovered. Thus, kale and pea leaves seem to be suitable natural ingredients for producing innovative Functional Foods.}, language = {en} } @article{HeinzeHanschenWiesnerReinholdetal.2018, author = {Heinze, Mandy and Hanschen, Franziska S. and Wiesner-Reinhold, Melanie and Baldermann, Susanne and Gr{\"a}fe, Jan and Schreiner, Monika and Neugart, Susanne}, title = {Effects of Developmental Stages and Reduced UVB and Low UV Conditions on Plant Secondary Metabolite Profiles in Pak Choi (Brassica rapa subsp chinensis)}, series = {Journal of agricultural and food chemistry : a publication of the American Chemical Society}, volume = {66}, journal = {Journal of agricultural and food chemistry : a publication of the American Chemical Society}, number = {7}, publisher = {American Chemical Society}, address = {Washington}, issn = {0021-8561}, doi = {10.1021/acs.jafc.7b03996}, pages = {1678 -- 1692}, year = {2018}, abstract = {Pak choi (Brassica rapa subsp. chinensis) is rich in secondary metabolites and contains numerous antioxidants, including flavonoids; hydroxycinnamic acids; carotenoids; chlorophylls; and glucosinolates, which can be hydrolyzed to epithionitriles, nitriles, or isothiocyanates. Here, we investigate the effect of reduced exposure to ultraviolet B (UVB) and UV (UVA and UVB) light at four different developmental stages of pak choi. We found that both the plant morphology and secondary metabolite profiles were affected by reduced exposure to UVB and UV, depending on the plant's developmental stage. In detail, mature 15- and 30-leaf plants had higher concentrations of flavonoids, hydroxycinnamic acids, carotenoids, and chlorophylls, whereas sprouts contained high concentrations of glucosinolates and their hydrolysis products. Dry weights and leaf areas increased as a result of reduced UVB and low UV. For the flavonoids and hydroxycinnamic acids in 30-leaf plants, less complex compounds were favored, for example, sinapic acid acylated kaempferol triglycoside instead of the corresponding tetraglycoside. Moreover, also in 30-leaf plants, zeaxanthin, a carotenoid linked to protection during photosynthesis, was increased under low UV conditions. Interestingly, most glucosinolates were not affected by reduced UVB and low UV conditions. However, this study underlines the importance of 4-(methylsulfinyl)butyl glucosinolate in response to UVA and UVB exposure. Further, reduced UVB and low UV conditions resulted in higher concentrations of glucosinolate-derived nitriles. In conclusion, exposure to low doses of UVB and UV from the early to late developmental stages did not result in overall lower concentrations of plant secondary metabolites.}, language = {en} } @phdthesis{Harbart2024, author = {Harbart, Vanessa}, title = {The effect of protected cultivation on the nutritional quality of lettuce (Lactuca sativa var capitata L.) with a focus on antifogging additives in polyolefin covers}, doi = {10.25932/publishup-62937}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-629375}, school = {Universit{\"a}t Potsdam}, pages = {IV, 115}, year = {2024}, abstract = {Protected cultivation in greenhouses or polytunnels offers the potential for sustainable production of high-yield, high-quality vegetables. This is related to the ability to produce more on less land and to use resources responsibly and efficiently. Crop yield has long been considered the most important factor. However, as plant-based diets have been proposed for a sustainable food system, the targeted enrichment of health-promoting plant secondary metabolites should be addressed. These metabolites include carotenoids and flavonoids, which are associated with several health benefits, such as cardiovascular health and cancer protection. Cover materials generally have an influence on the climatic conditions, which in turn can affect the levels of secondary metabolites in vegetables grown underneath. Plastic materials are cost-effective and their properties can be modified by incorporating additives, making them the first choice. However, these additives can migrate and leach from the material, resulting in reduced service life, increased waste and possible environmental release. Antifogging additives are used in agricultural films to prevent the formation of droplets on the film surface, thereby increasing light transmission and preventing microbiological contamination. This thesis focuses on LDPE/EVA covers and incorporated antifogging additives for sustainable protected cultivation, following two different approaches. The first addressed the direct effects of leached antifogging additives using simulation studies on lettuce leaves (Lactuca sativa var capitata L). The second determined the effect of antifog polytunnel covers on lettuce quality. Lettuce is usually grown under protective cover and can provide high nutritional value due to its carotenoid and flavonoid content, depending on the cultivar. To study the influence of simulated leached antifogging additives on lettuce leaves, a GC-MS method was first developed to analyze these additives based on their fatty acid moieties. Three structurally different antifogging additives (reference material) were characterized outside of a polymer matrix for the first time. All of them contained more than the main fatty acid specified by the manufacturer. Furthermore, they were found to adhere to the leaf surface and could not be removed by water or partially by hexane. The incorporation of these additives into polytunnel covers affects carotenoid levels in lettuce, but not flavonoids, caffeic acid derivatives and chlorophylls. Specifically, carotenoids were higher in lettuce grown under polytunnels without antifog than with antifog. This has been linked to their effect on the light regime and was suggested to be related to carotenoid function in photosynthesis. In terms of protected cultivation, the use of LDPE/EVA polytunnels affected light and temperature, and both are closely related. The carotenoid and flavonoid contents of lettuce grown under polytunnels was reversed, with higher carotenoid and lower flavonoid levels. At the individual level, the flavonoids detected in lettuce did not differ however, lettuce carotenoids adapted specifically depending on the time of cultivation. Flavonoid reduction was shown to be transcriptionally regulated (CHS) in response to UV light (UVR8). In contrast, carotenoids are thought to be regulated post-transcriptionally, as indicated by the lack of correlation between carotenoid levels and transcripts of the first enzyme in carotenoid biosynthesis (PSY) and a carotenoid degrading enzyme (CCD4), as well as the increased carotenoid metabolic flux. Understanding the regulatory mechanisms and metabolite adaptation strategies could further advance the strategic development and selection of cover materials.}, language = {en} }