@article{WoodShakiFischer2021, author = {Wood, Danielle and Shaki, Samuel and Fischer, Martin H.}, title = {Turn the beat around: Commentary on "Slow and fast beat sequences are represented differently through space" (De Tommaso \& Prpic, 2020, in Attention, Perception, \& Psychophysics)}, series = {Attention, perception, \& psychophysics : AP\&P ; a journal of the Psychonomic Society, Inc.}, volume = {83}, journal = {Attention, perception, \& psychophysics : AP\&P ; a journal of the Psychonomic Society, Inc.}, number = {4}, publisher = {Springer}, address = {New York}, issn = {1943-3921}, doi = {10.3758/s13414-021-02247-8}, pages = {1518 -- 1521}, year = {2021}, abstract = {There has been increasing interest in the spatial mapping of various perceptual and cognitive magnitudes, such as expanding the spatial-numerical association of response codes (SNARC) effect into domains outside of numerical cognition. Recently, De Tommaso and Prpic (Attention, Perception, \& Psychophysics, 82, 2765-2773, 2020) reported in this journal that only fast tempos over 104 beats per minute have spatial associations, with more right-sided associations and faster responses for faster tempos. After discussing the role of perceived loudness and possible response strategies, we propose and recommend methodological improvements for further research.}, language = {en} } @misc{KrauseBekkeringPrattetal.2016, author = {Krause, Florian and Bekkering, Harold and Pratt, Jay and Lindemann, Oliver}, title = {Interaction between numbers and size during visual search}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {623}, issn = {1866-8364}, doi = {10.25932/publishup-43544}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-435442}, pages = {664 -- 677}, year = {2016}, abstract = {The current study investigates an interaction between numbers and physical size (i.e. size congruity) in visual search. In three experiments, participants had to detect a physically large (or small) target item among physically small (or large) distractors in a search task comprising single-digit numbers. The relative numerical size of the digits was varied, such that the target item was either among the numerically large or small numbers in the search display and the relation between numerical and physical size was either congruent or incongruent. Perceptual differences of the stimuli were controlled by a condition in which participants had to search for a differently coloured target item with the same physical size and by the usage of LCD-style numbers that were matched in visual similarity by shape transformations. The results of all three experiments consistently revealed that detecting a physically large target item is significantly faster when the numerical size of the target item is large as well (congruent), compared to when it is small (incongruent). This novel finding of a size congruity effect in visual search demonstrates an interaction between numerical and physical size in an experimental setting beyond typically used binary comparison tasks, and provides important new evidence for the notion of shared cognitive codes for numbers and sensorimotor magnitudes. Theoretical consequences for recent models on attention, magnitude representation and their interactions are discussed.}, language = {en} }