@phdthesis{Samereier2011, author = {Samereier, Matthias}, title = {Functional analyses of microtubule and centrosome-associated proteins in Dictyostelium discoideum}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-52835}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Understanding the role of microtubule-associated proteins is the key to understand the complex mechanisms regulating microtubule dynamics. This study employs the model system Dictyostelium discoideum to elucidate the role of the microtubule-associated protein TACC (Transforming acidic coiled-coil) in promoting microtubule growth and stability. Dictyostelium TACC was localized at the centrosome throughout the entire cell cycle. The protein was also detected at microtubule plus ends, however, unexpectedly only during interphase but not during mitosis. The same cell cycle-dependent localization pattern was observed for CP224, the Dictyostelium XMAP215 homologue. These ubiquitous MAPs have been found to interact with TACC proteins directly and are known to act as microtubule polymerases and nucleators. This work shows for the first time in vivo that both a TACC and XMAP215 family protein can differentially localize to microtubule plus ends during interphase and mitosis. RNAi knockdown mutants revealed that TACC promotes microtubule growth during interphase and is essential for proper formation of astral microtubules in mitosis. In many organisms, impaired microtubule stability upon TACC depletion was explained by the failure to efficiently recruit the TACC-binding XMAP215 protein to centrosomes or spindle poles. By contrast, fluorescence recovery after photobleaching (FRAP) analyses conducted in this study demonstrate that in Dictyostelium recruitment of CP224 to centrosomes or spindle poles is not perturbed in the absence of TACC. Instead, CP224 could no longer be detected at the tips of microtubules in TACC mutant cells. This finding demonstrates for the first time in vivo that a TACC protein is essential for the association of an XMAP215 protein with microtubule plus ends. The GFP-TACC strains generated in this work also turned out to be a valuable tool to study the unusual microtubule dynamics in Dictyostelium. Here, microtubules exhibit a high degree of lateral bending movements but, in contrast most other organisms, they do not obviously undergo any growth or shrinkage events during interphase. Despite of that they are affected by microtubuledepolymerizing drugs such as thiabendazole or nocodazol which are thought to act solely on dynamic microtubules. Employing 5D-fluorescence live cell microscopy and FRAP analyses this study suggests Dictyostelium microtubules to be dynamic only in the periphery, while they are stable at the centrosome. In the recent years, the identification of yet unknown components of the Dictyostelium centrosome has made tremendous progress. A proteomic approach previously conducted by our group disclosed several uncharacterized candidate proteins, which remained to be verified as genuine centrosomal components. The second part of this study focuses on the investigation of three such candidate proteins, Cenp68, CP103 and the putative spindle assembly checkpoint protein Mad1. While a GFP-CP103 fusion protein could clearly be localized to isolated centrosomes that are free of microtubules, Cenp68 and Mad1 were found to associate with the centromeres and kinetochores, respectively. The investigation of Cenp68 included the generation of a polyclonal anti-Cenp68 antibody, the screening for interacting proteins and the generation of knockout mutants which, however, did not display any obvious phenotype. Yet, Cenp68 has turned out as a very useful marker to study centromere dynamics during the entire cell cycle. During mitosis, GFP-Mad1 localization strongly resembled the behavior of other Mad1 proteins, suggesting the existence of a yet uncharacterized spindle assembly checkpoint in Dictyostelium.}, language = {en} } @phdthesis{Bringmann2012, author = {Bringmann, Martin}, title = {Identification of novel components that connect cellulose synthases to the cytoskeleton}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-61478}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Cellulose is the most abundant biopolymer on earth and the main load-bearing structure in plant cell walls. Cellulose microfibrils are laid down in a tight parallel array, surrounding plant cells like a corset. Orientation of microfibrils determines the direction of growth by directing turgor pressure to points of expansion (Somerville et al., 2004). Hence, cellulose deficient mutants usually show cell and organ swelling due to disturbed anisotropic cell expansion (reviewed in Endler and Persson, 2011). How do cellulose microfibrils gain their parallel orientation? First experiments in the 1960s suggested, that cortical microtubules aid the cellulose synthases on their way around the cell (Green, 1962; Ledbetter and Porter, 1963). This was proofed in 2006 through life cell imaging (Paredez et al., 2006). However, how this guidance was facilitated, remained unknown. Through a combinatory approach, including forward and reverse genetics together with advanced co-expression analysis, we identified pom2 as a cellulose deficient mutant. Map- based cloning revealed that the gene locus of POM2 corresponded to CELLULOSE SYNTHASE INTERACTING 1 (CSI1). Intriguingly, we previously found the CSI1 protein to interact with the putative cytosolic part of the primary cellulose synthases in a yeast-two-hybrid screen (Gu et al., 2010). Exhaustive cell biological analysis of the POM2/CSI1 protein allowed to determine its cellular function. Using spinning disc confocal microscopy, we could show that in the absence of POM2/CSI1, cellulose synthase complexes lose their microtubule-dependent trajectories in the plasma membrane. The loss of POM2/CSI1, however does not influence microtubule- dependent delivery of cellulose synthases (Bringmann et al., 2012). Consequently, POM2/CSI1 acts as a bridging protein between active cellulose synthases and cortical microtubules. This thesis summarizes three publications of the author, regarding the identification of proteins that connect cellulose synthases to the cytoskeleton. This involves the development of bioinformatics tools allowing candidate gene prediction through co-expression studies (Mutwil et al., 2009), identification of candidate genes through interaction studies (Gu et al., 2010), and determination of the cellular function of the candidate gene (Bringmann et al., 2012).}, language = {en} }