@article{StegemannCabezaPelkneretal.2018, author = {Stegemann, Robert and Cabeza, Sandra and Pelkner, Matthias and Lyamkin, Viktor and Pittner, Andreas and Werner, Daniel and Wimpory, Robert and Boin, Mirko and Kreutzbruck, Marc and Bruno, Giovanni}, title = {Influence of the microstructure on magnetic stray fields of low-carbon steel welds}, series = {Journal of Nondestructive Evaluation}, volume = {37}, journal = {Journal of Nondestructive Evaluation}, number = {3}, publisher = {Springer}, address = {New York}, issn = {0195-9298}, doi = {10.1007/s10921-018-0522-0}, pages = {18}, year = {2018}, abstract = {This study examines the relationship between the magnetic mesostructure with the microstructure of low carbon steel tungsten inert gas welds. Optical microscopy revealed variation in the microstructure of the parent material, in the heat affected and fusion zones, correlating with distinctive changes in the local magnetic stray fields measured with high spatial resolution giant magneto resistance sensors. In the vicinity of the heat affected zone high residual stresses were found using neutron diffraction. Notably, the gradients of von Mises stress and triaxial magnetic stray field modulus follow the same tendency transverse to the weld. In contrast, micro-X-ray fluorescence characterization indicated that local changes in element composition had no independent effect on magnetic stray fields.}, language = {en} } @article{IzraylitLiuTarazonaetal.2021, author = {Izraylit, Victor and Liu, Yue and Tarazona, Natalia A. and Machatschek, Rainhard Gabriel and Lendlein, Andreas}, title = {Crystallization and degradation behaviour of multiblock copolyester blends in Langmuir monolayers}, series = {MRS communications / a publication of the Materials Research Society}, volume = {11}, journal = {MRS communications / a publication of the Materials Research Society}, number = {6}, publisher = {Springer}, address = {Berlin}, issn = {2159-6859}, doi = {10.1557/s43579-021-00107-y}, pages = {850 -- 855}, year = {2021}, abstract = {Supporting the wound healing of soft tissues requires fixation devices becoming more elastic while degrading. To address this unmet need, we designed a blend of degradable multiblock copolymers, which is cross-linked by PLA stereocomplexation combining two soft segments differing substantially in their hydrolytic degradation rate. The degradation path and concomitant structural changes are predicted by Langmuir monolayer technique. The fast hydrolysis of one soft segment leads to a decrease of the total polymer mass at constant physical cross-linking density. The corresponding increase of the average spacing between the network nodes suggests the targeted increase of the blend's flexibility.}, language = {en} }