@misc{WeberKochlikDemuthetal.2020, author = {Weber, Daniela and Kochlik, Bastian Max and Demuth, Ilja and Steinhagen-Thiessen, Elisabeth and Grune, Tilman and Norman, Kristina}, title = {Plasma carotenoids, tocopherols and retinol}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, issn = {1866-8372}, doi = {10.25932/publishup-51599}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-515996}, pages = {10}, year = {2020}, abstract = {Regular consumption of fruits and vegetables, which is related to high plasma levels of lipid-soluble micro-nutrients such as carotenoids and tocopherols, is linked to lower incidences of various age-related diseases. Differences in lipid-soluble micronutrient blood concentrations seem to be associated with age. Our retrospective analysis included men and women aged 22-37 and 60-85 years from the Berlin Aging Study II. Participants with simultaneously available plasma samples and dietary data were included (n = 1973). Differences between young and old groups were found for plasma lycopene, alpha-carotene, alpha-tocopherol, beta-cryptoxanthin (only in women), and gamma-tocopherol (only in men). beta-Carotene, retinol and lutein/zeaxanthin did not differ between young and old participants regardless of the sex. We found significant associations for lycopene, alpha-carotene (both inverse), alpha-tocopherol, gamma-tocopherol, and beta-carotene (all positive) with age. Adjusting for BMI, smoking status, season, cholesterol and dietary intake confirmed these associations, except for beta-carotene. These micronutrients are important antioxidants and associated with lower incidence of age-related diseases, therefore it is important to understand the underlying mechanisms in order to implement dietary strategies for the prevention of age-related diseases. To explain the lower lycopene and alpha-carotene concentration in older subjects, bioavailability studies in older participants are necessary.}, language = {en} } @article{WeberKochlikDemuthetal.2020, author = {Weber, Daniela and Kochlik, Bastian and Demuth, Ilja and Steinhagen-Thiessen, Elisabeth and Grune, Tilman and Norman, Kristina}, title = {Plasma carotenoids, tocopherols and retinol}, series = {Redox Biology}, volume = {32}, journal = {Redox Biology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2213-2317}, doi = {10.1016/j.redox.2020.101461}, pages = {1 -- 8}, year = {2020}, abstract = {Regular consumption of fruits and vegetables, which is related to high plasma levels of lipid-soluble micro-nutrients such as carotenoids and tocopherols, is linked to lower incidences of various age-related diseases. Differences in lipid-soluble micronutrient blood concentrations seem to be associated with age. Our retrospective analysis included men and women aged 22-37 and 60-85 years from the Berlin Aging Study II. Participants with simultaneously available plasma samples and dietary data were included (n = 1973). Differences between young and old groups were found for plasma lycopene, alpha-carotene, alpha-tocopherol, beta-cryptoxanthin (only in women), and gamma-tocopherol (only in men). beta-Carotene, retinol and lutein/zeaxanthin did not differ between young and old participants regardless of the sex. We found significant associations for lycopene, alpha-carotene (both inverse), alpha-tocopherol, gamma-tocopherol, and beta-carotene (all positive) with age. Adjusting for BMI, smoking status, season, cholesterol and dietary intake confirmed these associations, except for beta-carotene. These micronutrients are important antioxidants and associated with lower incidence of age-related diseases, therefore it is important to understand the underlying mechanisms in order to implement dietary strategies for the prevention of age-related diseases. To explain the lower lycopene and alpha-carotene concentration in older subjects, bioavailability studies in older participants are necessary.}, language = {en} } @misc{StuetzWeberDolleetal.2016, author = {Stuetz, Wolfgang and Weber, Daniela and Doll{\´e}, Martijn E. T. and Jansen, Eug{\`e}ne and Grubeck-Loebenstein, Beatrix and Fiegl, Simone and Toussaint, Olivier and Bernhardt, Juergen and Gonos, Efstathios S. and Franceschi, Claudio and Sikora, Ewa and Moreno-Villanueva, Mar{\´i}a and Breusing, Nicolle and Grune, Tilman and B{\"u}rkle, Alexander}, title = {Plasma carotenoids, tocopherols, and retinol in the age-stratified (35-74 years) general population}, series = {Nutrients}, journal = {Nutrients}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407659}, pages = {17}, year = {2016}, abstract = {Blood micronutrient status may change with age. We analyzed plasma carotenoids, α-/γ-tocopherol, and retinol and their associations with age, demographic characteristics, and dietary habits (assessed by a short food frequency questionnaire) in a cross-sectional study of 2118 women and men (age-stratified from 35 to 74 years) of the general population from six European countries. Higher age was associated with lower lycopene and α-/β-carotene and higher β-cryptoxanthin, lutein, zeaxanthin, α-/γ-tocopherol, and retinol levels. Significant correlations with age were observed for lycopene (r = -0.248), α-tocopherol (r = 0.208), α-carotene (r = -0.112), and β-cryptoxanthin (r = 0.125; all p < 0.001). Age was inversely associated with lycopene (-6.5\% per five-year age increase) and this association remained in the multiple regression model with the significant predictors (covariables) being country, season, cholesterol, gender, smoking status, body mass index (BMI (kg/m2)), and dietary habits. The positive association of α-tocopherol with age remained when all covariates including cholesterol and use of vitamin supplements were included (1.7\% vs. 2.4\% per five-year age increase). The association of higher β-cryptoxanthin with higher age was no longer statistically significant after adjustment for fruit consumption, whereas the inverse association of α-carotene with age remained in the fully adjusted multivariable model (-4.8\% vs. -3.8\% per five-year age increase). We conclude from our study that age is an independent predictor of plasma lycopene, α-tocopherol, and α-carotene.}, language = {en} }