@article{MarquartEldridgeTraversetal.2019, author = {Marquart, Arnim and Eldridge, David J. and Travers, Samantha K. and Val, James and Blaum, Niels}, title = {Large shrubs partly compensate negative effects of grazing on hydrological function in a semi-arid savanna}, series = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, volume = {38}, journal = {Basic and applied ecology : Journal of the Gesellschaft f{\"u}r {\"O}kologie}, publisher = {Elsevier GMBH}, address = {M{\"u}nchen}, issn = {1439-1791}, doi = {10.1016/j.baae.2019.06.003}, pages = {58 -- 68}, year = {2019}, abstract = {Semiarid woodlands and savannas are globally important biomes that provide ecosystem goods and services such as habitat for biota and sinks for carbon, support millions of people that rely primarily on pastoralism, and supply livelihoods for about a third of the global human population. Savannas, however, are prone to degradation by overgrazing, and encroachment by woody plants, reducing their capacity to produce forage that pastoral enterprises depend on. We examined the impacts of livestock grazing and woody encroachment on soil hydrological processes, hypothesizing that heavy grazing by livestock would reduce hydrological function, whereas woody plants would increase hydrological function, therefore, partially offsetting any negative effects of overgrazing by livestock. Understanding the major drivers of soil hydrology in savanna ecosystems is important because water is a critical, yet limited resource in savannas. We found that livestock grazing reduced the early (sorptivity) and late (steady-state infiltration) stages of infiltration under both ponding and tension, and attributed this to a reduction in porosity caused by livestock trampling. Steady-state infiltration and sorptivity under ponding were greater under the canopies of woody shrubs than in open areas, partly compensating for any negative effect of grazing. Structural equation modeling revealed a direct positive effect of shrub height on hydrological functions, and an indirect effect via increases in litter cover. Our results suggest that woody plants can play important roles in driving hydrological function in savannas, counteracting the suppressive effect of livestock overgrazing on infiltration processes. Management strategies in semiarid savannas should aim to reduce trampling by livestock and retain large woody plants in order to maintain hydrological function. (C) 2019 Gesellschaft fur Okologie. Published by Elsevier GmbH. All rights reserved.}, language = {en} } @article{FournierSteinerBrochetetal.2022, author = {Fournier, Bertrand and Steiner, Magdalena and Brochet, Xavier and Degrune, Florine and Mammeri, Jibril and Carvalho, Diogo Leite and Siliceo, Sara Leal and Bacher, Sven and Pe{\~n}a-Reyes, Carlos Andr{\´e}s and Heger, Thierry Jean}, title = {Toward the use of protists as bioindicators of multiple stresses in agricultural soils}, series = {Ecological indicators : integrating monitoring, assessment and management}, volume = {139}, journal = {Ecological indicators : integrating monitoring, assessment and management}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1470-160X}, doi = {10.1016/j.ecolind.2022.108955}, pages = {8}, year = {2022}, abstract = {Management of agricultural soil quality requires fast and cost-efficient methods to identify multiple stressors that can affect soil organisms and associated ecological processes. Here, we propose to use soil protists which have a great yet poorly explored potential for bioindication. They are ubiquitous, highly diverse, and respond to various stresses to agricultural soils caused by frequent management or environmental changes. We test an approach that combines metabarcoding data and machine learning algorithms to identify potential stressors of soil protist community composition and diversity. We measured 17 key variables that reflect various potential stresses on soil protists across 132 plots in 28 Swiss vineyards over 2 years. We identified the taxa showing strong responses to the selected soil variables (potential bioindicator taxa) and tested for their predictive power. Changes in protist taxa occurrence and, to a lesser extent, diversity metrics exhibited great predictive power for the considered soil variables. Soil copper concentration, moisture, pH, and basal respiration were the best predicted soil variables, suggesting that protists are particularly responsive to stresses caused by these variables. The most responsive taxa were found within the clades Rhizaria and Alveolata. Our results also reveal that a majority of the potential bioindicators identified in this study can be used across years, in different regions and across different grape varieties. Altogether, soil protist metabarcoding data combined with machine learning can help identifying specific abiotic stresses on microbial communities caused by agricultural management. Such an approach provides complementary information to existing soil monitoring tools that can help manage the impact of agricultural practices on soil biodiversity and quality.}, language = {en} }