@misc{ZwickelKahlKlaffkeetal.2017, author = {Zwickel, Theresa and Kahl, Sandra M. and Klaffke, Horst and Rychlik, Michael and M{\"u}ller, Marina E. H.}, title = {Spotlight on the underdogs}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400438}, pages = {17}, year = {2017}, abstract = {Alternaria (A.) is a genus of widespread fungi capable of producing numerous, possibly health-endangering Alternaria toxins (ATs), which are usually not the focus of attention. The formation of ATs depends on the species and complex interactions of various environmental factors and is not fully understood. In this study the influence of temperature (7 °C, 25 °C), substrate (rice, wheat kernels) and incubation time (4, 7, and 14 days) on the production of thirteen ATs and three sulfoconjugated ATs by three different Alternaria isolates from the species groups A. tenuissima and A. infectoria was determined. High-performance liquid chromatography coupled with tandem mass spectrometry was used for quantification. Under nearly all conditions, tenuazonic acid was the most extensively produced toxin. At 25 °C and with increasing incubation time all toxins were formed in high amounts by the two A. tenuissima strains on both substrates with comparable mycotoxin profiles. However, for some of the toxins, stagnation or a decrease in production was observed from day 7 to 14. As opposed to the A. tenuissima strains, the A. infectoria strain only produced low amounts of ATs, but high concentrations of stemphyltoxin III. The results provide an essential insight into the quantitative in vitro AT formation under different environmental conditions, potentially transferable to different field and storage conditions}, language = {en} } @misc{ZhuSchluppTiedemann2017, author = {Zhu, Fangjun and Schlupp, Ingo and Tiedemann, Ralph}, title = {Allele-specific expression at the androgen receptor alpha gene in a hybrid unisexual fish, the Amazon molly (Poecilia formosa)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-403875}, pages = {14}, year = {2017}, abstract = {The all-female Amazon molly (Poecilia formosa) is the result of a hybridization of the Atlantic molly (P. mexicana) and the sailfin molly (P. latipinna) approximately 120,000 years ago. As a gynogenetic species, P. formosa needs to copulate with heterospecific males including males from one of its bisexual ancestral species. However, the sperm only triggers embryogenesis of the diploid eggs. The genetic information of the sperm donor typically will not contribute to the next generation of P. formosa. Hence, P. formosa possesses generally one allele from each of its ancestral species at any genetic locus. This raises the question whether both ancestral alleles are equally expressed in P. formosa. Allele-specific expression (ASE) has been previously assessed in various organisms, e.g., human and fish, and ASE was found to be important in the context of phenotypic variability and disease. In this study, we utilized Real-Time PCR techniques to estimate ASE of the androgen receptor alpha (arα) gene in several distinct tissues of Amazon mollies. We found an allelic bias favoring the maternal ancestor (P. mexicana) allele in ovarian tissue. This allelic bias was not observed in the gill or the brain tissue. Sequencing of the promoter regions of both alleles revealed an association between an Indel in a known CpG island and differential expression. Future studies may reveal whether our observed cis-regulatory divergence is caused by an ovary-specific trans-regulatory element, preferentially activating the allele of the maternal ancestor.}, language = {en} } @misc{YarmanJetzschmannNeumannetal.2017, author = {Yarman, Aysu and Jetzschmann, Katharina J. and Neumann, Bettina and Zhang, Xiaorong and Wollenberger, Ulla and Cordin, Aude and Haupt, Karsten and Scheller, Frieder W.}, title = {Enzymes as tools in MIP-sensors}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1098}, issn = {1866-8372}, doi = {10.25932/publishup-47464}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-474642}, pages = {18}, year = {2017}, abstract = {Molecularly imprinted polymers (MIPs) have the potential to complement antibodies in bioanalysis, are more stable under harsh conditions, and are potentially cheaper to produce. However, the affinity and especially the selectivity of MIPs are in general lower than those of their biological pendants. Enzymes are useful tools for the preparation of MIPs for both low and high-molecular weight targets: As a green alternative to the well-established methods of chemical polymerization, enzyme-initiated polymerization has been introduced and the removal of protein templates by proteases has been successfully applied. Furthermore, MIPs have been coupled with enzymes in order to enhance the analytical performance of biomimetic sensors: Enzymes have been used in MIP-sensors as tracers for the generation and amplification of the measuring signal. In addition, enzymatic pretreatment of an analyte can extend the analyte spectrum and eliminate interferences.}, language = {en} } @misc{WurzbacherFuchsAttermeyeretal.2017, author = {Wurzbacher, Christian and Fuchs, Andrea and Attermeyer, Katrin and Frindte, Katharina and Grossart, Hans-Peter and Hupfer, Michael and Casper, Peter and Monaghan, Michael T.}, title = {Shifts among Eukaryota, Bacteria, and Archaea define the vertical organization of a lake sediment}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1111}, issn = {1866-8372}, doi = {10.25932/publishup-43196}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431965}, pages = {18}, year = {2017}, abstract = {Background Lake sediments harbor diverse microbial communities that cycle carbon and nutrients while being constantly colonized and potentially buried by organic matter sinking from the water column. The interaction of activity and burial remained largely unexplored in aquatic sediments. We aimed to relate taxonomic composition to sediment biogeochemical parameters, test whether community turnover with depth resulted from taxonomic replacement or from richness effects, and to provide a basic model for the vertical community structure in sediments. Methods We analyzed four replicate sediment cores taken from 30-m depth in oligo-mesotrophic Lake Stechlin in northern Germany. Each 30-cm core spanned ca. 170 years of sediment accumulation according to 137Cs dating and was sectioned into layers 1-4 cm thick. We examined a full suite of biogeochemical parameters and used DNA metabarcoding to examine community composition of microbial Archaea, Bacteria, and Eukaryota. Results Community β-diversity indicated nearly complete turnover within the uppermost 30 cm. We observed a pronounced shift from Eukaryota- and Bacteria-dominated upper layers (<5 cm) to Bacteria-dominated intermediate layers (5-14 cm) and to deep layers (>14 cm) dominated by enigmatic Archaea that typically occur in deep-sea sediments. Taxonomic replacement was the prevalent mechanism in structuring the community composition and was linked to parameters indicative of microbial activity (e.g., CO2 and CH4 concentration, bacterial protein production). Richness loss played a lesser role but was linked to conservative parameters (e.g., C, N, P) indicative of past conditions. Conclusions By including all three domains, we were able to directly link the exponential decay of eukaryotes with the active sediment microbial community. The dominance of Archaea in deeper layers confirms earlier findings from marine systems and establishes freshwater sediments as a potential low-energy environment, similar to deep sea sediments. We propose a general model of sediment structure and function based on microbial characteristics and burial processes. An upper "replacement horizon" is dominated by rapid taxonomic turnover with depth, high microbial activity, and biotic interactions. A lower "depauperate horizon" is characterized by low taxonomic richness, more stable "low-energy" conditions, and a dominance of enigmatic Archaea.}, language = {en} } @misc{SullivanNitschkeSteupetal.2017, author = {Sullivan, Mitchell A. and Nitschke, Silvia and Steup, Martin and Minassian, Berge A. and Nitschke, Felix}, title = {Pathogenesis of Lafora disease}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1080}, issn = {1866-8372}, doi = {10.25932/publishup-47462}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-474622}, pages = {18}, year = {2017}, abstract = {Lafora disease (LD, OMIM \#254780) is a rare, recessively inherited neurodegenerative disease with adolescent onset, resulting in progressive myoclonus epilepsy which is fatal usually within ten years of symptom onset. The disease is caused by loss-of-function mutations in either of the two genes EPM2A (laforin) or EPM2B (malin). It characteristically involves the accumulation of insoluble glycogen-derived particles, named Lafora bodies (LBs), which are considered neurotoxic and causative of the disease. The pathogenesis of LD is therefore centred on the question of how insoluble LBs emerge from soluble glycogen. Recent data clearly show that an abnormal glycogen chain length distribution, but neither hyperphosphorylation nor impairment of general autophagy, strictly correlates with glycogen accumulation and the presence of LBs. This review summarizes results obtained with patients, mouse models, and cell lines and consolidates apparent paradoxes in the LD literature. Based on the growing body of evidence, it proposes that LD is predominantly caused by an impairment in chain-length regulation affecting only a small proportion of the cellular glycogen. A better grasp of LD pathogenesis will further develop our understanding of glycogen metabolism and structure. It will also facilitate the development of clinical interventions that appropriately target the underlying cause of LD.}, language = {en} } @misc{SieckIbischMoloneyetal.2017, author = {Sieck, Mungla and Ibisch, Pierre L. and Moloney, Kirk A. and Jeltsch, Florian}, title = {Current models broadly neglect specific needs of biodiversity conservation in protected areas under climate change}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400894}, pages = {12}, year = {2017}, abstract = {Background Protected areas are the most common and important instrument for the conservation of biological diversity and are called for under the United Nations' Convention on Biological Diversity. Growing human population densities, intensified land-use, invasive species and increasing habitat fragmentation threaten ecosystems worldwide and protected areas are often the only refuge for endangered species. Climate change is posing an additional threat that may also impact ecosystems currently under protection. Therefore, it is of crucial importance to include the potential impact of climate change when designing future nature conservation strategies and implementing protected area management. This approach would go beyond reactive crisis management and, by necessity, would include anticipatory risk assessments. One avenue for doing so is being provided by simulation models that take advantage of the increase in computing capacity and performance that has occurred over the last two decades. Here we review the literature to determine the state-of-the-art in modeling terrestrial protected areas under climate change, with the aim of evaluating and detecting trends and gaps in the current approaches being employed, as well as to provide a useful overview and guidelines for future research. Results Most studies apply statistical, bioclimatic envelope models and focus primarily on plant species as compared to other taxa. Very few studies utilize a mechanistic, process-based approach and none examine biotic interactions like predation and competition. Important factors like land-use, habitat fragmentation, invasion and dispersal are rarely incorporated, restricting the informative value of the resulting predictions considerably. Conclusion The general impression that emerges is that biodiversity conservation in protected areas could benefit from the application of modern modeling approaches to a greater extent than is currently reflected in the scientific literature. It is particularly true that existing models have been underutilized in testing different management options under climate change. Based on these findings we suggest a strategic framework for more effectively incorporating the impact of climate change in models exploring the effectiveness of protected areas.}, language = {en} } @misc{SchwarzenbergerChristjaniWacker2017, author = {Schwarzenberger, Anke and Christjani, Mark and Wacker, Alexander}, title = {Longevity of Daphnia and the attenuation of stress responses by melatonin}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401476}, pages = {7}, year = {2017}, abstract = {The widespread occurrence of melatonin in prokaryotes as well as eukaryotes indicates that this indoleamine is considerably old. This high evolutionary age has led to the development of diverse functions of melatonin in different organisms, such as the detoxification of reactive oxygen species and anti-stress effects. In insects, i.e. Drosophila, the addition of melatonin has also been shown to increase the life span of this arthropod, probably by reducing age-related increasing oxidative stress. Although the presence of melatonin was recently found to exist in the ecological and toxicological model organism Daphnia, its function in this cladoceran has thus far not been addressed. Therefore, we challenged Daphnia with three different stressors in order to investigate potential stress-response attenuating effects of melatonin. i) Female and male daphnids were exposed to melatonin in a longevity experiment, ii) Daphnia were confronted with stress signals from the invertebrate predator Chaoborus sp., and iii) Daphnia were grown in high densities, i.e. under crowding-stress conditions. Results In our experiments we were able to show that longevity of daphnids was not affected by melatonin. Therefore, age-related increasing oxidative stress was probably not compensated by added melatonin. However, melatonin significantly attenuated Daphnia' s response to acute predator stress, i.e. the formation of neckteeth which decrease the ability of the gape-limited predator Chaoborus sp. to handle their prey. In addition, melatonin decreased the extent of crowding-related production of resting eggs of Daphnia. Conclusions Our results confirm the effect of melatonin on inhibition of stress-signal responses of Daphnia. Until now, only a single study demonstrated melatonin effects on behavioral responses due to vertebrate kairomones, whereas we clearly show a more general effect of melatonin: i) on morphological predator defense induced by an invertebrate kairomone and ii) on life history characteristics transmitted by chemical cues from conspecifics. Therefore, we could generally confirm that melatonin plays a role in the attenuation of responses to different stressors in Daphnia.}, language = {en} } @misc{SchmidtRabschBroekeretal.2017, author = {Schmidt, Andreas and Rabsch, Wolfgang and Broeker, Nina K. and Barbirz, Stefanie}, title = {Bacteriophage tailspike protein based assay to monitor phase variable glucosylations in Salmonella O-antigens}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-103769}, pages = {11}, year = {2017}, abstract = {Background Non-typhoid Salmonella Typhimurium (S. Typhimurium) accounts for a high number of registered salmonellosis cases, and O-serotyping is one important tool for monitoring epidemiology and spread of the disease. Moreover, variations in glucosylated O-antigens are related to immunogenicity and spread in the host. However, classical autoagglutination tests combined with the analysis of specific genetic markers cannot always reliably register phase variable glucose modifications expressed on Salmonella O-antigens and additional tools to monitor O-antigen glucosylation phenotypes of S. Typhimurium would be desirable. Results We developed a test for the phase variable O-antigen glucosylation state of S. Typhimurium using the tailspike proteins (TSP) of Salmonella phages 9NA and P22. We used this ELISA like tailspike adsorption (ELITA) assay to analyze a library of 44 Salmonella strains. ELITA was successful in discriminating strains that carried glucose 1-6 linked to the galactose of O-polysaccharide backbone (serotype O1) from non-glucosylated strains. This was shown by O-antigen compositional analyses of the respective strains with mass spectrometry and capillary electrophoresis. The ELITA test worked rapidly in a microtiter plate format and was highly O-antigen specific. Moreover, TSP as probes could also detect glucosylated strains in flow cytometry and distinguish multiphasic cultures differing in their glucosylation state. Conclusions Tailspike proteins contain large binding sites with precisely defined specificities and are therefore promising tools to be included in serotyping procedures as rapid serotyping agents in addition to antibodies. In this study, 9NA and P22TSP as probes could specifically distinguish glucosylation phenotypes of Salmonella on microtiter plate assays and in flow cytometry. This opens the possibility for flow sorting of cell populations for subsequent genetic analyses or for monitoring phase variations during large scale O-antigen preparations necessary for vaccine production.}, language = {en} } @misc{SammlerKetmaierHavensteinetal.2017, author = {Sammler, Svenja and Ketmaier, Valerio and Havenstein, Katja and Krause, Ulrike and Curio, Eberhard and Tiedemann, Ralph}, title = {Mitochondrial control region I and microsatellite analyses of endangered Philippine hornbill species (Aves; Bucerotidae) detect gene flow between island populations and genetic diversity loss}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401108}, pages = {14}, year = {2017}, abstract = {Background: The Visayan Tarictic Hornbill (Penelopides panini) and the Walden's Hornbill (Aceros waldeni) are two threatened hornbill species endemic to the western islands of the Visayas that constitute - between Luzon and Mindanao - the central island group of the Philippine archipelago. In order to evaluate their genetic diversity and to support efforts towards their conservation, we analyzed genetic variation in similar to 600 base pairs (bp) of the mitochondrial control region I and at 12-19 nuclear microsatellite loci. The sampling covered extant populations, still occurring only on two islands (P. panini: Panay and Negros, A. waldeni: only Panay), and it was augmented with museum specimens of extinct populations from neighboring islands. For comparison, their less endangered (= more abundant) sister taxa, the Luzon Tarictic Hornbill (P. manillae) from the Luzon and Polillo Islands and the Writhed Hornbill (A. leucocephalus) from Mindanao Island, were also included in the study. We reconstructed the population history of the two Penelopides species and assessed the genetic population structure of the remaining wild populations in all four species. Results: Mitochondrial and nuclear data concordantly show a clear genetic separation according to the island of origin in both Penelopides species, but also unravel sporadic over-water movements between islands. We found evidence that deforestation in the last century influenced these migratory events. Both classes of markers and the comparison to museum specimens reveal a genetic diversity loss in both Visayan hornbill species, P. panini and A. waldeni, as compared to their more abundant relatives. This might have been caused by local extinction of genetically differentiated populations together with the dramatic decline in the abundance of the extant populations. Conclusions: We demonstrated a loss in genetic diversity of P. panini and A. waldeni as compared to their sister taxa P. manillae and A. leucocephalus. Because of the low potential for gene flow and population exchange across islands, saving of the remaining birds of almost extinct local populations - be it in the wild or in captivity - is particularly important to preserve the species' genetic potential.}, language = {en} } @misc{SammlerBleidornTiedemann2017, author = {Sammler, Svenja and Bleidorn, Christoph and Tiedemann, Ralph}, title = {Full mitochondrial genome sequences of two endemic Philippine hornbill species (Aves: Bucerotidae) provide evidence for pervasive mitochondrial DNA recombination}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400889}, pages = {10}, year = {2017}, abstract = {Background: Although nowaday it is broadly accepted that mitochondrial DNA (mtDNA) may undergo recombination, the frequency of such recombination remains controversial. Its estimation is not straightforward, as recombination under homoplasmy (i.e., among identical mt genomes) is likely to be overlooked. In species with tandem duplications of large mtDNA fragments the detection of recombination can be facilitated, as it can lead to gene conversion among duplicates. Although the mechanisms for concerted evolution in mtDNA are not fully understood yet, recombination rates have been estimated from "one per speciation event" down to 850 years or even "during every replication cycle". Results: Here we present the first complete mt genome of the avian family Bucerotidae, i.e., that of two Philippine hornbills, Aceros waldeni and Penelopides panini. The mt genomes are characterized by a tandemly duplicated region encompassing part of cytochrome b, 3 tRNAs, NADH6, and the control region. The duplicated fragments are identical to each other except for a short section in domain I and for the length of repeat motifs in domain III of the control region. Due to the heteroplasmy with regard to the number of these repeat motifs, there is some size variation in both genomes; with around 21,657 bp (A. waldeni) and 22,737 bp (P. panini), they significantly exceed the hitherto longest known avian mt genomes, that of the albatrosses. We discovered concerted evolution between the duplicated fragments within individuals. The existence of differences between individuals in coding genes as well as in the control region, which are maintained between duplicates, indicates that recombination apparently occurs frequently, i. e., in every generation. Conclusions: The homogenised duplicates are interspersed by a short fragment which shows no sign of recombination. We hypothesize that this region corresponds to the so-called Replication Fork Barrier (RFB), which has been described from the chicken mitochondrial genome. As this RFB is supposed to halt replication, it offers a potential mechanistic explanation for frequent recombination in mitochondrial genomes.}, language = {en} } @phdthesis{RobainaEstevez2017, author = {Robaina Estevez, Semidan}, title = {Context-specific metabolic predictions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401365}, school = {Universit{\"a}t Potsdam}, pages = {vi, 158}, year = {2017}, abstract = {All life-sustaining processes are ultimately driven by thousands of biochemical reactions occurring in the cells: the metabolism. These reactions form an intricate network which produces all required chemical compounds, i.e., metabolites, from a set of input molecules. Cells regulate the activity through metabolic reactions in a context-specific way; only reactions that are required in a cellular context, e.g., cell type, developmental stage or environmental condition, are usually active, while the rest remain inactive. The context-specificity of metabolism can be captured by several kinds of experimental data, such as by gene and protein expression or metabolite profiles. In addition, these context-specific data can be assimilated into computational models of metabolism, which then provide context-specific metabolic predictions. This thesis is composed of three individual studies focussing on context-specific experimental data integration into computational models of metabolism. The first study presents an optimization-based method to obtain context-specific metabolic predictions, and offers the advantage of being fully automated, i.e., free of user defined parameters. The second study explores the effects of alternative optimal solutions arising during the generation of context-specific metabolic predictions. These alternative optimal solutions are metabolic model predictions that represent equally well the integrated data, but that can markedly differ. This study proposes algorithms to analyze the space of alternative solutions, as well as some ways to cope with their impact in the predictions. Finally, the third study investigates the metabolic specialization of the guard cells of the plant Arabidopsis thaliana, and compares it with that of a different cell type, the mesophyll cells. To this end, the computational methods developed in this thesis are applied to obtain metabolic predictions specific to guard cell and mesophyll cells. These cell-specific predictions are then compared to explore the differences in metabolic activity between the two cell types. In addition, the effects of alternative optima are taken into consideration when comparing the two cell types. The computational results indicate a major reorganization of the primary metabolism in guard cells. These results are supported by an independent 13C labelling experiment.}, language = {en} } @phdthesis{RibeiroMartins2017, author = {Ribeiro Martins, Renata Filipa}, title = {Deciphering evolutionary histories of Southeast Asian Ungulates}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-404669}, school = {Universit{\"a}t Potsdam}, pages = {vii, 115}, year = {2017}, abstract = {Im Verlauf von Jahrmillionen gestalteten evolution{\"a}re Kr{\"a}fte die Verbreitung und genetische Variabilit{\"a}t von Arten, indem sie die Anpassungsf{\"a}higkeit und {\"U}berlebenswahrscheinlichkeit dieser Arten beeinflussten. Da S{\"u}dostasien eine außerordentlich artenreiche Region darstellt, eignet sie sich besonders, um den Einfluss dieser Kr{\"a}fte zu untersuchen. Historische Klimaver{\"a}nderungen hatten dramatische Auswirkungen auf die Verf{\"u}gbarkeit sowie die Verbreitung von Habitaten in S{\"u}dostasien, weil hierdurch wiederholt das Festland mit sonst isolierten Inseln verbunden wurde. Dies beeinflusste nicht nur, wie Arten in dieser Region verbreitet sind, sondern erm{\"o}glichte auch eine zunehmende genetische Variabilit{\"a}t. Zwar ist es bekannt, dass Arten mit {\"a}hnlicher Evolutionsgeschichte unterschiedliche phylogeographische Muster aufweisen k{\"o}nnen. Die zugrundeliegenden Mechanismen sind jedoch nur gering verstanden. Diese Dissertation behandelt die Phylogeographie von drei Gruppen von Huftieren, welche im S{\"u}den und S{\"u}dosten Asiens vorkommen. Dabei war das vornehmliche Ziel, zu verstehen, wie es zur Ausbildung verschiedener Arten sowie zu einer regionalen Verteilung von genetischer Variabilit{\"a}t kam. Hierf{\"u}r untersuchte ich die mitochondrialen Genome alter Proben. Dadurch war es m{\"o}glich, Populationen des gesamten Verbreitungsgebietes der jeweiligen Arten zu untersuchen - auch solche Populationen, die heutzutage nicht mehr existieren. Entsprechend der einzelnen Huftiergruppen ist diese Arbeit in drei Kapitel unterteilt: Muntjaks (Muntiacus sp.), Hirsche der Gattung Rusa und asiatische Nash{\"o}rner. Alle drei Gruppen weisen eine Aufteilung in unterschiedliche Linien auf, was jeweils direkt auf Ereignisse des Pleistoz{\"a}ns zur{\"u}ckgef{\"u}hrt werden kann. Muntjaks sind eine weit verbreitete Art, die in verschiedensten Habitaten vorkommen kann. Ich wies nach, dass es in der Vergangenheit zu genetischem Austausch zwischen Populationen von verschiedenen Inseln des Sundalandes kam. Dies deutet auf die F{\"a}higkeit von Muntjaks hin, sich an die ehemaligen Landbr{\"u}cken anzupassen. Jedoch zeige ich auch, dass mindestens zwei Hindernisse bei ihrer Verbreitung existierten, wodurch es zu einer Differenzierung von Populationen kam: eine Barriere trennte Populationen des asiatischen Festlands von denen der Sundainseln, die andere isolierte sri-lankische von restlichen Muntjaks. Die zwei untersuchten Rusa-Arten weisen ein anderes Muster auf, was wiederum eine weitere Folge der pleistoz{\"a}nen Landbr{\"u}cken darstellt. Beide Arten sind ausschließlich monophyletisch. Allerdings gibt es Anzeichen f{\"u}r die Hybridisierung dieser Arten auf Java, was durch eine fr{\"u}here Ausbreitung des sambar (R. unicolor) gef{\"o}rdert wurde. Aufgrund dessen fand ich zudem, dass all jene Individuen der anderen Art, R. timorensis, die durch den Menschen auf die {\"o}stlichen Sundainseln gebracht wurden, in Wahrheit Hybride sind. F{\"u}r den dritten Teil war es mir m{\"o}glich, Proben von Vertretern ausgestorbener Populationen vom asiatischen Festland des Sumatra- und des Java-Nashorns (Dicerorhinus sumatrensis und Rhinoceros sondaicus) zu analysieren. Die Ergebnisse meiner Arbeit belegen, dass die genetische Vielfalt dieser historischen Populationen bedeutend gr{\"o}ßer war als die der heutigen Nachkommen. Ihre jeweilige Evolutionsgeschichte korreliert stark mit pleistoz{\"a}nen Prozessen. Außerdem betonen meine Ergebnisse das enorme Ausmaß von verlorener genetischer Diversit{\"a}t dieser stark bedrohten Arten. Jede Art besitzt eine individuelle phylogeographische Geschichte. Ebenso fand ich aber auch allgemeing{\"u}ltige Muster von genetischer Differenzierung in allen Gruppen, welche direkt mit Ereignissen des Pleistoz{\"a}ns assoziiert werden k{\"o}nnen. Vergleicht man jedoch die einzelnen Ergebnisse der Arten, wird deutlich, dass die gleichen geologischen Prozesse nicht zwangsl{\"a}ufig in gleiche evolutive Ergebnisse resultieren. Einer der Gr{\"u}nde hierf{\"u}r k{\"o}nnte zum Beispiel die unterschiedliche Durchl{\"a}ssigkeit der entstandenen Landkorridore des Sundaschelfs sein. Die M{\"o}glichkeit diese neuen Habitate zu nutzen und somit auch zu passieren steht im direkten Bezug zu den spezifischen {\"o}kologischen Bed{\"u}rfnissen der Arten.Zusammenfassend leisten meine Erkenntnisse einen wichtigen Beitrag, die Evolution und geographische Aufteilung der genetischen Vielfalt in diesem Hotspot an Biodiversit{\"a}t zu verstehen. Obendrein k{\"o}nnen sie aber auch Auswirkungen auf die Erhaltung und systematische Klassifikation der untersuchten Arten haben.}, language = {en} } @phdthesis{ReynaGonzalez2017, author = {Reyna Gonz{\´a}lez, Emmanuel}, title = {Engineering of the microviridin post-translational modification enzymes for the production of synthetic protease inhibitors}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-406979}, school = {Universit{\"a}t Potsdam}, pages = {XI, 91, CI}, year = {2017}, abstract = {Natural products and their derivatives have always been a source of drug leads. In particular, bacterial compounds have played an important role in drug development, for example in the field of antibiotics. A decrease in the discovery of novel leads from natural sources and the hope of finding new leads through the generation of large libraries of drug-like compounds by combinatorial chemistry aimed at specific molecular targets drove the pharmaceutical companies away from research on natural products. However, recent technological advances in genetics, bioinformatics and analytical chemistry have revived the interest in natural products. The ribosomally synthesized and post-translationally modified peptides (RiPPs) are a group of natural products generated by the action of post-translationally modifying enzymes on precursor peptides translated from mRNA by ribosomes. The great substrate promiscuity exhibited by many of the enzymes from RiPP biosynthetic pathways have led to the generation of hundreds of novel synthetic and semisynthetic variants, including variants carrying non-canonical amino acids (ncAAs). The microviridins are a family of RiPPs characterized by their atypical tricyclic structure composed of lactone and lactam rings, and their activity as serine protease inhibitors. The generalities of their biosynthetic pathway have already been described, however, the lack of information on details such as the protease responsible for cleaving off the leader peptide from the cyclic core peptide has impeded the fast and cheap production of novel microviridin variants. In the present work, knowledge on leader peptide activation of enzymes from other RiPP families has been extrapolated to the microviridin family, making it possible to bypass the need of a leader peptide. This feature allowed for the exploitation of the microviridin biosynthetic machinery for the production of novel variants through the establishment of an efficient one-pot in vitro platform. The relevance of this chemoenzymatic approach has been exemplified by the synthesis of novel potent serine protease inhibitors from both rationally-designed peptide libraries and bioinformatically predicted microviridins. Additionally, new structure-activity relationships (SARs) could be inferred by screening microviridin intermediates. The significance of this technique was further demonstrated by the simple incorporation of ncAAs into the microviridin scaffold.}, language = {en} } @misc{ReilRosenfeldImholtetal.2017, author = {Reil, Daniela and Rosenfeld, Ulrike M. and Imholt, Christian and Schmidt, Sabrina and Ulrich, Rainer G. and Eccard, Jana and Jacob, Jens}, title = {Puumala hantavirus infections in bank vole populations}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {957}, issn = {1866-8372}, doi = {10.25932/publishup-43123}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431232}, pages = {15}, year = {2017}, abstract = {Background In Europe, bank voles (Myodes glareolus) are widely distributed and can transmit Puumala virus (PUUV) to humans, which causes a mild to moderate form of haemorrhagic fever with renal syndrome, called nephropathia epidemica. Uncovering the link between host and virus dynamics can help to prevent human PUUV infections in the future. Bank voles were live trapped three times a year in 2010-2013 in three woodland plots in each of four regions in Germany. Bank vole population density was estimated and blood samples collected to detect PUUV specific antibodies. Results We demonstrated that fluctuation of PUUV seroprevalence is dependent not only on multi-annual but also on seasonal dynamics of rodent host abundance. Moreover, PUUV infection might affect host fitness, because seropositive individuals survived better from spring to summer than uninfected bank voles. Individual space use was independent of PUUV infections. Conclusions Our study provides robust estimations of relevant patterns and processes of the dynamics of PUUV and its rodent host in Central Europe, which are highly important for the future development of predictive models for human hantavirus infection risk.}, language = {en} } @phdthesis{Perillon2017, author = {P{\´e}rillon, C{\´e}cile}, title = {The effect of groundwater on benthic primary producers and their interaction}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-406883}, school = {Universit{\"a}t Potsdam}, pages = {XVII, 180}, year = {2017}, abstract = {In littoral zones of lakes, multiple processes determine lake ecology and water quality. Lacustrine groundwater discharge (LGD), most frequently taking place in littoral zones, can transport or mobilize nutrients from the sediments and thus contribute significantly to lake eutrophication. Furthermore, lake littoral zones are the habitat of benthic primary producers, namely submerged macrophytes and periphyton, which play a key role in lake food webs and influence lake water quality. Groundwater-mediated nutrient-influx can potentially affect the asymmetric competition between submerged macrophytes and periphyton for light and nutrients. While rooted macrophytes have superior access to sediment nutrients, periphyton can negatively affect macrophytes by shading. LGD may thus facilitate periphyton production at the expense of macrophyte production, although studies on this hypothesized effect are missing. The research presented in this thesis is aimed at determining how LGD influences periphyton, macrophytes, and the interactions between these benthic producers. Laboratory experiments were combined with field experiments and measurements in an oligo-mesotrophic hard water lake. In the first study, a general concept was developed based on a literature review of the existing knowledge regarding the potential effects of LGD on nutrients and inorganic and organic carbon loads to lakes, and the effect of these loads on periphyton and macrophytes. The second study includes a field survey and experiment examining the effects of LGD on periphyton in an oligotrophic, stratified hard water lake (Lake Stechlin). This study shows that LGD, by mobilizing phosphorus from the sediments, significantly promotes epiphyton growth, especially at the end of the summer season when epilimnetic phosphorus concentrations are low. The third study focuses on the potential effects of LGD on submerged macrophytes in Lake Stechlin. This study revealed that LGD may have contributed to an observed change in macrophyte community composition and abundance in the shallow littoral areas of the lake. Finally, a laboratory experiment was conducted which mimicked the conditions of a seepage lake. Groundwater circulation was shown to mobilize nutrients from the sediments, which significantly promoted periphyton growth. Macrophyte growth was negatively affected at high periphyton biomasses, confirming the initial hypothesis. More generally, this thesis shows that groundwater flowing into nutrient-limited lakes may import or mobilize nutrients. These nutrients first promote periphyton, and subsequently provoke radical changes in macrophyte populations before finally having a possible influence on the lake's trophic state. Hence, the eutrophying effect of groundwater is delayed and, at moderate nutrient loading rates, partly dampened by benthic primary producers. The present research emphasizes the importance and complexity of littoral processes, and the need to further investigate and monitor the benthic environment. As present and future global changes can significantly affect LGD, the understanding of these complex interactions is required for the sustainable management of lake water quality.}, language = {en} } @misc{PengYarmanJetzschmannetal.2017, author = {Peng, Lei and Yarman, Aysu and Jetzschmann, Katharina J. and Jeoung, Jae-Hun and Schad, Daniel and Dobbek, Holger and Wollenberger, Ursula and Scheller, Frieder W.}, title = {Molecularly imprinted electropolymer for a hexameric heme protein with direct electron transfer and peroxide electrocatalysis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400627}, pages = {11}, year = {2017}, abstract = {For the first time a molecularly imprinted polymer (MIP) with direct electron transfer (DET) and bioelectrocatalytic activity of the target protein is presented. Thin films of MIPs for the recognition of a hexameric tyrosine-coordinated heme protein (HTHP) have been prepared by electropolymerization of scopoletin after oriented assembly of HTHP on a self-assembled monolayer (SAM) of mercaptoundecanoic acid (MUA) on gold electrodes. Cavities which should resemble the shape and size of HTHP were formed by template removal. Rebinding of the target protein sums up the recognition by non-covalent interactions between the protein and the MIP with the electrostatic attraction of the protein by the SAM. HTHP bound to the MIP exhibits quasi-reversible DET which is reflected by a pair of well pronounced redox peaks in the cyclic voltammograms (CVs) with a formal potential of -184.4 ± 13.7 mV vs. Ag/AgCl (1 M KCl) at pH 8.0 and it was able to catalyze the cathodic reduction of peroxide. At saturation the MIP films show a 12-fold higher electroactive surface concentration of HTHP than the non-imprinted polymer (NIP).}, language = {en} } @phdthesis{Morling2017, author = {Morling, Karoline}, title = {Import and decomposition of dissolved organic carbon in pre-dams of drinking water reservoirs}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-399110}, school = {Universit{\"a}t Potsdam}, pages = {xii, 151}, year = {2017}, abstract = {Dissolved organic carbon (DOC) depicts a key component in the aquatic carbon cycle as well as for drinking water production from surface waters. DOC concentrations increased in water bodies of the northern hemisphere in the last decades, posing ecological consequences and water quality problems. Within the pelagic zone of lakes and reservoirs, the DOC pool is greatly affected by biological activity as DOC is simultaneously produced and decomposed. This thesis aimed for a conceptual understanding of organic carbon cycling and DOC quality changes under differing hydrological and trophic conditions. Further, the occurrence of aquatic priming was investigated, which has been proposed as a potential process facilitating the microbial decomposition of stable allochthonous DOC within the pelagic zone. To study organic carbon cycling under different hydrological conditions, quantitative and qualitative investigations were carried out in three pre-dams of drinking water reservoirs exhibiting a gradient in DOC concentrations and trophic states. All pre-dams were mainly autotrophic in their epilimnia. Discharge and temperature were identified as the key factors regulating net production and respiration in the upper water layers of the pre-dams. Considerable high autochthonous production was observed during the summer season under higher trophic status and base flow conditions. Up to 30\% of the total gained organic carbon was produced within the epilimnia. Consequently, this affected the DOC quality within the pre-dams over the year and enhanced characteristics of algae-derived DOC were observed during base flow in summer. Allochthonous derived DOC dominated at high discharges and oligotrophic conditions when production and respiration were low. These results underline that also small impoundments with typically low water residence times are hotspots of carbon cycling, significantly altering water quality in dependence of discharge conditions, temperature and trophic status. Further, it highlights that these factors need to be considered in future water management as increasing temperatures and altered precipitation patterns are predicted in the context of climate change. Under base flow conditions, heterotrophic bacteria preferentially utilized older DOC components with a conventional radiocarbon age of 195-395 years before present (i.e. before 1950). In contrast, younger carbon components (modern, i.e. produced after 1950) were mineralized following a storm flow event. This highlights that age and recalcitrance of DOC are independent from each other. To assess the ages of the microbially consumed DOC, a simplified method was developed to recover the respired CO2 from heterotrophic bacterioplankton for carbon isotope analyses (13C, 14C). The advantages of the method comprise the operation of replicate incubations at in-situ temperatures using standard laboratory equipment and thus enabling an application in a broad range of conditions. Aquatic priming was investigated in laboratory experiments during the microbial decomposition of two terrestrial DOC substrates (peat water and soil leachate). Thereby, natural phytoplankton served as a source of labile organic matter and the total DOC pool increased throughout the experiments due to exudation and cell lysis of the growing phytoplankton. A priming effect for both terrestrial DOC substrates was revealed via carbon isotope analysis and mixing models. Thereby, priming was more pronounced for the peat water than for the soil leachate. This indicates that the DOC source and the amount of the added labile organic matter might influence the magnitude of a priming effect. Additional analysis via high-resolution mass spectrometry revealed that oxidized, unsaturated compounds were more strongly decomposed under priming (i.e. in phytoplankton presence). Given the observed increase in DOC concentrations during the experiments, it can be concluded that aquatic priming is not easily detectable via net concentration changes alone and could be considered as a qualitative effect. The knowledge gained from this thesis contributes to the understanding of aquatic carbon cycling and demonstrated how DOC dynamics in freshwaters vary with hydrological, seasonal and trophic conditions. It further demonstrated that aquatic priming contributes to the microbial transformation of organic carbon and the observed decay of allochthonous DOC during transport in inland waters.}, language = {en} } @misc{MengerYarmanErdőssyetal.2017, author = {Menger, Marcus and Yarman, Aysu and Erdőssy, J{\´u}lia and Yildiz, Huseyin Bekir and Gyurcs{\´a}nyi, R{\´o}bert E. and Scheller, Frieder W.}, title = {MIPs and aptamers for recognition of proteins in biomimetic sensing}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400496}, pages = {19}, year = {2017}, abstract = {Biomimetic binders and catalysts have been generated in order to substitute the biological pendants in separation techniques and bioanalysis. The two major approaches use either "evolution in the test tube" of nucleotides for the preparation of aptamers or total chemical synthesis for molecularly imprinted polymers (MIPs). The reproducible production of aptamers is a clear advantage, whilst the preparation of MIPs typically leads to a population of polymers with different binding sites. The realization of binding sites in the total bulk of the MIPs results in a higher binding capacity, however, on the expense of the accessibility and exchange rate. Furthermore, the readout of the bound analyte is easier for aptamers since the integration of signal generating labels is well established. On the other hand, the overall negative charge of the nucleotides makes aptamers prone to non-specific adsorption of positively charged constituents of the sample and the "biological" degradation of non-modified aptamers and ionic strength-dependent changes of conformation may be challenging in some application.}, language = {en} } @misc{MachensBalazadehMuellerRoeberetal.2017, author = {Machens, Fabian and Balazadeh, Salma and M{\"u}ller-R{\"o}ber, Bernd and Messerschmidt, Katrin}, title = {Synthetic Promoters and Transcription Factors for Heterologous Protein Expression in Saccharomyces cerevisiae}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-403804}, pages = {11}, year = {2017}, abstract = {Orthogonal systems for heterologous protein expression as well as for the engineering of synthetic gene regulatory circuits in hosts like Saccharomyces cerevisiae depend on synthetic transcription factors (synTFs) and corresponding cis-regulatory binding sites. We have constructed and characterized a set of synTFs based on either transcription activator-like effectors or CRISPR/Cas9, and corresponding small synthetic promoters (synPs) with minimal sequence identity to the host's endogenous promoters. The resulting collection of functional synTF/synP pairs confers very low background expression under uninduced conditions, while expression output upon induction of the various synTFs covers a wide range and reaches induction factors of up to 400. The broad spectrum of expression strengths that is achieved will be useful for various experimental setups, e.g., the transcriptional balancing of expression levels within heterologous pathways or the construction of artificial regulatory networks. Furthermore, our analyses reveal simple rules that enable the tuning of synTF expression output, thereby allowing easy modification of a given synTF/synP pair. This will make it easier for researchers to construct tailored transcriptional control systems.}, language = {en} } @misc{LeimkuehlerBuehningBeilschmidt2017, author = {Leimk{\"u}hler, Silke and B{\"u}hning, Martin and Beilschmidt, Lena}, title = {Shared sulfur mobilization routes for tRNA thiolation and molybdenum cofactor biosynthesis in prokaryotes and eukaryotes}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {1015}, issn = {1866-8372}, doi = {10.25932/publishup-47501}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-475011}, pages = {22}, year = {2017}, abstract = {Modifications of transfer RNA (tRNA) have been shown to play critical roles in the biogenesis, metabolism, structural stability and function of RNA molecules, and the specific modifications of nucleobases with sulfur atoms in tRNA are present in pro- and eukaryotes. Here, especially the thiomodifications xm(5)s(2)U at the wobble position 34 in tRNAs for Lys, Gln and Glu, were suggested to have an important role during the translation process by ensuring accurate deciphering of the genetic code and by stabilization of the tRNA structure. The trafficking and delivery of sulfur nucleosides is a complex process carried out by sulfur relay systems involving numerous proteins, which not only deliver sulfur to the specific tRNAs but also to other sulfur-containing molecules including iron-sulfur clusters, thiamin, biotin, lipoic acid and molybdopterin (MPT). Among the biosynthesis of these sulfur-containing molecules, the biosynthesis of the molybdenum cofactor (Moco) and the synthesis of thio-modified tRNAs in particular show a surprising link by sharing protein components for sulfur mobilization in pro- and eukaryotes.}, language = {en} } @phdthesis{Kunstmann2017, author = {Kunstmann, Ruth Sonja}, title = {Design of a high-affinity carbohydrate binding protein}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-403458}, school = {Universit{\"a}t Potsdam}, pages = {XI, 169}, year = {2017}, abstract = {Kohlenhydrat-Protein Interaktionen sind in der Natur weitverbreitet. Sie stellen die Grundlage f{\"u}r viele biologische Prozesse dar, wie zum Beispiel Immunantworten, Wundheilung und Infektionsprozesse von pathogenen Viren oder Bakterien mit einem Wirt wie dem Menschen. Neben der Infektion von Menschen k{\"o}nnen aber auch Bakterien selbst durch so genannte Bakteriophagen infiziert werden, welche f{\"u}r den Menschen ungef{\"a}hrlich sind. Diese Infektion involviert die spezifische Erkennung der pathogenen Bakterien, die Vermehrung der Bakteriophagen und schließlich die Abt{\"o}tung der Bakterien. Dabei k{\"o}nnen die Mechanismen der spezifischen Erkennung genutzt werden, pathogene Bakterien auf Lebensmitteln zu detektieren oder die Diagnose von Infektionen zu vereinfachen. Die spezifische Erkennung von Enteritis-erzeugenden Bakterien wie Escherichia coli, Salmonella spp. oder Shigella flexneri durch Bakteriophagen der Familie der Podoviridae erfolgt {\"u}ber die Bindung eines sogenannten tailspike proteins des Bakteriophagen an das aus Kohlenhydraten-bestehende O-Antigen des Lipopolysaccharids von Gram-negativen Bakterien. Das tailspike protein spaltet das O-Antigen um den Bakteriophage an die Oberfl{\"a}che des Bakteriums zu f{\"u}hren, damit eine Infektion stattfinden kann. Die Affinit{\"a}t des tailspike proteins zum O-Antigen ist dabei sehr niedrig, um nach Spaltung des O-Antigens das Spaltungsprodukt zu l{\"o}sen und wiederum neues Substrat zu binden. In dieser Arbeit wurde ein tailspike protein des Bakteriophagen Sf6 verwendet (Sf6 TSP), das spezifisch an das O-Antigen von Shigella flexneri Y bindet. Eine inaktive Variante des Sf6 TSP wurde verwendet um einen hoch-affin bindenden Sensor f{\"u}r pathogene Shigella zu entwickeln. Der Shigella-Sensor wurde durch Kopplung von unterschiedlichen Proteinmutanten mit einem fluoreszierendem Molek{\"u}l erhalten. Dabei zeigte eine dieser Mutanten bei Bindung von Shigella O-Antigen ein Fluoreszenz-Signal im Bereich des sichtbaren Lichts. Molekulardynamische Simulationen wurde anhand der erzeugten Proteinmutanten als Methode zum rationalen Design von hoch-affin Kohlenhydrat-bindenden Proteinen getestet und die resultierenden Affinit{\"a}tsvorhersagen wurden {\"u}ber Oberfl{\"a}chenplasmonresonanz-Experimente {\"u}berpr{\"u}ft. Aus weiteren experimentellen und simulierten Daten konnten schließlich Schlussfolgerungen {\"u}ber die Urspr{\"u}nge von Kohlenhydrat-Protein Interaktionen gezogen werden, die eine Einsicht {\"u}ber den Einfluss von Wasser in diesem Bindungsprozess lieferten.}, language = {en} } @misc{KuehnelKupfer2017, author = {Kuehnel, Susanne and Kupfer, Alexander}, title = {Sperm storage in caecilian amphibians}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400987}, pages = {5}, year = {2017}, abstract = {Background: Female sperm storage has evolved independently multiple times among vertebrates to control reproduction in response to the environment. In internally fertilising amphibians, female salamanders store sperm in cloacal spermathecae, whereas among anurans sperm storage in oviducts is known only in tailed frogs. Facilitated through extensive field sampling following historical observations we tested for sperm storing structures in the female urogenital tract of fossorial, tropical caecilian amphibians. Findings: In the oviparous Ichthyophis cf. kohtaoensis, aggregated sperm were present in a distinct region of the posterior oviduct but not in the cloaca in six out of seven vitellogenic females prior to oviposition. Spermatozoa were found most abundantly between the mucosal folds. In relation to the reproductive status decreased amounts of sperm were present in gravid females compared to pre-ovulatory females. Sperm were absent in females past oviposition. Conclusions: Our findings indicate short-term oviductal sperm storage in the oviparous Ichthyophis cf. kohtaoensis. We assume that in female caecilians exhibiting high levels of parental investment sperm storage has evolved in order to optimally coordinate reproductive events and to increase fitness.}, language = {en} } @misc{KoussoroplisSchwarzenbergerWacker2017, author = {Koussoroplis, Apostolos-Manuel and Schwarzenberger, Anke and Wacker, Alexander}, title = {Diet quality determines lipase gene expression and lipase/esterase activity in Daphnia pulex}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-395661}, pages = {7}, year = {2017}, abstract = {We studied the short- (12 h) and long-term (144 h) response of Daphnia pulex lipases to quality shifts in diets consisting of different mixtures of the green alga Scenedesmus with the cyanobacterium Synechococcus, two species with contrasting lipid compositions. The lipase/esterase activity in both the gut and the body tissues had fast responses to the diet shift and increased with higher dietary contributions of Synechococcus. When screening the Daphnia genome for TAG lipases, we discovered a large gene-family expansion of these enzymes. We used a subset of eight genes for mRNA expression analyses and distinguished between influences of time and diet on the observed gene expression patterns. We identified five diet-responsive lipases of which three showed a sophisticated short- and long-term pattern of expression in response to small changes in food-quality. Furthermore, the gene expression of one of the lipases was strongly correlated to lipase/esterase activity in the gut suggesting its potentially major role in digestion. These findings demonstrate that the lipid-related enzymatic machinery of D. pulex is finely tuned to diet and might constitute an important mechanism of physiological adaptation in nutritionally complex environments.}, language = {en} } @misc{KloseRolkeBaumann2017, author = {Klose, Sascha Peter and Rolke, Daniel and Baumann, Otto}, title = {Morphogenesis of honeybee hypopharyngeal gland during pupal development}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-395712}, pages = {14}, year = {2017}, abstract = {Background The hypopharyngeal gland of worker bees contributes to the production of the royal jelly fed to queens and larvae. The gland consists of thousands of two-cell units that are composed of a secretory cell and a duct cell and that are arranged in sets of about 12 around a long collecting duct. Results By fluorescent staining, we have examined the morphogenesis of the hypopharyngeal gland during pupal life, from a saccule lined by a pseudostratified epithelium to the elaborate organ of adult worker bees. The hypopharyngeal gland develops as follows. (1) Cell proliferation occurs during the first day of pupal life in the hypopharyngeal gland primordium. (2) Subsequently, the epithelium becomes organized into rosette-like units of three cells. Two of these will become the secretory cell and the duct cell of the adult secretory units; the third cell contributes only temporarily to the development of the secretory units and is eliminated by apoptosis in the second half of pupal life. (3) The three-cell units of flask-shaped cells undergo complex changes in cell morphology. Thus, by mid-pupal stage, the gland is structurally similar to the adult hypopharyngeal gland. (4) Concomitantly, the prospective secretory cell attains its characteristic subcellular organization by the invagination of a small patch of apical membrane domain, its extension to a tube of about 100 μm in length (termed a canaliculus), and the expansion of the tube to a diameter of about 3 μm. (6) Finally, the canaliculus-associated F-actin system becomes reorganized into rings of bundled actin filaments that are positioned at regular distances along the membrane tube. Conclusions The morphogenesis of the secretory units in the hypopharyngeal gland of the worker bee seems to be based on a developmental program that is conserved, with slight modification, among insects for the production of dermal glands. Elaboration of the secretory cell as a unicellular seamless epithelial tube occurs by invagination of the apical membrane, its extension likely by targeted exocytosis and its expansion, and finally the reorganisation of the membrane-associated F-actin system. Our work is fundamental for future studies of environmental effects on hypopharyngeal gland morphology and development.}, language = {en} } @misc{HoffmannWohltatMuelleretal.2017, author = {Hoffmann, Stefan A. and Wohltat, Christian and M{\"u}ller, Kristian M. and Arndt, Katja Maren}, title = {A user-friendly, low-cost turbidostat with versatile growth rate estimation based on an extended Kalman filter}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-403406}, pages = {15}, year = {2017}, abstract = {For various experimental applications, microbial cultures at defined, constant densities are highly advantageous over simple batch cultures. Due to high costs, however, devices for continuous culture at freely defined densities still experience limited use. We have developed a small-scale turbidostat for research purposes, which is manufactured from inexpensive components and 3D printed parts. A high degree of spatial system integration and a graphical user interface provide user-friendly operability. The used optical density feedback control allows for constant continuous culture at a wide range of densities and offers to vary culture volume and dilution rates without additional parametrization. Further, a recursive algorithm for on-line growth rate estimation has been implemented. The employed Kalman filtering approach based on a very general state model retains the flexibility of the used control type and can be easily adapted to other bioreactor designs. Within several minutes it can converge to robust, accurate growth rate estimates. This is particularly useful for directed evolution experiments or studies on metabolic challenges, as it allows direct monitoring of the population fitness.}, language = {en} } @phdthesis{Hochrein2017, author = {Hochrein, Lena}, title = {Development of a new DNA-assembly method and its application for the establishment of a red light-sensing regulation system}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-404441}, school = {Universit{\"a}t Potsdam}, pages = {146}, year = {2017}, abstract = {In der hier vorgelegten Doktorarbeit wurde eine Strategie zur schnellen, einfachen und zuverl{\"a}ssigen Assemblierung von DNS-Fragmenten, genannt AssemblX, entwickelt. Diese kann genutzt werden, um komplexe DNS-Konstrukte, wie beispielsweise komplette Biosynthesewege, aufzubauen. Dies dient der Produktion von technisch oder medizinisch relevanten Produkten in biotechnologisch nutzbaren Organismen. Die Vorteile der Klonierungsstrategie liegen in der Schnelligkeit der Klonierung, der Flexibilit{\"a}t bez{\"u}glich des Wirtsorganismus, sowie der hohen Effektivit{\"a}t, die durch gezielte Optimierung erreicht wurde. Die entwickelte Technik erlaubt die nahtlose Assemblierung von Genfragmenten und bietet eine Komplettl{\"o}sung von der Software-gest{\"u}tzten Planung bis zur Fertigstellung von DNS-Konstrukten, welche die Gr{\"o}ße von Mini-Chromosomen erreichen k{\"o}nnen. Mit Hilfe der oben beschriebenen AssemblX Strategie wurde eine optogenetische Plattform f{\"u}r die B{\"a}ckerhefe Saccharomyces cerevisiae etabliert. Diese besteht aus einem Rotlicht-sensitiven Photorezeptor und seinem interagierenden Partner aus Arabidopsis thaliana, welche in lichtabh{\"a}ngiger Weise miteinander agieren. Diese Interaktion wurde genutzt, um zwei Rotlicht-aktivierbare Proteine zu erstellen: Einen Transkriptionsfaktor, der nach Applikation eines Lichtpulses die Produktion eines frei w{\"a}hlbaren Proteins stimuliert, sowie eine Cre Rekombinase, die ebenfalls nach Bestrahlung mit einer bestimmten Wellenl{\"a}nge die zufallsbasierte Reorganisation bestimmter DNS-Konstrukte erm{\"o}glicht. Zusammenfassend wurden damit drei Werkzeuge f{\"u}r die synthetische Biologie etabliert. Diese erm{\"o}glichen den Aufbau von komplexen Biosynthesewegen, deren Licht-abh{\"a}ngige Regulation, sowie die zufallsbasierte Rekombination zu Optimierungszwecken.}, language = {en} } @phdthesis{Hethey2017, author = {Hethey, Christoph Philipp}, title = {Cell physiology based pharmacodynamic modeling of antimicrobial drug combinations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401056}, school = {Universit{\"a}t Potsdam}, pages = {102}, year = {2017}, abstract = {Mathematical models of bacterial growth have been successfully applied to study the relationship between antibiotic drug exposure and the antibacterial effect. Since these models typically lack a representation of cellular processes and cell physiology, the mechanistic integration of drug action is not possible on the cellular level. The cellular mechanisms of drug action, however, are particularly relevant for the prediction, analysis and understanding of interactions between antibiotics. Interactions are also studied experimentally, however, a lacking consent on the experimental protocol hinders direct comparison of results. As a consequence, contradictory classifications as additive, synergistic or antagonistic are reported in literature. In the present thesis we developed a novel mathematical model for bacterial growth that integrates cell-level processes into the population growth level. The scope of the model is to predict bacterial growth under antimicrobial perturbation by multiple antibiotics in vitro. To this end, we combined cell-level data from literature with population growth data for Bacillus subtilis, Escherichia coli and Staphylococcus aureus. The cell-level data described growth-determining characteristics of a reference cell, including the ribosomal concentration and efficiency. The population growth data comprised extensive time-kill curves for clinically relevant antibiotics (tetracycline, chloramphenicol, vancomycin, meropenem, linezolid, including dual combinations). The new cell-level approach allowed for the first time to simultaneously describe single and combined effects of the aforementioned antibiotics for different experimental protocols, in particular different growth phases (lag and exponential phase). Consideration of ribosomal dynamics and persisting sub-populations explained the decreased potency of linezolid on cultures in the lag phase compared to exponential phase cultures. The model captured growth rate dependent killing and auto-inhibition of meropenem and - also for vancomycin exposure - regrowth of the bacterial cultures due to adaptive resistance development. Stochastic interaction surface analysis demonstrated the pronounced antagonism between meropenem and linezolid to be robust against variation in the growth phase and pharmacodynamic endpoint definition, but sensitive to a change in the experimental duration. Furthermore, the developed approach included a detailed representation of the bacterial cell-cycle. We used this representation to describe septation dynamics during the transition of a bacterial culture from the exponential to stationary growth phase. Resulting from a new mechanistic understanding of transition processes, we explained the lag time between the increase in cell number and bacterial biomass during the transition from the lag to exponential growth phase. Furthermore, our model reproduces the increased intracellular RNA mass fraction during long term exposure of bacteria to chloramphenicol. In summary, we contribute a new approach to disentangle the impact of drug effects, assay readout and experimental protocol on antibiotic interactions. In the absence of a consensus on the corresponding experimental protocols, this disentanglement is key to translate information between heterogeneous experiments and also ultimately to the clinical setting.}, language = {en} } @misc{HerdeEccard2017, author = {Herde, Antje and Eccard, Jana}, title = {Consistency in boldness, activity and exploration at different stages of life}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-401395}, pages = {10}, year = {2017}, abstract = {Background: Animals show consistent individual behavioural patterns over time and over situations. This phenomenon has been referred to as animal personality or behavioural syndromes. Little is known about consistency of animal personalities over entire life times. We investigated the repeatability of behaviour in common voles (Microtus arvalis) at different life stages, with different time intervals, and in different situations. Animals were tested using four behavioural tests in three experimental groups: 1. before and after maturation over three months, 2. twice as adults during one week, and 3. twice as adult animals over three months, which resembles a substantial part of their entire adult life span of several months. Results: Different behaviours were correlated within and between tests and a cluster analysis showed three possible behavioural syndrome-axes, which we name boldness, exploration and activity. Activity and exploration behaviour in all tests was highly repeatable in adult animals tested over one week. In animals tested over maturation, exploration behaviour was consistent whereas activity was not. Voles that were tested as adults with a three-month interval showed the opposite pattern with stable activity but unstable exploration behaviour. Conclusions: The consistency in behaviour over time suggests that common voles do express stable personality over short time. Over longer periods however, behaviour is more flexible and depending on life stage (i.e. tested before/after maturation or as adults) of the tested individual. Level of boldness or activity does not differ between tested groups and maintenance of variation in behavioural traits can therefore not be explained by expected future assets as reported in other studies.}, language = {en} } @misc{HentrichTauerEspanoletal.2017, author = {Hentrich, Doreen and Tauer, Klaus and Espanol, Montserrat and Ginebra, Maria-Pau and Taubert, Andreas}, title = {EDTA and NTA effectively tune the mineralization of calcium phosphate from bulk aqueous solution}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1095}, issn = {1866-8372}, doi = {10.25932/publishup-46918}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-469186}, pages = {23}, year = {2017}, abstract = {This study describes the effects of nitrilotriacetic acid (NTA) and ethylenediaminotetraacetic acid (EDTA) on themineralization of calciumphosphate from bulk aqueous solution. Mineralization was performed between pH 6 and 9 and with NTA or EDTA concentrations of 0, 5, 10, and 15 mM. X-ray diffraction and infrared spectroscopy show that at low pH, mainly brushite precipitates and at higher pH, mostly hydroxyapatite forms. Both additives alter the morphology of the precipitates. Without additive, brushite precipitates as large plates. With NTA, the morphology changes to an unusual rod-like shape. With EDTA, the edges of the particles are rounded and disk-like particles form. Conductivity and pH measurements suggest that the final products form through several intermediate steps.}, language = {en} } @phdthesis{Heise2017, author = {Heise, Janine}, title = {Phylogenetic and physiological characterization of deep-biosphere microorganisms in El'gygytgyn Crater Lake sediments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-403436}, school = {Universit{\"a}t Potsdam}, pages = {117}, year = {2017}, abstract = {The existence of diverse and active microbial ecosystems in the deep subsurface - a biosphere that was originally considered devoid of life - was discovered in multiple microbiological studies. However, most of the studies are restricted to marine ecosystems, while our knowledge about the microbial communities in the deep subsurface of lake systems and their potentials to adapt to changing environmental conditions is still fragmentary. This doctoral thesis aims to build up a unique data basis for providing the first detailed high-throughput characterization of the deep biosphere of lacustrine sediments and to emphasize how important it is to differentiate between the living and the dead microbial community in deep biosphere studies. In this thesis, up to 3.6 Ma old sediments (up to 317 m deep) of the El'gygytgyn Crater Lake were examined, which represents the oldest terrestrial climate record of the Arctic. Combining next generation sequencing with detailed geochemical characteristics and other environmental parameters, the microbial community composition was analyzed in regard to changing climatic conditions within the last 3.6 Ma to 1.0 Ma (Pliocene and Pleistocene). DNA from all investigated sediments was successfully extracted and a surprisingly diverse (6,910 OTUs) and abundant microbial community in the El'gygytgyn deep sediments were revealed. The bacterial abundance (10³-10⁶ 16S rRNA copies g⁻¹ sediment) was up to two orders of magnitudes higher than the archaeal abundance (10¹-10⁵) and fluctuates with the Pleistocene glacial/interglacial cyclicality. Interestingly, a strong increase in the microbial diversity with depth was observed (approximately 2.5 times higher diversity in Pliocene sediments compared to Pleistocene sediments). The increase in diversity with depth in the Lake El'gygytgyn is most probably caused by higher sedimentary temperatures towards the deep sediment layers as well as an enhanced temperature-induced intra-lake bioproductivity and higher input of allochthonous organic-rich material during Pliocene climatic conditions. Moreover, the microbial richness parameters follow the general trends of the paleoclimatic parameters, such as the paleo-temperature and paleo-precipitation. The most abundant bacterial representatives in the El'gygytgyn deep biosphere are affiliated with the phyla Proteobacteria, Actinobacteria, Bacteroidetes, and Acidobacteria, which are also commonly distributed in the surrounding permafrost habitats. The predominated taxon was the halotolerant genus Halomonas (in average 60\% of the total reads per sample). Additionally, this doctoral thesis focuses on the live/dead differentiation of microbes in cultures and environmental samples. While established methods (e.g., fluorescence in situ hybridization, RNA analyses) are not applicable to the challenging El'gygytgyn sediments, two newer methods were adapted to distinguish between DNA from live cells and free (extracellular, dead) DNA: the propidium monoazide (PMA) treatment and the cell separation adapted for low amounts of DNA. The applicability of the DNA-intercalating dye PMA was successfully evaluated to mask free DNA of different cultures of methanogenic archaea, which play a major role in the global carbon cycle. Moreover, an optimal procedure to simultaneously treat bacteria and archaea was developed using 130 µM PMA and 5 min of photo-activation with blue LED light, which is also applicable on sandy environmental samples with a particle load of ≤ 200 mg mL⁻¹. It was demonstrated that the soil texture has a strong influence on the PMA treatment in particle-rich samples and that in particular silt and clay-rich samples (e.g., El'gygytgyn sediments) lead to an insufficient shielding of free DNA by PMA. Therefore, a cell separation protocol was used to distinguish between DNA from live cells (intracellular DNA) and extracellular DNA in the El'gygytgyn sediments. While comparing these two DNA pools with a total DNA pool extracted with a commercial kit, significant differences in the microbial composition of all three pools (mean distance of relative abundance: 24.1\%, mean distance of OTUs: 84.0\%) was discovered. In particular, the total DNA pool covers significantly fewer taxa than the cell-separated DNA pools and only inadequately represents the living community. Moreover, individual redundancy analyses revealed that the microbial community of the intra- and extracellular DNA pool are driven by different environmental factors. The living community is mainly influenced by life-dependent parameters (e.g., sedimentary matrix, water availability), while the extracellular DNA is dependent on the biogenic silica content. The different community-shaping parameters and the fact, that a redundancy analysis of the total DNA pool explains significantly less variance of the microbial community, indicate that the total DNA represents a mixture of signals of the live and dead microbial community. This work provides the first fundamental data basis of the diversity and distribution of microbial deep biosphere communities of a lake system over several million years. Moreover, it demonstrates the substantial importance of extracellular DNA in old sediments. These findings may strongly influence future environmental community analyses, where applications of live/dead differentiation avoid incorrect interpretations due to a failed extraction of the living microbial community or an overestimation of the past community diversity in the course of total DNA extraction approaches.}, language = {en} } @phdthesis{GrimmSeyfarth2017, author = {Grimm-Seyfarth, Annegret}, title = {Effects of climate change on a reptile community in arid Australia}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-412655}, school = {Universit{\"a}t Potsdam}, pages = {IX, 184}, year = {2017}, abstract = {Dies ist eine kumulative Dissertation, die drei Originalstudien umfasst (eine publiziert, eine in Revision, eine eingereicht; Stand Dezember 2017). Sie untersucht, wie Reptilienarten im ariden Australien auf verschiedene klimatische Parameter verschiedener r{\"a}umlicher Skalen reagieren und analysiert dabei zwei m{\"o}gliche zugrunde liegende Hauptmechanismen: Thermoregulatorisches Verhalten und zwischenartliche Wechselwirkungen. In dieser Dissertation wurden umfassende, individuenbasierte Felddaten verschiedener trophischer Ebenen kombiniert mit ausgew{\"a}hlten Feldexperimenten, statistischen Analysen, und Vorhersagemodellen. Die hier erkannten Mechanismen und Prozesse k{\"o}nnen nun genutzt werden, um m{\"o}gliche Ver{\"a}nderungen der ariden Reptiliengesellschaft in der Zukunft vorherzusagen. Dieses Wissen wird dazu beitragen, dass unser Grundverst{\"a}ndnis {\"u}ber die Konsequenzen des globalen Wandels verbessert und Biodiversit{\"a}tsverlust in diesem anf{\"a}lligen {\"O}kosystem verhindert wird.}, language = {en} } @phdthesis{Georgiev2017, author = {Georgiev, Vasil}, title = {Light-induced transformations in biomembranes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-395309}, school = {Universit{\"a}t Potsdam}, pages = {81}, year = {2017}, abstract = {Cellular membranes constantly experience remodeling, as exemplified by morphological changes during endo- and exocytosis. Regulation of membrane morphology is essential for these processes. In this work, we attempt to establish a regulation path based on the use of photoswitches exhibiting conformational changes in model membranes, namely, giant unilamellar vesicles (GUVs). The mechanism of the changes in the GUVs' morphology caused by isomerization of the photosensitive molecules has been previously explored but still remains elusive. We examine the morphological reshaping of GUVs in the presence of the photoswitch o-tetrafluoroazobenzene (F-azo) and show that the mechanism behind the resulting morphological changes involves both an increase in the membrane area and generation of a positive spontaneous curvature. First, we characterize the partitioning of F-azo in a single-component membrane using both experimental and computational approaches. The partition coefficient calculated from molecular dynamic simulations agrees with experimental data obtained with size-exclusion chromatography. Then, we implement the approach of vesicle electrodeformation in order to assess the increase in the membrane area, which is observed as a result of the conformational change of F-azo. Finally, the local and the effective membrane spontaneous curvatures were estimated from the observed shapes of vesicles exhibiting outward budding. We then extend the application of the F-azo to multicomponent lipid membranes, which exhibit a coexistence of domains in different liquid phases due to a miscibility gap between the lipids. We perform initial experiments to investigate whether F-azo can be employed to modulate the lateral lipid packing and organization. We observe either complete mixing of the domains or the appearing of disordered domains within the domains of more ordered phase. The type of behavior observed in response to the photoisomerization of F-azo was dependent on the used lipid composition. We believe that the findings introduced here will have an impact in understanding and controlling both lipid phase modulation and regulation of the membrane morphology in membrane systems.}, language = {en} } @phdthesis{Foti2017, author = {Foti, Alessandro}, title = {Characterization of the human aldehyde oxidase}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410107}, school = {Universit{\"a}t Potsdam}, pages = {157}, year = {2017}, abstract = {In this work the human AOX1 was characterized and detailed aspects regarding the expression, the enzyme kinetics and the production of reactive oxygen species (ROS) were investigated. The hAOX1 is a cytosolic enzyme belonging to the molybdenum hydroxylase family. Its catalytically active form is a homodimer with a molecular weight of 300 kDa. Each monomer (150 kDa) consists of three domains: a N-terminal domain (20 kDa) containing two [2Fe-2S] clusters, a 40 kDa intermediate domain containing a flavin adenine dinucleotide (FAD), and a C-terminal domain (85 kDa) containing the substrate binding pocket and the molybdenum cofactor (Moco). The hAOX1 has an emerging role in the metabolism and pharmacokinetics of many drugs, especially aldehydes and N- heterocyclic compounds. In this study, the hAOX1 was hetereogously expressed in E. coli TP1000 cells, using a new codon optimized gene sequence which improved the expressed protein yield of around 10-fold compared to the previous expression systems for this enzyme. To increase the catalytic activity of hAOX1, an in vitro chemical sulfuration was performed to favor the insertion of the equatorial sulfido ligand at the Moco with consequent increased enzymatic activity of around 10-fold. Steady-state kinetics and inhibition studies were performed using several substrates, electron acceptors and inhibitors. The recombinant hAOX1 showed higher catalytic activity when molecular oxygen was used as electron acceptor. The highest turn over values were obtained with phenanthridine as substrate. Inhibition studies using thioridazine (phenothiazine family), in combination with structural studies performed in the group of Prof. M.J. Rom{\~a}o, Nova Universidade de Lisboa, showed a new inhibition site located in proximity of the dimerization site of hAOX1. The inhibition mode of thioridazine resulted in a noncompetitive inhibition type. Further inhibition studies with loxapine, a thioridazine-related molecule, showed the same type of inhibition. Additional inhibition studies using DCPIP and raloxifene were carried out. Extensive studies on the FAD active site of the hAOX1 were performed. Twenty new hAOX1 variants were produced and characterized. The hAOX1 variants generated in this work were divided in three groups: I) hAOX1 single nucleotide polymorphisms (SNP) variants; II) XOR- FAD loop hAOX1 variants; III) additional single point hAOX1 variants. The hAOX1 SNP variants G46E, G50D, G346R, R433P, A439E, K1231N showed clear alterations in their catalytic activity, indicating a crucial role of these residues into the FAD active site and in relation to the overall reactivity of hAOX1. Furthermore, residues of the bovine XOR FAD flexible loop (Q423ASRREDDIAK433) were introduced in the hAOX1. FAD loop hAOX1 variants were produced and characterized for their stability and catalytic activity. Especially the variants hAOX1 N436D/A437D/L438I, N436D/A437D/L438I/I440K and Q434R/N436D/A437D/L438I/I440K showed decreased catalytic activity and stability. hAOX1 wild type and variants were tested for reactivity toward NADH but no reaction was observed. Additionally, the hAOX1 wild type and variants were tested for the generation of reactive oxygen species (ROS). Interestingly, one of the SNP variants, hAOX1 L438V, showed a high ratio of superoxide prodction. This result showed a critical role for the residue Leu438 in the mechanism of oxygen radicals formation by hAOX1. Subsequently, further hAOX1 variants having the mutated Leu438 residue were produced. The variants hAOX1 L438A, L438F and L438K showed superoxide overproduction of around 85\%, 65\% and 35\% of the total reducing equivalent obtained from the substrate oxidation. The results of this work show for the first time a characterization of the FAD active site of the hAOX1, revealing the importance of specific residues involved in the generation of ROS and effecting the overall enzymatic activity of hAOX1. The hAOX1 SNP variants presented here indicate that those allelic variations in humans might cause alterations ROS balancing and clearance of drugs in humans.}, language = {en} } @phdthesis{Fischbach2017, author = {Fischbach, Jens}, title = {Isothermale Amplifikationsmethoden f{\"u}r den DNA- und Pyrophosphat-abh{\"a}ngigen Pathogennachweis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-406072}, school = {Universit{\"a}t Potsdam}, pages = {viii, 125}, year = {2017}, abstract = {Hintergrund: Etablierte Protein- und Nukleins{\"a}ure-basierte Methoden f{\"u}r den spezifischen Pathogennachweis sind nur unter standardisierten Laborbedingungen von geschultem Personal durchf{\"u}hrbar und daher mit einem hohen Zeit- und Kostenaufwand verbunden. In der Nukleins{\"a}ure-basierten Diagnostik kann durch die Einf{\"u}hrung der isothermalen Amplifikation eine schnelle und kosteng{\"u}nstige Alternative zur Polymerase-Kettenreaktion (PCR) verwendet werden. Die Loop-mediated isothermal amplification (LAMP) bietet aufgrund der hohen Amplifikationseffizienz vielf{\"a}ltige Detektionsm{\"o}glichkeiten, die sowohl f{\"u}r Schnelltest- als auch f{\"u}r Monitoring-Anwendungen geeignet sind. Ein wesentliches Ziel dieser Arbeit war die Verbesserung der Anwendbarkeit der LAMP und die Entwicklung einer neuen Methode f{\"u}r den einfachen, schnellen und g{\"u}nstigen Nachweis von Pathogenen mittels alternativer DNA- oder Pyrophosphat-abh{\"a}ngiger Detektionsverfahren. Hier wurden zun{\"a}chst direkte und indirekte Detektionsmethoden untersucht und darauf aufbauend ein Verfahren entwickelt, mit dem neue Metallionen-abh{\"a}ngige Fluoreszenzfarbstoffe f{\"u}r die selektive Detektion von Pyrophosphat in der LAMP und anderen enzymatischen Reaktionen identifiziert werden k{\"o}nnen. Als Alternative f{\"u}r die DNA-basierte Detektion in der digitalen LAMP sollten die zuvor etablierten Farbstoffe f{\"u}r den Pyrophosphatnachweis in einer Emulsion getestet werden. Abschließend wurde ein neuer Reaktionsmechanismus f{\"u}r die effiziente Generierung hochmolekularer DNA unter isothermalen Bedingungen als Alternative zur LAMP entwickelt. Ergebnisse: F{\"u}r den Nachweis RNA- und DNA-basierter Phythopathogene konnte die Echtzeit- und Endpunktdetektion mit verschiedenen Farbstoffen in einem geschlossenen System etabliert werden. Hier wurde Berberin als DNA-interkalierender Fluoreszenzfarbstoff mit vergleichbarer Sensitivit{\"a}t zu SYBR Green und EvaGreen erfolgreich in der LAMP mit Echtzeitdetektion eingesetzt. Ein Vorteil von Berberin gegen{\"u}ber den anderen Farbstoffen ist die Toleranz der DNA-Polymerase auch bei hohen Farbstoffkonzentrationen. Berberin kann daher auch in der geschlossenen LAMP-Reaktion ohne zus{\"a}tzliche Anpassung der Reaktionsbedingungen f{\"u}r die Endpunktdetektion verwendet werden. Dar{\"u}ber hinaus konnte Hydroxynaphtholblau (HNB), das f{\"u}r den kolorimetrischen Endpunktnachweis bekannt ist, erstmals auch f{\"u}r die fluorimetrische Detektion der LAMP in Echtzeit eingesetzt werden. Zus{\"a}tzlich konnten in der Arbeit weitere Metallionen-abh{\"a}ngige Farbstoffe zur indirekten Detektion der LAMP {\"u}ber das Pyrophosphat identifiziert werden. Daf{\"u}r wurde eine iterative Methode entwickelt, mit der potenzielle Farbstoffe hinsichtlich ihrer Enzymkompatibilit{\"a}t und ihrer spektralen Eigenschaften bei An- oder Abwesenheit von Manganionen selektiert werden k{\"o}nnen. Mithilfe eines kombinatorischen Screenings im Mikrotiterplattenformat konnte die komplexe Konzentrationsabh{\"a}ngigkeit zwischen den einzelnen Komponenten f{\"u}r einen fluorimetrischen Verdr{\"a}ngungsnachweis untersucht werden. Durch die Visualisierung des Signal-Rausch-Verh{\"a}ltnis' als Intensit{\"a}tsmatrix (heatmap) konnten zun{\"a}chst Alizarinrot S und Tetrazyklin unter simulierten Reaktionsbedingungen selektiert werden. In der anschließenden enzymatischen LAMP-Reaktion konnte insbesondere Alizarinrot S als g{\"u}nstiger, nicht-toxischer und robuster Fluoreszenzfarbstoff identifiziert werden und zeigte eine Pyrophosphat-abh{\"a}ngige Zunahme der Fluoreszenzintensit{\"a}t. Die zuvor etablierten Farbstoffe (HNB, Calcein und Alizarinrot S) konnten anschließend erfolgreich f{\"u}r die indirekte, fluorimetrische Detektion von Pyrophosphat in einer LAMP-optimierten Emulsion eingesetzt werden. Die Stabilit{\"a}t und Homogenit{\"a}t der generierten Emulsion wurde durch den Zusatz des Emulgators Poloxamer 188 verbessert. Durch die fluoreszenzmikroskopische Analyse der Emulsion war eine eindeutige Diskriminierung der positiven und negativen Tr{\"o}pfchen vor allem bei Einsatz von Calcein und Alizarinrot S m{\"o}glich. Aufgrund des komplexen Primer-Designs und der hohen Wahrscheinlichkeit unspezifischer Amplifikation in der LAMP wurde eine neue Bst DNA-Polymerase-abh{\"a}ngige isothermale Amplifikationsreaktion entwickelt. Durch die Integration einer spezifischen Linkerstruktur (abasische Stelle oder Hexaethylenglykol) zwischen zwei Primersequenzen konnte ein bifunktioneller Primer die effiziente Regenerierung der Primerbindungsstellen gew{\"a}hrleisten. Der neue Primer induziert nach der spezifischen Hybridisierung auf dem Templat die R{\"u}ckfaltung zu einer Haarnadelstruktur und blockiert gleichzeitig die Polymeraseaktivit{\"a}t am Gegenstrang, wodurch eine autozyklische Amplifikation trotz konstanter Reaktionstemperatur m{\"o}glich ist. Die Effizienz der „Hinge-initiated Primer dependent Amplification" (HIP) konnte abschließend durch die Verk{\"u}rzung der Distanz zwischen einem modifizierten Hinge-Primer und einem PCR-{\"a}hnlichen Primer verbessert werden. Schlussfolgerung: Die LAMP hat sich aufgrund der hohen Robustheit und Effizienz zu einer leistungsf{\"a}higen Alternative f{\"u}r die klassische PCR in der molekularbiologischen Diagnostik entwickelt. Unterschiedliche Detektionsverfahren verbessern die Leistungsf{\"a}higkeit der qualitativen und quantitativen LAMP f{\"u}r die Feldanwendungen und f{\"u}r die Diagnostik, da die neuen DNA- und Pyrophosphat-abh{\"a}ngigen Nachweismethoden in einer geschlossenen Reaktion eingesetzt werden k{\"o}nnen und so eine einfache Pathogendiagnostik erm{\"o}glichen. Die gezeigten Methoden k{\"o}nnen dar{\"u}ber hinaus zu einer Kostensenkung und Zeitersparnis gegen{\"u}ber den herk{\"o}mmlichen Methoden beitragen. Ein attraktives Ziel stellt die Weiterentwicklung der HIP f{\"u}r den Pathogennachweis als Alternative zur LAMP dar. Hierbei k{\"o}nnen die neuen LAMP-Detektionsverfahren ebenfalls Anwendung finden. Die Verwendung von Bst DNA-Polymerase-abh{\"a}ngigen Reaktionen erm{\"o}glicht dar{\"u}ber hinaus die Integration einer robusten isothermalen Amplifikation in mikrofluidische Systeme. Durch die Kombination der Probenvorbereitung, Amplifikation und Detektion sind zuk{\"u}nftige Anwendungen mit kurzer Analysezeit und geringem apparativen Aufwand insbesondere in der Pathogendiagnostik m{\"o}glich.}, language = {de} } @misc{FerTietjenJeltschetal.2017, author = {Fer, Istem and Tietjen, Britta and Jeltsch, Florian and Wolff, Christian Michael}, title = {The influence of El Nino-Southern Oscillation regimes on eastern African vegetation and its future implications under the RCP8.5 warming scenario}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-403853}, pages = {20}, year = {2017}, abstract = {The El Nino-Southern Oscillation (ENSO) is the main driver of the interannual variability in eastern African rainfall, with a significant impact on vegetation and agriculture and dire consequences for food and social security. In this study, we identify and quantify the ENSO contribution to the eastern African rainfall variability to forecast future eastern African vegetation response to rainfall variability related to a predicted intensified ENSO. To differentiate the vegetation variability due to ENSO, we removed the ENSO signal from the climate data using empirical orthogonal teleconnection (EOT) analysis. Then, we simulated the ecosystem carbon and water fluxes under the historical climate without components related to ENSO teleconnections. We found ENSO-driven patterns in vegetation response and confirmed that EOT analysis can successfully produce coupled tropical Pacific sea surface temperature-eastern African rainfall teleconnection from observed datasets. We further simulated eastern African vegetation response under future climate change as it is projected by climate models and under future climate change combined with a predicted increased ENSO intensity. Our EOT analysis highlights that climate simulations are still not good at capturing rainfall variability due to ENSO, and as we show here the future vegetation would be different from what is simulated under these climate model outputs lacking accurate ENSO contribution. We simulated considerable differences in eastern African vegetation growth under the influence of an intensified ENSO regime which will bring further environmental stress to a region with a reduced capacity to adapt effects of global climate change and food security.}, language = {en} } @misc{EndesfelderWeicheltStraussetal.2017, author = {Endesfelder, Stefanie and Weichelt, Ulrike and Strauß, Evelyn and Schl{\"o}r, Anja and Sifringer, Marco and Scheuer, Till and B{\"u}hrer, Christoph and Schmitz, Thomas}, title = {Neuroprotection by caffeine in hyperoxia-induced neonatal brain injury}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1097}, issn = {1866-8372}, doi = {10.25932/publishup-47504}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-475040}, pages = {26}, year = {2017}, abstract = {Sequelae of prematurity triggered by oxidative stress and free radical-mediated tissue damage have coined the term "oxygen radical disease of prematurity". Caffeine, a potent free radical scavenger and adenosine receptor antagonist, reduces rates of brain damage in preterm infants. In the present study, we investigated the effects of caffeine on oxidative stress markers, anti-oxidative response, inflammation, redox-sensitive transcription factors, apoptosis, and extracellular matrix following the induction of hyperoxia in neonatal rats. The brain of a rat pups at postnatal Day 6 (P6) corresponds to that of a human fetal brain at 28-32 weeks gestation and the neonatal rat is an ideal model in which to investigate effects of oxidative stress and neuroprotection of caffeine on the developing brain. Six-day-old Wistar rats were pre-treated with caffeine and exposed to 80\% oxygen for 24 and 48 h. Caffeine reduced oxidative stress marker (heme oxygenase-1, lipid peroxidation, hydrogen peroxide, and glutamate-cysteine ligase catalytic subunit (GCLC)), promoted anti-oxidative response (superoxide dismutase, peroxiredoxin 1, and sulfiredoxin 1), down-regulated pro-inflammatory cytokines, modulated redox-sensitive transcription factor expression (Nrf2/Keap1, and NF kappa B), reduced pro-apoptotic effectors (poly (ADP-ribose) polymerase-1 (PARP-1), apoptosis inducing factor (AIF), and caspase-3), and diminished extracellular matrix degeneration (matrix metalloproteinases (MMP) 2, and inhibitor of metalloproteinase (TIMP) 1/2). Our study affirms that caffeine is a pleiotropic neuroprotective drug in the developing brain due to its anti-oxidant, anti-inflammatory, and anti-apoptotic properties.}, language = {en} } @misc{EccardJokinenYloenen2017, author = {Eccard, Jana and Jokinen, Ilmari and Yl{\"o}nen, Hannu}, title = {Loss of density-dependence and incomplete control by dominant breeders in a territorial species with density outbreaks}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400939}, pages = {8}, year = {2017}, abstract = {Background A territory as a prerequisite for breeding limits the maximum number of breeders in a given area, and thus lowers the proportion of breeders if population size increases. However, some territorially breeding animals can have dramatic density fluctuations and little is known about the change from density-dependent processes to density-independence of breeding during a population increase or an outbreak. We suggest that territoriality, breeding suppression and its break-down can be understood with an incomplete-control model, developed for social breeders and social suppression. Results We studied density dependence in an arvicoline species, the bank vole, known as a territorial breeder with cyclic and non-cyclic density fluctuations and periodically high densities in different parts of its range. Our long-term data base from 38 experimental populations in large enclosures in boreal grassland confirms that breeding rates are density-regulated at moderate densities, probably by social suppression of subordinate potential breeders. We conducted an experiment, were we doubled and tripled this moderate density under otherwise the same conditions and measured space use, mortality, reproduction and faecal stress hormone levels (FGM) of adult females. We found that mortality did not differ among the densities, but the regulation of the breeding rate broke down: at double and triple densities all females were breeding, while at the low density the breeding rate was regulated as observed before. Spatial overlap among females increased with density, while a minimum territory size was maintained. Mean stress hormone levels were higher in double and triple densities than at moderate density. Conclusions At low and moderate densities, breeding suppression by the dominant breeders, But above a density-threshold (similar to a competition point), the dominance of breeders could not be sustained (incomplete control). In our experiment, this point was reached after territories could not shrink any further, while the number of intruders continued to increase with increasing density. Probably suppression becomes too costly for the dominants, and increasing number of other breeders reduces the effectiveness of threats. In wild populations, crossing this threshold would allow for a rapid density increase or population outbreaks, enabling territorial species to escape density-dependency.}, language = {en} } @misc{DortayMuellerRoeber2017, author = {Dortay, Hakan and M{\"u}ller-R{\"o}ber, Bernd}, title = {A highly efficient pipeline for protein expression in Leishmania tarentolae using infrared fluorescence protein as marker}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400876}, pages = {10}, year = {2017}, abstract = {Background: Leishmania tarentolae, a unicellular eukaryotic protozoan, has been established as a novel host for recombinant protein production in recent years. Current protocols for protein expression in Leishmania are, however, time consuming and require extensive lab work in order to identify well-expressing cell lines. Here we established an alternative protein expression work-flow that employs recently engineered infrared fluorescence protein (IFP) as a suitable and easy-to-handle reporter protein for recombinant protein expression in Leishmania. As model proteins we tested three proteins from the plant Arabidopsis thaliana, including a NAC and a type-B ARR transcription factor. Results: IFP and IFP fusion proteins were expressed in Leishmania and rapidly detected in cells by deconvolution microscopy and in culture by infrared imaging of 96-well microtiter plates using small cell culture volumes (2 mu L - 100 mu L). Motility, shape and growth of Leishmania cells were not impaired by intracellular accumulation of IFP. In-cell detection of IFP and IFP fusion proteins was straightforward already at the beginning of the expression pipeline and thus allowed early pre-selection of well-expressing Leishmania clones. Furthermore, IFP fusion proteins retained infrared fluorescence after electrophoresis in denaturing SDS-polyacrylamide gels, allowing direct in-gel detection without the need to disassemble cast protein gels. Thus, parameters for scaling up protein production and streamlining purification routes can be easily optimized when employing IFP as reporter. Conclusions: Using IFP as biosensor we devised a protocol for rapid and convenient protein expression in Leishmania tarentolae. Our expression pipeline is superior to previously established methods in that it significantly reduces the hands-on-time and work load required for identifying well-expressing clones, refining protein production parameters and establishing purification protocols. The facile in-cell and in-gel detection tools built on IFP make Leishmania amenable for high-throughput expression of proteins from plant and animal sources.}, language = {en} } @misc{BreuningerLenhard2017, author = {Breuninger, Holger and Lenhard, Michael}, title = {Expression of the central growth regulator BIG BROTHER is regulated by multiple cis-elements}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400971}, pages = {10}, year = {2017}, abstract = {Background Much of the organismal variation we observe in nature is due to differences in organ size. The observation that even closely related species can show large, stably inherited differences in organ size indicates a strong genetic component to the control of organ size. Despite recent progress in identifying factors controlling organ growth in plants, our overall understanding of this process remains limited, partly because the individual factors have not yet been connected into larger regulatory pathways or networks. To begin addressing this aim, we have studied the upstream regulation of expression of BIG BROTHER (BB), a central growth-control gene in Arabidopsis thaliana that prevents overgrowth of organs. Final organ size and BB expression levels are tightly correlated, implying the need for precise control of its expression. BB expression mirrors proliferative activity, yet the gene functions to limit proliferation, suggesting that it acts in an incoherent feedforward loop downstream of growth activators to prevent over-proliferation. Results To investigate the upstream regulation of BB we combined a promoter deletion analysis with a phylogenetic footprinting approach. We were able to narrow down important, highly conserved, cis-regulatory elements within the BB promoter. Promoter sequences of other Brassicaceae species were able to partially complement the A. thaliana bb-1 mutant, suggesting that at least within the Brassicaceae family the regulatory pathways are conserved. Conclusions This work underlines the complexity involved in precise quantitative control of gene expression and lays the foundation for identifying important upstream regulators that determine BB expression levels and thus final organ size.}, language = {en} } @misc{BareitherScheffelMetz2017, author = {Bareither, Nils and Scheffel, Andr{\´e} and Metz, Johannes}, title = {Distribution of polyploid plants in the common annual Brachypodium distachyon (s.l.) in Israel is not linearly correlated with aridity}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-395293}, pages = {10}, year = {2017}, abstract = {The ecological benefits of polyploidy are intensely debated. Some authors argue that plants with duplicated chromosome sets (polyploids) are more stress-resistant and superior colonizers and may thus outnumber their low ploidy conspecifics in more extreme habitats. Brachypodium distachyon (sensu lato), for example, a common annual grass in Israel and the entire Mediterranean basin, comprises three cytotypes of differing chromosome numbers that were recently proposed as distinct species. It was suggested that increased aridity increases the occurrence of its polyploid cytotype. Here, we tested at two spatial scales whether polyploid plants of B. distachyon s.l. are more frequently found in drier habitats in Israel. We collected a total of 430 specimens (i) along a largescale climatic gradient with 15 thoroughly selected sites (spanning 114-954 mm annual rainfall), and (ii) from corresponding Northern (more mesic) and Southern (more arid) hill slopes to assess the micro-climatic difference between contrasting exposures. Cytotypes were then determined via flow cytometry. Polyploid plants comprised 90\% of all specimens and their proportion ranged between 0\% and 100\% per site. However, this proportion was not correlated with aridity along the large-scale gradient, nor were polyploids more frequently found on Southern exposures. Our results show for both spatial scales that increasing aridity is not the principal driver for the distribution of polyploids in B. distachyon s.l. in Israel. Notably, though, diploid plants were restricted essentially to four intermediate sites, while polyploids dominated the most arid and the most mesic sites. This, to some degree, clustered pattern suggests that the distribution of cytotypes is not entirely random and calls for future studies to assess further potential drivers.}, language = {en} }