@phdthesis{Zheng2021, author = {Zheng, Chunming}, title = {Bursting and synchronization in noisy oscillatory systems}, doi = {10.25932/publishup-50019}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-500199}, school = {Universit{\"a}t Potsdam}, pages = {iv, 87}, year = {2021}, abstract = {Noise is ubiquitous in nature and usually results in rich dynamics in stochastic systems such as oscillatory systems, which exist in such various fields as physics, biology and complex networks. The correlation and synchronization of two or many oscillators are widely studied topics in recent years. In this thesis, we mainly investigate two problems, i.e., the stochastic bursting phenomenon in noisy excitable systems and synchronization in a three-dimensional Kuramoto model with noise. Stochastic bursting here refers to a sequence of coherent spike train, where each spike has random number of followers due to the combined effects of both time delay and noise. Synchronization, as a universal phenomenon in nonlinear dynamical systems, is well illustrated in the Kuramoto model, a prominent model in the description of collective motion. In the first part of this thesis, an idealized point process, valid if the characteristic timescales in the problem are well separated, is used to describe statistical properties such as the power spectral density and the interspike interval distribution. We show how the main parameters of the point process, the spontaneous excitation rate, and the probability to induce a spike during the delay action can be calculated from the solutions of a stationary and a forced Fokker-Planck equation. We extend it to the delay-coupled case and derive analytically the statistics of the spikes in each neuron, the pairwise correlations between any two neurons, and the spectrum of the total output from the network. In the second part, we investigate the three-dimensional noisy Kuramoto model, which can be used to describe the synchronization in a swarming model with helical trajectory. In the case without natural frequency, the Kuramoto model can be connected with the Vicsek model, which is widely studied in collective motion and swarming of active matter. We analyze the linear stability of the incoherent state and derive the critical coupling strength above which the incoherent state loses stability. In the limit of no natural frequency, an exact self-consistent equation of the mean field is derived and extended straightforward to any high-dimensional case.}, language = {en} } @phdthesis{Zemanova2007, author = {Zemanov{\´a}, Lucia}, title = {Structure-function relationship in hierarchical model of brain networks}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18400}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {The mammalian brain is, with its numerous neural elements and structured complex connectivity, one of the most complex systems in nature. Recently, large-scale corticocortical connectivities, both structural and functional, have received a great deal of research attention, especially using the approach of complex networks. Here, we try to shed some light on the relationship between structural and functional connectivities by studying synchronization dynamics in a realistic anatomical network of cat cortical connectivity. We model the cortical areas by a subnetwork of interacting excitable neurons (multilevel model) and by a neural mass model (population model). With weak couplings, the multilevel model displays biologically plausible dynamics and the synchronization patterns reveal a hierarchical cluster organization in the network structure. We can identify a group of brain areas involved in multifunctional tasks by comparing the dynamical clusters to the topological communities of the network. With strong couplings of multilevel model and by using neural mass model, the dynamics are characterized by well-defined oscillations. The synchronization patterns are mainly determined by the node intensity (total input strengths of a node); the detailed network topology is of secondary importance. The biologically improved multilevel model exhibits similar dynamical patterns in the two regimes. Thus, the study of synchronization in a multilevel complex network model of cortex can provide insights into the relationship between network topology and functional organization of complex brain networks.}, language = {en} } @phdthesis{Teichmann2021, author = {Teichmann, Erik}, title = {Partial synchronization in coupled systems with repulsive and attractive interaction}, doi = {10.25932/publishup-52894}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-528943}, school = {Universit{\"a}t Potsdam}, pages = {x, 96}, year = {2021}, abstract = {Partial synchronous states exist in systems of coupled oscillators between full synchrony and asynchrony. They are an important research topic because of their variety of different dynamical states. Frequently, they are studied using phase dynamics. This is a caveat, as phase dynamics are generally obtained in the weak coupling limit of a first-order approximation in the coupling strength. The generalization to higher orders in the coupling strength is an open problem. Of particular interest in the research of partial synchrony are systems containing both attractive and repulsive coupling between the units. Such a mix of coupling yields very specific dynamical states that may help understand the transition between full synchrony and asynchrony. This thesis investigates partial synchronous states in mixed-coupling systems. First, a method for higher-order phase reduction is introduced to observe interactions beyond the pairwise one in the first-order phase description, hoping that these may apply to mixed-coupling systems. This new method for coupled systems with known phase dynamics of the units gives correct results but, like most comparable methods, is computationally expensive. It is applied to three Stuart-Landau oscillators coupled in a line with a uniform coupling strength. A numerical method is derived to verify the analytical results. These results are interesting but give importance to simpler phase models that still exhibit exotic states. Such simple models that are rarely considered are Kuramoto oscillators with attractive and repulsive interactions. Depending on how the units are coupled and the frequency difference between the units, it is possible to achieve many different states. Rich synchronization dynamics, such as a Bellerophon state, are observed when considering a Kuramoto model with attractive interaction in two subpopulations (groups) and repulsive interactions between groups. In two groups, one attractive and one repulsive, of identical oscillators with a frequency difference, an interesting solitary state appears directly between full and partial synchrony. This system can be described very well analytically.}, language = {en} } @phdthesis{Rosenblum2003, author = {Rosenblum, Michael}, title = {Phase synchronization of chaotic systems : from theory to experimental applications}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000682}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {In einem klassischen Kontext bedeutet Synchronisierung die Anpassung der Rhythmen von selbst-erregten periodischen Oszillatoren aufgrund ihrer schwachen Wechselwirkung. Der Begriff der Synchronisierung geht auf den ber{\"u}hmten niederl{\"a}andischen Wissenschaftler Christiaan Huygens im 17. Jahrhundert zur{\"u}ck, der {\"u}ber seine Beobachtungen mit Pendeluhren berichtete. Wenn zwei solche Uhren auf der selben Unterlage plaziert wurden, schwangen ihre Pendel in perfekter {\"U}bereinstimmung. Mathematisch bedeutet das, daß infolge der Kopplung, die Uhren mit gleichen Frequenzen und engverwandten Phasen zu oszillieren begannen. Als wahrscheinlich {\"a}ltester beobachteter nichtlinearer Effekt wurde die Synchronisierung erst nach den Arbeiten von E. V. Appleton und B. Van der Pol gegen 1920 verstanden, die die Synchronisierung in Triodengeneratoren systematisch untersucht haben. Seitdem wurde die Theorie gut entwickelt, und hat viele Anwendungen gefunden. Heutzutage weiss man, dass bestimmte, sogar ziemlich einfache, Systeme, ein chaotisches Verhalten aus{\"u}ben k{\"o}nnen. Dies bedeutet, dass ihre Rhythmen unregelm{\"a}ßig sind und nicht durch nur eine einzige Frequenz charakterisiert werden k{\"o}nnen. Wie in der Habilitationsarbeit gezeigt wurde, kann man jedoch den Begriff der Phase und damit auch der Synchronisierung auf chaotische Systeme ausweiten. Wegen ihrer sehr schwachen Wechselwirkung treten Beziehungen zwischen den Phasen und den gemittelten Frequenzen auf und f{\"u}hren damit zur {\"U}bereinstimmung der immer noch unregelm{\"a}ßigen Rhythmen. Dieser Effekt, sogenannter Phasensynchronisierung, konnte sp{\"a}ter in Laborexperimenten anderer wissenschaftlicher Gruppen best{\"a}tigt werden. Das Verst{\"a}ndnis der Synchronisierung unregelm{\"a}ßiger Oszillatoren erlaubte es uns, wichtige Probleme der Datenanalyse zu untersuchen. Ein Hauptbeispiel ist das Problem der Identifikation schwacher Wechselwirkungen zwischen Systemen, die nur eine passive Messung erlauben. Diese Situation trifft h{\"a}ufig in lebenden Systemen auf, wo Synchronisierungsph{\"a}nomene auf jedem Niveau erscheinen - auf der Ebene von Zellen bis hin zu makroskopischen physiologischen Systemen; in normalen Zust{\"a}nden und auch in Zust{\"a}nden ernster Pathologie. Mit unseren Methoden konnten wir eine Anpassung in den Rhythmen von Herz-Kreislauf und Atmungssystem in Menschen feststellen, wobei der Grad ihrer Interaktion mit der Reifung zunimmt. Weiterhin haben wir unsere Algorithmen benutzt, um die Gehirnaktivit{\"a}t von an Parkinson Erkrankten zu analysieren. Die Ergebnisse dieser Kollaboration mit Neurowissenschaftlern zeigen, dass sich verschiedene Gehirnbereiche genau vor Beginn des pathologischen Zitterns synchronisieren. Außerdem gelang es uns, die f{\"u}r das Zittern verantwortliche Gehirnregion zu lokalisieren.}, language = {en} } @phdthesis{RomanoBlasco2004, author = {Romano Blasco, M. Carmen}, title = {Synchronization analysis by means of recurrences in phase space}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001756}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Die t{\"a}gliche Erfahrung zeigt uns, daß bei vielen physikalischen Systemen kleine {\"A}nderungen in den Anfangsbedingungen auch zu kleinen {\"A}nderungen im Verhalten des Systems f{\"u}hren. Wenn man z.B. das Steuerrad beim Auto fahren nur ein wenig zur Seite dreht, unterscheidet sich die Richtung des Wagens auch nur wenig von der urspr{\"u}nglichen Richtung. Aber es gibt auch Situationen, f{\"u}r die das Gegenteil dieser Regel zutrifft. Die Folge von Kopf und Zahl, die wir erhalten, wenn wir eine M{\"u}nze werfen, zeigt ein irregul{\"a}res oder chaotisches Zeitverhalten, da winzig kleine {\"A}nderungen in den Anfangsbedingungen, die z.B. durch leichte Drehung der Hand hervorgebracht werden, zu vollkommen verschiedenen Resultaten f{\"u}hren. In den letzten Jahren hat man sehr viele nichtlineare Systeme mit schnellen Rechnern untersucht und festgestellt, daß eine sensitive Abh{\"a}ngigkeit von den Anfangsbedingungen, die zu einem chaotischen Verhalten f{\"u}hrt, keinesfalls die Ausnahme darstellt, sondern eine typische Eigenschaft vieler Systeme ist. Obwohl chaotische Systeme kleinen {\"A}nderungen in den Anfangsbedingungen gegen{\"u}ber sehr empfindlich reagieren, k{\"o}nnen sie synchronisieren wenn sie durch eine gemeinsame {\"a}ußere Kraft getrieben werden, oder wenn sie miteinander gekoppelt sind. Das heißt, sie vergessen ihre Anfangsbedingungen und passen ihre Rhythmen aneinander. Diese Eigenschaft chaotischer Systeme hat viele Anwendungen, wie z.B. das Design von Kommunikationsger{\"a}te und die verschl{\"u}sselte {\"U}bertragung von Mitteilungen. Abgesehen davon, findet man Synchronisation in nat{\"u}rlichen Systemen, wie z.B. das Herz-Atmungssystem, raumverteilte {\"o}kologische Systeme, die Magnetoenzephalographische Aktivit{\"a}t von Parkinson Patienten, etc. In solchen komplexen Systemen ist es nicht trivial Synchronisation zu detektieren und zu quantifizieren. Daher ist es notwendig, besondere mathematische Methoden zu entwickeln, die diese Aufgabe erledigen. Das ist das Ziel dieser Arbeit. Basierend auf dergrundlegenden Idee von Rekurrenzen (Wiederkehr) von Trajektorien dynamischer Systeme, sind verschiedene Maße entwickelt worden, die Synchronisation in chaotischen und komplexen Systemen detektieren. Das Wiederkehr von Trajektorien erlaubt uns Vorhersagen {\"u}ber den zuk{\"u}nftigen Zustand eines Systems zu treffen. Wenn man diese Eigenschaft der Wiederkehr von zwei interagierenden Systemen vergleicht, kann man Schl{\"u}sse {\"u}ber ihre dynamische Anpassung oder Synchronisation ziehen. Ein wichtiger Vorteil der Rekurrenzmaße f{\"u}r Synchronisation ist die Robustheit gegen Rauschen und Instationari{\"a}t. Das erlaubt eine Synchronisationsanalyse in Systemen durchzuf{\"u}hren, die bisher nicht darauf untersucht werden konnten.}, language = {en} } @phdthesis{PereiradaSilva2007, author = {Pereira da Silva, Tiago}, title = {Synchronization in active networks}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14347}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {In nature one commonly finds interacting complex oscillators which by the coupling scheme form small and large networks, e.g. neural networks. Surprisingly, the oscillators can synchronize, still preserving the complex behavior. Synchronization is a fundamental phenomenon in coupled nonlinear oscillators. Synchronization can be enhanced at different levels, that is, the constraints on which the synchronization appears. Those can be in the trajectory amplitude, requiring the amplitudes of both oscillators to be equal, giving place to complete synchronization. Conversely, the constraint could also be in a function of the trajectory, e.g. the phase, giving place to phase synchronization (PS). In this case, one requires the phase difference between both oscillators to be finite for all times, while the trajectory amplitude may be uncorrelated. The study of PS has shown its relevance to important technological problems, e.g. communication, collective behavior in neural networks, pattern formation, Parkinson disease, epilepsy, as well as behavioral activities. It has been reported that it mediates processes of information transmission and collective behavior in neural and active networks and communication processes in the Human brain. In this work, we have pursed a general way to analyze the onset of PS in small and large networks. Firstly, we have analyzed many phase coordinates for compact attractors. We have shown that for a broad class of attractors the PS phenomenon is invariant under the phase definition. Our method enables to state about the existence of phase synchronization in coupled chaotic oscillators without having to measure the phase. This is done by observing the oscillators at special times, and analyzing whether this set of points is localized. We have show that this approach is fruitful to analyze the onset of phase synchronization in chaotic attractors whose phases are not well defined, as well as, in networks of non-identical spiking/bursting neurons connected by chemical synapses. Moreover, we have also related the synchronization and the information transmission through the conditional observations. In particular, we have found that inside a network clusters may appear. These can be used to transmit more than one information, which provides a multi-processing of information. Furthermore, These clusters provide a multichannel communication, that is, one can integrate a large number of neurons into a single communication system, and information can arrive simultaneously at different places of the network.}, language = {en} } @phdthesis{MontbrioiFairen2004, author = {Montbri{\´o} i Fairen, Ernest}, title = {Synchronization in ensembles of nonisochronous oscillators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001492}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Diese Arbeit analysiert Synchronisationsphaenomene, die in grossen Ensembles von interagierenden Oszillatoren auftauchen. Im speziellen werden die Effekte von Nicht-Isochronizitaet (die Abhaengigkeit der Frequenz von der Amplitude des Oszillators) auf den makroskopischen Uebergang zur Synchronisation im Detail studiert. Die neu gefundenen Phaenomene (Anomale Synchronisation) werden sowohl in Populationen von Oszillatoren als auch zwischen Oszillator-Ensembles untersucht.}, language = {en} } @phdthesis{Gong2019, author = {Gong, Chen Chris}, title = {Synchronization of coupled phase oscillators}, doi = {10.25932/publishup-48752}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-487522}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 115}, year = {2019}, abstract = {Oscillatory systems under weak coupling can be described by the Kuramoto model of phase oscillators. Kuramoto phase oscillators have diverse applications ranging from phenomena such as communication between neurons and collective influences of political opinions, to engineered systems such as Josephson Junctions and synchronized electric power grids. This thesis includes the author's contribution to the theoretical framework of coupled Kuramoto oscillators and to the understanding of non-trivial N-body dynamical systems via their reduced mean-field dynamics. The main content of this thesis is composed of four parts. First, a partially integrable theory of globally coupled identical Kuramoto oscillators is extended to include pure higher-mode coupling. The extended theory is then applied to a non-trivial higher-mode coupled model, which has been found to exhibit asymmetric clustering. Using the developed theory, we could predict a number of features of the asymmetric clustering with only information of the initial state provided. The second part consists of an iterated discrete-map approach to simulate phase dynamics. The proposed map --- a Moebius map --- not only provides fast computation of phase synchronization, it also precisely reflects the underlying group structure of the dynamics. We then compare the iterated-map dynamics and various analogous continuous-time dynamics. We are able to replicate known phenomena such as the synchronization transition of the Kuramoto-Sakaguchi model of oscillators with distributed natural frequencies, and chimera states for identical oscillators under non-local coupling. The third part entails a particular model of repulsively coupled identical Kuramoto-Sakaguchi oscillators under common random forcing, which can be shown to be partially integrable. Via both numerical simulations and theoretical analysis, we determine that such a model cannot exhibit stationary multi-cluster states, contrary to the numerical findings in previous literature. Through further investigation, we find that the multi-clustering states reported previously occur due to the accumulation of discretization errors inherent in the integration algorithms, which introduce higher-mode couplings into the model. As a result, the partial integrability condition is violated. Lastly, we derive the microscopic cross-correlation of globally coupled non-identical Kuramoto oscillators under common fluctuating forcing. The effect of correlation arises naturally in finite populations, due to the non-trivial fluctuations of the meanfield. In an idealized model, we approximate the finite-sized fluctuation by a Gaussian white noise. The analytical approximation qualitatively matches the measurements in numerical experiments, however, due to other periodic components inherent in the fluctuations of the mean-field there still exist significant inconsistencies.}, language = {en} } @phdthesis{Goldobin2007, author = {Goldobin, Denis S.}, title = {Coherence and synchronization of noisy-driven oscillators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15047}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {In the present dissertation paper we study problems related to synchronization phenomena in the presence of noise which unavoidably appears in real systems. One part of the work is aimed at investigation of utilizing delayed feedback to control properties of diverse chaotic dynamic and stochastic systems, with emphasis on the ones determining predisposition to synchronization. Other part deals with a constructive role of noise, i.e. its ability to synchronize identical self-sustained oscillators. First, we demonstrate that the coherence of a noisy or chaotic self-sustained oscillator can be efficiently controlled by the delayed feedback. We develop the analytical theory of this effect, considering noisy systems in the Gaussian approximation. Possible applications of the effect for the synchronization control are also discussed. Second, we consider synchrony of limit cycle systems (in other words, self-sustained oscillators) driven by identical noise. For weak noise and smooth systems we proof the purely synchronizing effect of noise. For slightly different oscillators and/or slightly nonidentical driving, synchrony becomes imperfect, and this subject is also studied. Then, with numerics we show moderate noise to be able to lead to desynchronization of some systems under certain circumstances. For neurons the last effect means "antireliability" (the "reliability" property of neurons is treated to be important from the viewpoint of information transmission functions), and we extend our investigation to neural oscillators which are not always limit cycle ones. Third, we develop a weakly nonlinear theory of the Kuramoto transition (a transition to collective synchrony) in an ensemble of globally coupled oscillators in presence of additional time-delayed coupling terms. We show that a linear delayed feedback not only controls the transition point, but effectively changes the nonlinear terms near the transition. A purely nonlinear delayed coupling does not affect the transition point, but can reduce or enhance the amplitude of collective oscillations.}, language = {en} }