@phdthesis{Wegerich2010, author = {Wegerich, Franziska}, title = {Engineered human cytochrome c : investigation of superoxide and protein-protein interaction and application in bioelectronic systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-50782}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {The aim of this thesis is the design, expression and purification of human cytochrome c mutants and their characterization with regard to electrochemical and structural properties as well as with respect to the reaction with the superoxide radical and the selected proteins sulfite oxidase from human and fungi bilirubin oxidase. All three interaction partners are studied here for the first time with human cyt c and with mutant forms of cyt c. A further aim is the incorporation of the different cyt c forms in two bioelectronic systems: an electrochemical superoxide biosensor with an enhanced sensitivity and a protein multilayer assembly with and without bilirubin oxidase on electrodes. The first part of the thesis is dedicated to the design, expression and characterization of the mutants. A focus is here the electrochemical characterization of the protein in solution and immobilized on electrodes. Further the reaction of these mutants with superoxide was investigated and the possible reaction mechanisms are discussed. In the second part of the work an amperometric superoxide biosensor with selected human cytochrome c mutants was constructed and the performance of the sensor electrodes was studied. The human wild-type and four of the five mutant electrodes could be applied successfully for the detection of the superoxide radical. In the third part of the thesis the reaction of horse heart cyt c, the human wild-type and seven human cyt c mutants with the two proteins sulfite oxidase and bilirubin oxidase was studied electrochemically and the influence of the mutations on the electron transfer reactions was discussed. Finally protein multilayer electrodes with different cyt form including the mutant forms G77K and N70K which exhibit different reaction rates towards BOD were investigated and BOD together with the wild-type and engineered cyt c was embedded in the multilayer assembly. The relevant electron transfer steps and the kinetic behavior of the multilayer electrodes are investigated since the functionality of electroactive multilayer assemblies with incorporated redox proteins is often limited by the electron transfer abilities of the proteins within the multilayer. The formation via the layer-by-layer technique and the kinetic behavior of the mono and bi-protein multilayer system are studied by SPR and cyclic voltammetry. In conclusion this thesis shows that protein engineering is a helpful instrument to study protein reactions as well as electron transfer mechanisms of complex bioelectronic systems (such as bi-protein multilayers). Furthermore, the possibility to design tailored recognition elements for the construction of biosensors with an improved performance is demonstrated.}, language = {en} } @phdthesis{Beissenhirtz2005, author = {Beissenhirtz, Moritz Karl}, title = {Proteinmultischichten und Proteinmutanten f{\"u}r neuartige empfindliche Superoxidbiosensoren}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5661}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Das Superoxidradikal kann mit fast allen Bestandteilen von Zellen reagieren und diese sch{\"a}digen. Die medizinische Forschung stellte eine Beteiligung des Radikals an Krebs, Herzinfarkten und neuraler Degeneration fest. Ein empfindlicher Superoxidnachweis ist daher zum besseren Verst{\"a}ndnis von Krankheitsverl{\"a}ufen wichtig. Dabei stellen die geringen typischen Konzentrationen und seine kurze Lebensdauer große Anforderungen. Ziel dieser Arbeit war es zum einen, zwei neuartige Proteinarchitekturen auf Metallelektroden zu entwickeln und deren elektrochemisches Ansprechverhalten zu charakterisieren. Zum anderen waren diese Elektroden zur empfindlichen quantitativen Superoxiddetektion einzusetzen. Im ersten Teil der Arbeit wurde eine Protein-Multischichtelektrode aus Cytochrom c und dem Polyelektrolyten Poly(anilinsulfons{\"a}ure) nach dem Layer-by-layer-Verfahren aufgebaut. F{\"u}r zwei bis 15 Schichten an Protein wurde eine deutliche Zunahme an elektrodenaktivem Cytochrom c mit jedem zus{\"a}tzlichen Aufbringungsschritt nachgewiesen. Die Zunahme verlief linear und ergab bei 15 Schichten eine Zunahme der redoxaktiven Proteinmenge um deutlich mehr als eine Gr{\"o}ßenordnung. W{\"a}hrend das formale Potential im Multischichtsystem sich im Vergleich zur Monoschichtelektrode nicht ver{\"a}nderte, wurde f{\"u}r die Kinetik eine Abh{\"a}ngigkeit der Geschwindigkeit des Elektronentransfers von der Zahl der Proteinschichten beobachtet. Mit zunehmender Scangeschwindigkeit trat ein reversibler Kontaktverlust zu den {\"a}ußeren Schichten auf. Die lineare Zunahme an elektroaktivem Protein mit steigender Zahl an Depositionsschritten unterscheidet sich deutlich von in der Literatur beschriebenen Protein/Polyelektrolyt-Multischichtelektroden, bei denen ab etwa 6-8 Schichten keine Zunahme an elektroaktivem Protein mehr festgestelltwurde. Auch ist bei diesen die Zunahme an kontaktierbaren Proteinmolek{\"u}len auf das Zwei- bis F{\"u}nffache limitiert. Diese Unterschiede des neu vorgestellten Systems zu bisherigen Multischichtassemblaten erkl{\"a}rt sich aus einem in dieser Arbeit f{\"u}r derartige Systeme erstmals beschriebenen Elektronentransfermechanismus. Der Transport von Elektronen zwischen der Elektrodenoberfl{\"a}che und den Proteinmolek{\"u}len in den Schichten verl{\"a}uft {\"u}ber einen Protein-Protein-Elektronenaustausch. Dieser Mechanismus beruht auf dem schnellen Selbstaustausch von Cytochrom c-Molek{\"u}len und einer verbleibenden Rotationsflexibilit{\"a}t des Proteins im Multischichtsystem. Die Reduzierung des Proteins durch das Superoxidradikal und eine anschließende Reoxidation durch die Elektrode konnten nachgewiesen werden. In einem amperometrischen Messansatz wurde das durch Superoxidradikale hervorgerufene elektrochemische Signal in Abh{\"a}ngigkeit von der Zahl an Proteinschichten gemessen. Ein maximales Ansprechverhalten auf das Radikal wurde mit 6-Schichtelektroden erzielt. Die Empfindlichkeit der 6-Schichtelektroden wurde im Vergleich zum Literaturwert der Monoschichtelektrode um Faktor 14, also mehr als eine Gr{\"o}ßenordnung, verbessert. Somit konnte eine Elektrode mit 6 Schichten aus Cytochrom c und Poly(anilinsulfons{\"a}ure) als neuartiger Superoxidsensor mit einer 14-fachen Verbesserung der Empfindlichkeit im Vergleich zum bislang benutzten System entwickelt werden. Der zweite Teil dieser Arbeit beschreibt die Auswahl, Gewinnung und Charakterisierung von Mutanten des Proteins Cu,Zn-Superoxiddismutase zur elektrochemischen Quantifizierung von Superoxidradikalen. Monomere Mutanten des humanen dimeren Enzyms wurden entworfen, die durch Austausch von Aminos{\"a}uren ein oder zwei zus{\"a}tzliche Cysteinreste besaßen, mit welchem sie direkt auf der Goldelektrodenoberfl{\"a}che chemisorbieren sollten. 6 derartige Mutanten konnten in ausreichender Menge und Reinheit in aktiver Form gewonnen werden. Die Bindung der Superoxiddismutase-Mutanten an Goldoberfl{\"a}chen konnte durch Oberfl{\"a}chen-plasmonresonanz und Impedanzspektroskopie nachgewiesen werden. Alle Mutanten wiesen einen quasi-reversiblen Elektronentransfer zwischen SOD und Elektrode auf. Durch Untersuchung von kupferfreien SOD-Mutanten sowie des Wildtyps konnte nachgewiesen werden, das die Mutanten {\"u}ber die eingef{\"u}gten Cysteinreste auf der Elektrode chemisorptiv gebunden wurden und der Elektronentransfer zwischen der Elektrode und dem Kupfer im aktiven Zentrum der SOD erfolgte. Die Superoxiddismutase katalysiert die Zersetzung von Superoxidmolek{\"u}len durch Oxidation und durch Reduktion der Radikale. Somit sind beide Teilreaktionen von analytischem Interesse. Zyklovoltammetrisch konnte sowohl die Oxidation als auch die Reduktion des Radikals durch die immobilisierten Superoxiddismutase-Mutanten nachgewiesen werden. In amperometrischen Messanordnungen konnten beide Teilreaktionen zur analytischen Quantifizierung von Superoxidradikalen genutzt werden. Im positiven Potentialfenster wurde die Empfindlichkeit um einen Faktor von etwa 10 gegen{\"u}ber der Cytochrom c-Monoschichtelektrode verbessert.}, subject = {Biosensor}, language = {de} }