@phdthesis{SanchezBarriga2010, author = {S{\´a}nchez-Barriga, Jaime}, title = {A photoemission study of quasiparticle excitations, electron-correlation effects and magnetization dynamics in thin magnetic systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-48499}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {This thesis is focused on the electronic, spin-dependent and dynamical properties of thin magnetic systems. Photoemission-related techniques are combined with synchrotron radiation to study the spin-dependent properties of these systems in the energy and time domains. In the first part of this thesis, the strength of electron correlation effects in the spin-dependent electronic structure of ferromagnetic bcc Fe(110) and hcp Co(0001) is investigated by means of spin- and angle-resolved photoemission spectroscopy. The experimental results are compared to theoretical calculations within the three-body scattering approximation and within the dynamical mean-field theory, together with one-step model calculations of the photoemission process. From this comparison it is demonstrated that the present state of the art many-body calculations, although improving the description of correlation effects in Fe and Co, give too small mass renormalizations and scattering rates thus demanding more refined many-body theories including nonlocal fluctuations. In the second part, it is shown in detail monitoring by photoelectron spectroscopy how graphene can be grown by chemical vapour deposition on the transition-metal surfaces Ni(111) and Co(0001) and intercalated by a monoatomic layer of Au. For both systems, a linear E(k) dispersion of massless Dirac fermions is observed in the graphene pi-band in the vicinity of the Fermi energy. Spin-resolved photoemission from the graphene pi-band shows that the ferromagnetic polarization of graphene/Ni(111) and graphene/Co(0001) is negligible and that graphene on Ni(111) is after intercalation of Au spin-orbit split by the Rashba effect. In the last part, a time-resolved x-ray magnetic circular dichroic-photoelectron emission microscopy study of a permalloy platelet comprising three cross-tie domain walls is presented. It is shown how a fast picosecond magnetic response in the precessional motion of the magnetization can be induced by means of a laser-excited photoswitch. From a comparision to micromagnetic calculations it is demonstrated that the relatively high precessional frequency observed in the experiments is directly linked to the nature of the vortex/antivortex dynamics and its response to the magnetic perturbation. This includes the time-dependent reversal of the vortex core polarization, a process which is beyond the limit of detection in the present experiments.}, language = {en} } @phdthesis{Lengefeld2010, author = {Lengefeld, Jan}, title = {Zirkulardichroismus-Messungen mit Synchrotronstrahlung am BESSY : M{\"o}glichkeiten und Grenzen bei der Untersuchung biologischer Proben}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-44263}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {In dieser Arbeit wurden die M{\"o}glichkeiten und Grenzen f{\"u}r Zirkulardichroismus-Messungen mit Synchrotronstrahlung untersucht. Dazu wurde ein Messaufbau f{\"u}r Zirkulardichroismus-Messungen an zwei Strahlrohren am Berliner Elektronenspeicherring f{\"u}r Synchrotronstrahlung eingesetzt, die f{\"u}r Messungen im Bereich des ultravioletten Lichts geeignet sind. Eigenschaften der Strahlrohre und des Messaufbau wurden in einigen wichtigen Punkten mit kommerziellen Zirkulardichroismus-Spektrometern verglichen. Der Schwerpunkt lag auf der Ausdehnung des zug{\"a}nglichen Wellenl{\"a}ngenbereichs unterhalb von 180 nm zur Untersuchung des Zirkulardichroismus von Proteinen in diesem Bereich. In diesem Bereich ist es nicht nur die Lichtquelle sondern vor allem die Absorption des Lichts durch Wasser, die den Messbereich bei der Messung biologischer Proben in w{\"a}ssriger L{\"o}sung einschr{\"a}nkt. Es wurden Bedingungen gefunden, unter denen der Messbereich auf etwa 160 nm, in einigen F{\"a}llen bis auf 130 nm ausgedehnt werden konnte. Dazu musste die Pfadl{\"a}nge deutlich reduziert werden und verschieden Probenk{\"u}vetten wurden getestet. Der Einfluss der dabei auftretenden Spannungsdoppelbrechung in den Probenk{\"u}vetten auf das Messsignal konnte mit einem alternativen Messaufbau deutlich reduziert werden. Systematische Fehler im Messsignal und auftretende Strahlensch{\"a}den begrenzen jedoch die Zuverl{\"a}ssigkeit der gemessenen Spektren. Bei Proteinfilmen schr{\"a}nkt die Absorption von Wasser den Messbereich kaum ein. Es wurden jedoch meist deutliche Unterschiede zwischen den Spektren von Proteinfilmen und den Spektren von Proteinen in w{\"a}ssriger L{\"o}sung festgestellt. Solange diese Unterschiede nicht minimiert werden k{\"o}nnen, stellen Proteinfilme keine praktikable Alternative zu Messungen in w{\"a}ssriger L{\"o}sung dar.}, language = {de} }