@phdthesis{Landgraf2010, author = {Landgraf, Angela}, title = {Fault interaction at different time- and length scales : the North Tehran thrust and Mosha-Fasham fault (Alborz mountains, Iran)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-50800}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {The seismically active Alborz mountains of northern Iran are an integral part of the Arabia-Eurasia collision. Linked strike-slip and thrust/reverse-fault systems in this mountain belt are characterized by slow loading rates, and large earthquakes are highly disparate in space and time. Similar to other intracontinental deformation zones such a pattern of tectonic activity is still insufficiently understood, because recurrence intervals between seismic events may be on the order of thousands of years, and are thus beyond the resolution of short term measurements based on GPS or instrumentally recorded seismicity. This study bridges the gap of deformation processes on different time scales. In particular, my investigation focuses on deformation on the Quaternary time scale, beyond present-day deformation rates, and it uses present-day and paleotectonic characteristics to model fault behavior. The study includes data based on structural and geomorphic mapping, faultkinematic analysis, DEM-based morphometry, and numerical fault-interaction modeling. In order to better understand the long- to short term behavior of such complex fault systems, I used geomorphic surfaces as strain markers and dated fluvial and alluvial surfaces using terrestrial cosmogenic nuclides (TCN, 10Be, 26Al, 36Cl) and optically stimulated luminescence (OSL). My investigation focuses on the seismically active Mosha-Fasham fault (MFF) and the seismically virtually inactive North Tehran Thrust (NTT), adjacent to the Tehran metropolitan area. Fault-kinematic data reveal an early mechanical linkage of the NTT and MFF during an earlier dextral transpressional stage, when the shortening direction was oriented northwest. This regime was superseded by Pliocene to Recent NE-oriented shortening, which caused thrusting and sinistral strike-slip faulting. In the course of this kinematic changeover, the NTT and MFF were reactivated and incorporated into a nascent transpressional duplex, which has significantly affected landscape evolution in this part of the range. Two of three distinctive features which characterize topography and relief in the study area can be directly related to their location inside the duplex array and are thus linked to interaction between eastern MFF and NTT, and between western MFF and Taleghan fault, respectively. To account for inferred inherited topography from the previous dextral-transpression regime, a new concept of tectonic landscape characterization has been used. Accordingly, I define simple landscapes as those environments, which have developed during the influence of a sustained tectonic regime. In contrast, composite landscapes contain topographic elements inherited from previous tectonic conditions that are inconsistent with the regional present-day stress field and kinematic style. Using numerical fault-interaction modeling with different tectonic boundary conditions, I calculated synoptic snapshots of artificial topography to compare it with the real topographic metrics. However, in the Alborz mountains, E-W faults are favorably oriented to accommodate the entire range of NW- to NE-directed compression. These faults show the highest total displacement which might indicate sustained faulting under changing boundary conditions. In contrast to the fault system within and at the flanks of the Alborz mountains, Quaternary deformation in the adjacent Tehran plain is characterized by oblique motion and thrust and strike-slip fault systems. In this morphotectonic province fault-propagation folding along major faults, limited strike-slip motion, and en-{\´e}chelon arrays of second-order upper plate thrusts are typical. While the Tehran plain is characterized by young deformation phenomena, the majority of faulting took place in the early stages of the Quaternary and during late Pliocene time. TCN-dating, which was performed for the first time on geomorphic surfaces in the Tehran plain, revealed that the oldest two phases of alluviation (units A and B) must be older than late Pleistocene. While urban development in Tehran increasingly covers and obliterates the active fault traces, the present-day kinematic style, the vestiges of formerly undeformed Quaternary landforms, and paleo earthquake indicators from the last millennia attest to the threat that these faults and their related structures pose for the megacity.}, language = {en} }